共查询到20条相似文献,搜索用时 78 毫秒
1.
基于信息量模型和数据标准化的滑坡易发性评价 总被引:1,自引:0,他引:1
本文以北川曲山-擂鼓片区为研究区,将坡度、坡向、高程、地层、距断层的距离、距水系的距离和距道路的距离作为该区域滑坡易发性评价因子。采用信息量模型计算了各项评价因子的信息量值,并运用4种标准化模型对信息量值进行标准化处理。各评价因子的权重由层次分析法(AHP)确定。在GIS中将权重值和各评价因子的标准化信息量值,进行叠加计算得到区域滑坡总信息量值,并基于自然断点法对其进行重分类,将研究区划分为极高易发区、高易发区、中易发区、低易发区和极低易发区5级易发区。将基于4种标准化模型和信息量模型得到的滑坡易发性评价结果进行了对比分析,结果表明:基于最值标准化信息量模型的滑坡易发性评价结果的ROC曲线下面积AUC值为0.807,高于其余模型的AUC值,说明最值标准化信息量模型的滑坡易发性评价效果最好。极高易发区面积占研究区面积的20.03%,离断层和水系较近,主要分布地层为寒武系、志留系和三迭系。研究结果可为区内滑坡风险评价和灾害防治提供参考。 相似文献
2.
区域滑坡易发性评价对滑坡灾害防治具有重要意义,贵州省思南县由于其特殊的自然地理和地质条件,受滑坡地质灾害的影响非常严重,因此,非常有必要对思南县的滑坡易发性进行评价。在滑坡编录的基础上,采用由RS、GIS和GPS组成的3S技术,获取了思南县的数字高程模型、坡度、坡向、剖面曲率、坡长、岩土类型、地表湿度指数、距离水系的距离、植被覆盖度和地表建筑物指数10个滑坡影响因子;再在频率比和相关性分析的基础上,利用逻辑回归模型对思南县的滑坡易发性进行了评价并绘制了易发性分布图。结果表明:利用逻辑回归模型预测思南县滑坡易发性的准确率(AUC值)达到0.797,较为准确地预测出了思南县滑坡分布规律;极高和高滑坡易发区主要分布在高程低于600 m、地表坡度较大且以软质岩类为主的区域;而极低和低滑坡易发区主要分布在高程较高、地表坡度较小且以硬质岩类为主的区域。 相似文献
3.
对于滑坡易发性预测中的水系、公路和断层等线状环境因子, 现有研究大多采用缓冲分析提取距离线状因子的距离。但缓冲分析得到的线距离属于离散型变量, 带有大小不等的随机波动性且对点或线要素的误差较为敏感, 导致滑坡易发性建模精度下降。提出了使用水系和公路的空间密度等连续型变量改进线状环境因子的适宜性。以江西省安远县为例, 选取高程、地形起伏度、距水系和公路距离等14个环境因子(原始因子), 再将距水系和公路距离2个线状因子改进为水系密度和公路密度(改进因子); 之后采用逻辑回归、多层感知器、支持向量机和C5.0决策树等机器学习模型, 分别构建了基于原始因子和改进因子的机器学习模型以预测滑坡易发性; 最后利用ROC曲线和易发性指数分布特征等来研究建模规律。结果表明: ①改进因子机器学习预测精度均高于原始因子机器学习模型, 表明空间密度对于易发性预测的适宜性更好; ②在4类机器学习模型中C5.0模型对于滑坡易发性预测性能最好, 其次是SVM、MLP和LR; ③水系和公路两类环境因子的重要性较高且使用改进因子机器学习后这两类环境因子重要性排名依然非常靠前。 相似文献
4.
编制科学的滑坡易发性分区图,可以有效降低灾害带来的损失。以云南省芒市为研究区,利用确定性系数模型(certainty factor,简称CF)方法计算各个因子的敏感值,作为随机森林(random forests,简称RF)的分类数据,选取合适的训练数据和最优化的模型参数进行模型预测,从而对研究区进行滑坡易发性评价分区。采用频率比方法将连续性因子离散化,从而通过确定性系数计算因子不同区间的滑坡易发性,同时利用CF先验模型,对研究区负样本进行选取。通过计算袋外误差得到最优化的RF参数,随后利用RF模型对研究区模型进行训练及预测。绘制ROC曲线和三维遥感影像对预测模型结果分别进行定量和定性评价,结果表明,所得到的模型精度为91%,优于随机抽样得到的结果。最后,采用平均基尼不纯度减少和平均准确度下降两种计算方法计算、评价了研究区各个因子的重要性。基于以上对研究区进行的滑坡易发性评价结果,可以为该区灾害风险评估和管理提供依据。 相似文献
5.
Newmark位移模型是研究地震滑坡易发性的经典模型,机器学习方法支持向量机模型也越来越多的应用到滑坡易发性评估研究。本文将Newmark位移模型与支持向量机模型相结合,建立基于物理机理的地震滑坡易发性评估模型并应用于2008年汶川地震重灾区汶川县。从震后遥感影像目视解译出汶川县1900处地震诱发滑坡,并将其随机划分为70%的训练数据集和30%的验证数据集。选择地形起伏度、坡度、地形曲率、与构造断裂带距离、与水系距离、与道路距离6个因子与Newmark位移值共同作为地震滑坡易发性影响因素。利用ROC曲线和模型不确定性等指标对模型结果进行评估,并与二元统计模型频率比和多元统计模型Logistic回归的结果进行对比。结果表明:与频率比和Logistic回归模型相比,支持向量机模型的正确率最高,训练集和验证集ROC曲线下的面积分别为0.876和0.851。将模型应用于绘制汶川县地震滑坡易发性图,结果显示滑坡易发性图与实际的滑坡点位分布一致性较高,有80.4%的滑坡位于极高和高易发区。这说明支持向量机与Newmark位移方法结合建立的地震滑坡易发性评估模型有较高的预测价值,可以为滑坡风险评估和管理提供依据。 相似文献
6.
不同的易发性评价模型可以得到有差异的滑坡空间预测结果,选取最优模型甚至综合各模型的优势是提高易发性评价精度的有效方法。为检验模型融合思路的有效性,以鄂西地区五峰县渔洋关镇为研究区,提取坡度、地层、断层、河流、公路等7个滑坡成因条件,分别采用信息量模型、证据权模型和频率比模型进行滑坡易发性评价;并将3种模型分别进行归一化、主成分分析(PCA,Principal component analysis)和优势融合,得到了6幅易发性分区图。结果表明:优势耦合模型精度最高(90.3%),频率比模型次之(89.7%),归一化融合模型和PCA融合模型分别为89.3%和89.1%,以上4种结果的精度均高于证据权模型(87.7%)和信息量模型(87.6%);6幅预测图对应的评价结论与历史滑坡空间分布的实际情况相符。空间一致性对比结论表明,主成分融合模型与优势耦合模型的同格率高达68%,其预测结果避免了单个模型预测结论带来的偶然性和片面性,说明多模型融合方法与优势耦合模型在提高滑坡易发性预测精度上是可行性的,该思路对其他地区滑坡灾害易发性评价具有借鉴意义。 相似文献
7.
不同机器学习预测滑坡易发性的建模过程及其不确定性有所差异, 另外如何有效识别滑坡易发性的主控因子意义重大。针对上述问题, 以支持向量机(support vector machine, 简称SVM)和随机森林(random forest, 简称RF)为例探讨了基于机器学习的滑坡易发性预测及其不确定性, 创新地提出了"权重均值法"来综合计算出更准确的滑坡主控因子。首先获取陕西省延长县滑坡编录和10类基础环境因子, 将因子频率比值作为SVM和RF的输入变量; 再将滑坡与随机选择的非滑坡样本划分为训练集和测试集, 用训练好的机器学习预测出滑坡易发性并制图; 最后用受试者工作曲线、均值和标准差等来评估建模不确定性, 并计算滑坡主控因子。结果表明: ①机器学习能有效预测出区域滑坡易发性, RF预测的滑坡易发性精度高于SVM, 而其不确定性低于SVM, 但两者的易发性分布规律整体相似; ②权重均值法计算出延长县滑坡主控因子依次是坡度、高程和岩性。实例分析和文献综述显示RF模型相较于其他机器学习模型属于可靠性较高的易发性模型。 相似文献
8.
滑坡灾害成因机理复杂、影响因素众多,深度学习作为当前人工智能领域的热点,能够更好地模拟滑坡灾害的形成并准确预测潜在的斜坡。为了挖掘深度学习在滑坡易发性的应用潜能,本文构建了一维、二维和三维的滑坡数据表达形式,并提出3种基于卷积神经网络模型(Convolutional Neural Networks, CNN)的滑坡易发性分析处理框架:基于CNN分类器、基于CNN与逻辑回归的融合和基于CNN集成,最后以江西省铅山县为研究对象进行验证,结果表明:所有基于CNN的易发性模型都能够获得准确且可靠的滑坡易发性分析结果。其中,基于二维数据的CNN模型在所有单分类器中预测精度最高,为78.95%。此外,二维CNN特征提取能够显著提升逻辑回归的预测精度,其准确率提升7.9%。最后,异质集成策略能够大幅度提升基于CNN分类器的滑坡预测精度,其准确率提升4.35%~8.78%。 相似文献
9.
巴东县城由于其特殊的地理位置和特有的地质条件,使之成为滑坡灾害多发地带,严重威胁着巴东县城的发展,因此,有必要对巴东县城进行滑坡易发性评价研究。首先,基于GIS平台分别提取影响滑坡发生发育的各指标因子(地层岩性、地形地貌、地质构造、水文地质条件等),并划分证据层;其次,采用证据权法分别计算各证据层的权重及后验概率;然后将单元各证据层后验概率进行叠加,生成滑坡易发性分区图;最后,使用自然断点法将研究区按滑坡易发程度分为极高易发区、高易发区、中易发区、低易发区与极低易发区5类,极高易发区与高易发区面积之和约占研究区总面积的33%,其中86%的已有滑坡发生在极高易发区和高易发区,利用成功率曲线检验表明区划效果较好。 相似文献
10.
地质灾害威胁着山区人民生命财产安全,进行地质灾害易发性评价有助于山区城镇进行规划与建设时规避灾害风险。以川东南古蔺县为例,基于ArcGIS空间分析获取了研究区高程、坡度、岩性、斜坡结构、植被指数、距断层距离和距道路距离7个评价因子,采用信息量模型分别对滑坡和崩塌灾害进行易发性评价后,进一步利用ArcGIS单元统计功能对比了滑坡和崩塌易发性的信息量值,选取相对更大的信息量值作为该栅格的最终信息量值,绘制了研究区综合地质灾害易发性图,利用自然断点法将古蔺县按信息量值的大小划分为极低、低、中、高和极高易发区。结果表明:地质灾害主要分布在断层和道路附近,断层和人类工程活动是造成研究区地质灾害频发的主要原因;高易发区与极高易发区面积之和为1 315.62 km2,占全区总面积的41.32%;预测模型性能经ROC曲线检验,AUC值为0.812 5,说明栅格最大值法预测的古蔺县综合地灾易发性效果良好。 相似文献
11.
结合灰色模型和神经网络的数据处理特点,提出串联、并联和混联式3种结构的灰色神经网络滑坡变形预测模型。串联式将滑坡变形位移时序分解为趋势项和随机项,采用灰色模型提取滑坡位移时序趋势,利用神经网络逼近随机波动;并联式以灰色模型和神经网络分别对滑坡预测,采用智能非线性组合,按照预测目标精度动态调整权重,从而获取最终组合预测结果;混联式通过增加灰白化层及灰模型群,对神经网络拓扑结构进行优化,达到弱化滑坡原始监测数据随机性、提高预测模型稳健性的目的。将3种模型应用于古树屋滑坡变形预测,并对其适用性进行讨论。结果表明,3种结构的灰色神经网络耦合模型均提高了预测精度,适用于复杂状况下滑坡体的变形预测。 相似文献
12.
在充分考虑TEC序列非平稳、非线性、高噪声特性前提下,以IGS提供的2017年电离层TEC格网数据为基准,运用BP神经网络和ARMA两种模型分别进行TEC 3 d预测,重点分析两种模型在不同季节时段、不同电离层活跃强度及不同样本长度下的TEC预测性能及精度.结果表明,在不同时段,两种模型均能很好地反映TEC的变化特性,... 相似文献
13.
针对基于神经网络的电离层TEC短期预报存在精度较低、易陷入局部最优的问题,利用CODE中心提供的TEC数据及地磁活动指数,建立基于麻雀搜索算法(SSA)改进Elman神经网络的电离层TEC短期预报模型,并通过BP模型、Elman模型及SSA-Elman组合模型分别对电离层平静期和扰动期中低纬度TEC进行5 d连续预报.... 相似文献
14.
以中国典型黄土滑坡域甘肃黑方台党川6#滑坡体为例,基于滑坡体北斗和位移计时序监测数据,首先利用深度学习框架Tensorflow分别构建3种循环神经网络滑坡位移预测模型:简单循环神经网络(simple recurrent neural network,SimpleRNN)、长短期记忆网络(long short-term memory,LSTM)和门控循环单元(gated recurrent unit,GRU),并进一步针对循环神经网络在参数设置时多采用经验手动调参或采用网格搜索法,易造成人为主观影响较大和计算效率低下的突出问题,引入遗传算法(genetic algorithm,GA)优化循环神经网络参数的自动最佳化选取,分别构建3种基于遗传算法改进的循环神经网络滑坡位移高精度预测模型:GA-SimpleRNN、GA-LSTM、GA-GRU。研究结果表明,改进参数自动寻优后的3种循环神经网络预测模型具有更优的预测性能,特别是GA-GRU模型预测精度最高,更适用于滑坡体长时序位移的高精度预测。 相似文献
15.
EOF-LSTM神经网络的电离层TEC预报模型 总被引:1,自引:0,他引:1
为有效利用电离层总电子含量序列的时间信息,提出一种经验正交函数分解与长短期记忆神经网络组合的预报模型,利用IGS提供的云南地区TEC格网数据,分别对不同地点和不同时段的电离层进行建模预报。实验结果表明,该模型在同一时段预报5 d的TEC值均方根误差最优达1.83 TECu,较单一模型减小16%,其平均相对精度最优达91.56%,较单一模型增加7%;在同一地点预报5 d的TEC值均方根误差最优达1.86 TECu,较单一模型减小25%,其平均相对精度最优达90.74%,较单一模型增加7%。 相似文献
16.
基于遥感和BP人工神经网络的城乡气象站点划分分析 总被引:1,自引:0,他引:1
城市热岛是城市环境和全球变化研究的重要组成部分,利用气象观测资料研究城市热岛的影响一般采用城市和乡村气象站的同步实测气温,并计算其平均气温差,因此,城乡气象站点划分的准确性,将直接影响城市热岛研究的科学性。鉴于以行政单元统计人口为依据的划分方式未考虑人口在行政单元内的实际空间分布,本文以安徽省为例,利用从遥感影像上提取的土地利用信息,采用BP人工神经网络方法,建立站点缓冲区内土地利用类型比例的城乡站点划分模型,并利用空间化后的人口格网数据对该模型的精度进行了验证。结果表明,该模型有效地建立了气象站点周边缓冲区内的土地利用类型比例与城乡站点类型之间的定量关系,避免直接采用行政单元统计人口数据的不足,客观地模拟了缓冲区内土地利用对气象站点的综合作用,科学地划分出城市和乡村气象站点,为城市热岛研究提供科学、可靠的数据保障,并可用于大区域研究。另外,本文利用划分出的乡村站点建立背景温度场,得出2000年安徽省各城市站点平均热岛强度为0.4℃。 相似文献
17.
提出一种新的古滑坡变形预测方法。首先结合集合经验模态分解(EEMD)和奇异值分解(SVD)对古滑坡变形数据进行分解,然后利用分项组合神经网络预测古滑坡复活区的变形,最后利用多重分形消除趋势波动分析(MF-DFA)进行古滑坡多标度趋势评价。以王家坡滑坡为例分析本文方法的有效性。结果表明,组合分解模型EEMD-SVD较单项分解模型具有更强的数据分解能力,可有效实现滑坡变形数据的信息分解;基于神经网络的分项组合预测模型适用于滑坡变形预测,所得预测结果的相对误差基本在2%左右,预测精度较高,且外推预测显示滑坡变形仍会进一步增加,增加速率为1.23~1.36 mm/周期;MF-DFA模型的多标度特征分析结果显示,滑坡变形具有多重分形特征,变形有进一步增加的趋势,这与预测结果较为一致,可佐证前述预测结果的准确性。 相似文献
18.
周洋 《大地测量与地球动力学》2021,41(9):967-972
针对地震观测数据难以准确预测的难题,提出基于核混合效应回归模型.为验证该算法模型的可行性,结合湖北地震台站地球物理仪器产出数据开展仿真实验,并与传统的神经网络算法作对比.结果 表明,该模型能准确预测地震地球物理观测数据且性能优于其他神经网络算法,对水温、水位数据的预测相对误差低于0.05%及0.48%.该研究为地震监测... 相似文献
19.
跨海大桥系统受外界影响扰动,其变形伴有混沌现象发生.对桥梁变形监测数据实现了混沌识别,运用C-C法计算时间序列的延迟时间,用G-P方法求得最佳嵌入维数,通过求取的时间延迟和最佳嵌入维数对桥梁变形监测数据进行相空间重构,为混沌时间序列预测模型的建立奠定基础;基于RBF神经网络建立混沌时间序列预测模型,对实测数据进行桥梁变... 相似文献
20.
基于神经网络模型的干旱区绿洲土壤盐渍化评价分析 总被引:1,自引:0,他引:1
土壤盐渍化严重制约了农业可持续发展和生态安全,土壤盐渍化的精确评价分析,对土壤盐渍化的改善和治理具有重要的意义。本文以新疆焉耆盆地为研究对象,Landsat8 OLI遥感影像和实测采样数据相结合,提取地下水埋深(GD)、盐分指数(SI)、地表蒸散量(SET)和改进型温度植被干旱指数(MTVDI)建立了土壤盐渍化评价模型。结果表明:①结合野外实测土壤盐分数据,对BP神经网络模型进行训练。最终以最优的4-4-1结构的3层BP神经网模型对研究区土壤盐渍化进行了预测(R2=0.864,RMSE=0.569)。相比传统多元线性回归模型(R2=0.741,RMSE=0.767),神经网络模型对土壤盐渍化的预测精度更高;②土壤盐渍化分布与GD、SI、SET和MTVDI等存在较强的关联性,不同等级的土壤盐渍化是不同影响因素不同程度上组合而引起的结果,盐渍化土地主要分布在地下水位较低以及土地开垦之后没有利用的荒地区域;③整个研究区大部分区域受到不同程度的盐渍化影响,耕地退化为盐渍地导致该区域土壤盐渍化以及土壤次生盐渍化进一步加剧。 相似文献