首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have selected and analyzed a sample of OB stars with known line-of-sight velocities determined through ground-based observations and with trigonometric parallaxes and propermotions from the Gaia DR2 catalogue. Some of the stars in our sample have distance estimates made from calcium lines. A direct comparison with the trigonometric distance scale has shown that the calcium distance scale should be reduced by 13%. The following parameters of the Galactic rotation curve have been determined from 495 OB stars with relative parallax errors less than 30%: (U, V,W) = (8.16, 11.19, 8.55)± (0.48, 0.56, 0.48) km s?1, Ω0 = 28.92 ± 0.39 km s?1 kpc?1, Ω'0 = ?4.087 ± 0.083 km s?1 kpc?2, and Ω″ 0 = 0.703 ± 0.067 km s?1 kpc?3, where the circular velocity of the local standard of rest is V0 = 231 ± 5 km s?1 (for the adopted R0 = 8.0 ± 0.15 kpc). The parameters of the Galactic spiral density wave have been found from the series of radial, VR, residual tangential, ΔVcirc, and vertical, W, velocities of OB stars by applying a periodogram analysis. The amplitudes of the radial, tangential, and vertical velocity perturbations are fR = 7.1± 0.3 km s?1, fθ = 6.5 ± 0.4 km s?1, and fW = 4.8± 0.8 km s?1, respectively; the perturbation wavelengths are λR = 3.3 ± 0.1 kpc, λθ = 2.3 ± 0.2 kpc, and λW = 2.6 ± 0.5 kpc; and the Sun’s radial phase in the spiral density wave is (χ)R = ?135? ± 5?, (χ)θ = ?123? ± 8?, and (χ)W = ?132? ± 21? for the adopted four-armed spiral pattern.  相似文献   

3.
Open star clusters from the MWSC (Milky Way Star Clusters) catalogue have been used to determine the Galactic rotation parameters. The circular rotation velocity of the solar neighborhood around the Galactic center has been found from data on more than 2000 clusters of various ages to be V 0 = 236 ± 6 km s?1 for the adopted Galactocentric distance of the Sun R 0 = 8.3 ± 0.2 kpc. The derived angular velocity parameters are Ω 0 = 28.48 ± 0.36 km s?1 kpc?1, Ω0 = ?3.50 ± 0.08 km s?1 kpc?2, and Ω0 = 0.331 ± 0.037 km s?1 kpc?3. The influence of the spiral density wave has been detected only in the sample of clusters younger than 50 Myr. For these clusters the amplitudes of the tangential and radial velocity perturbations are f θ = 5.6 ± 1.6 km s?1 and f R = 7.7 ± 1.4 km s?1, respectively; the perturbation wavelengths are λ θ = 2.6 ± 0.5 kpc (i θ = ?11? ± 2?) and λ R = 2.1 ± 0.5 kpc (i R = ?9? ± 2?) for the adopted four-armed model (m = 4). The Sun’s phase in the spiral density wave is (χ)θ = ?62? ± 9? and (χ)R = ?85? ± 10? from the residual tangential and radial velocities, respectively.  相似文献   

4.
5.
Three three-component (bulge, disk, halo) model Galactic gravitational potentials differing by the expression for the dark matter halo are considered. The central (bulge) and disk components are described by the Miyamoto–Nagai expressions. The Allen–Santillán (I), Wilkinson–Evans (II), and Navarro–Frenk–White (III) models are used to describe the halo. A set of present-day observational data in the range of Galactocentric distances R from 0 to 200 kpc is used to refine the parameters of thesemodels. For the Allen–Santillán model, a dimensionless coefficient γ has been included as a sought-for parameter for the first time. In the traditional and modified versions, γ = 2.0 and 6.3, respectively. Both versions are considered in this paper. The model rotation curves have been fitted to the observed velocities by taking into account the constraints on the local matter density ρ = 0.1 M pc?3 and the force K z =1.1/2πG = 77 M pc?2 acting perpendicularly to the Galactic plane. The Galactic mass within a sphere of radius 50 kpc, M G (R ≤ 50 kpc) ≈ (0.41 ± 0.12) × 1012 M , is shown to satisfy all three models. The differences between the models become increasingly significant with increasing radius R. In model I, the Galactic mass within a sphere of radius 200 kpc at γ = 2.0 turns out to be greatest among the models considered, M G (R ≤ 200 kpc) = (1.45 ±0.30)× 1012 M , M G (R ≤ 200 kpc) = (1.29± 0.14)× 1012 M at γ = 6.3, and the smallest value has been found in model II, M G (R ≤ 200 kpc) = (0.61 ± 0.12) × 1012 M . In our view, model III is the best one among those considered, because it ensures the smallest residual between the data and the constructed model rotation curve provided that the constraints on the local parameters hold with a high accuracy. Here, the Galactic mass is M G (R ≤ 200 kpc) = (0.75 ± 0.19) × 1012 M . A comparative analysis with the models by Irrgang et al. (2013), including those using the integration of orbits for the two globular clusters NGC 104 and NGC 1851 as an example, has been performed. The third model is shown to have subjected to a significant improvement.  相似文献   

6.
We use data on open star clusters (OSCs) from the Homogeneous Catalog of OSC Parameters to determine some of the parameters of the spiral structure of our Galaxy: the pitch angle of the spiral arms \(i = 21\mathop .\limits^ \circ 5\), the pattern speed Ωp = 20.4 ± 2.5 km s?1 kpc?1, and the initial phase of the spiral θ0 = 206°. The spiral pattern of the Galaxy proves to have been virtually unchanged over the last billion years, and signatures of the concentration of objects toward the spiral arms can be traced back to this age. However, the number of spiral arms in the structure cannot be determined from OSCs.  相似文献   

7.
We have obtained new estimates of the Sun’s distance from the symmetry plane Z and the vertical disk scale height h using currently available data on stellar OB associations, Wolf–Rayet stars, HII regions, and Cepheids. Based on individual determinations, we have calculated the mean Z = ?16 ± 2 pc. Based on the model of a self-gravitating isothermal disk for the density distribution, we have found the following vertical disk scale heights: h = 40.2 ± 2.1 pc from OB associations, h = 47.8 ± 3.9 pc from Wolf–Rayet stars, h = 48.4 ± 2.5 pc from HII regions, and h = 66.2 ± 1.6 pc from Cepheids. We have estimated the surface, Σ = 6 kpc?2, and volume, D(Z ) = 50.6 kpc?3, densities from a sample of OB associations. We have found that there could be ~5000 OB associations in the Galaxy.  相似文献   

8.
It is shown in the present paper that properties of the spiral wave in the Galaxy are determined by the mass distribution of its flat subsystem rather than by the full mass distribution. Then it turns out that better agreement with the observed spiral pattern furnish the ‘long’ waves in contrast to the ‘short’ waves in the Linet al. (1969) theory. With the surface density σI=40M /ps 2 which is taken in the first approximation as independent on the galacto-centric distance, and the pattern velocityΩ p=23 km/s kps, the evaluated spiral pattern fits surprisingly well with the Weaver (1970) map of the HI-distribution in the Galaxy, and is in good agreement with the Kerr (1969) map. The inner Lindblad resonance occurs at 2 kps from the Galaxy center, where Weaver has placed the ring condensation of the gas, and the outer resonance lies close by 14 kps. At the outer resonance the nonlinear phenomena are expected, which lead to chaotization of the regular structure. This seems to be consistent with the Weaver (1970) and Kerr (1969) maps. The hypothesis is suggested which associates the generating mechanism of spiral waves with the rotating bar of old stars in the center of the Galaxy. Depending on the velocity of the bar rotation and the bar length, different combinations of the normal wave pattern and bar-like structure may occur, which possibly explains the great variety of transition forms between normal and barred spirals. In the proposed theory the packet of spiral waves moves from the inner Lindblad resonance outwards and could be permanently maintained by the ‘generator’ in the center of the Galaxy. Therefore, the difficulty associated with the rapid obliteration of the packet (Toomre, 1969) does not arise.  相似文献   

9.
Data on HII regions, molecular clouds, and methanol masers have been used to estimate the Sun’s distance from the symmetry plane z and the vertical disk scale height h. Kinematic distance estimates are available for all objects in these samples. The Local-arm (Orion-arm) objects are shown to affect noticeably the pattern of the z distribution. The deviations from the distribution symmetry are particularly pronounced for the sample of masers with measured trigonometric parallaxes, where the fraction of Local-arm masers is large. The situation with the sample of HII regions in the solar neighborhood is similar. We have concluded that it is better to exclude the Local arm from consideration. Based on the model of a self-gravitating isothermal disk, we have obtained the following estimates from objects located in the inner region of the Galaxy (RR 0): z = ?5.7 ± 0.5 pc and h 2 = 24.1 ± 0.9 pc from the sample of 639 methanol masers, z = ?7.6±0.4 pc and h 2 = 28.6±0.5 pc from 878HII regions, z = ?10.1 ± 0.5 pc and h 2 = 28.2 ± 0.6 pc from 538 giant molecular clouds.  相似文献   

10.
We used the Revised Flat Galaxy Catalog (RFGC) to select 817 ultra-flat (UF) edge-on disk galaxies with blue and red apparent axial ratios of (a/b)B > 10.0 and (a/b)R > 8.5. The sample covering the whole sky, except the Milky Way zone, contains 490 UF galaxies with measured radial velocities. Our inspection of the neighboring galaxies around them revealed only 30 companions with radial velocity difference of | ΔV |< 500 kms?1 inside the projected separation of Rp < 250 kpc. Wherein, the wider area around the UF galaxy within Rp < 750 kpc contains no other neighbors brighter than the UF galaxy itself in the same velocity span. The resulting sample galaxies mostly belong to the morphological types Sc, Scd, Sd. They have a moderate rotation velocity curve amplitude of about 120 km s?1 and a moderate K-band luminosity of about 1010L. The median difference of radial velocities of their companions is 87 km s?1, yielding the median orbital mass estimate of about 5 × 1011M. Excluding six probable non-isolated pairs, we obtained a typical halo-mass-to-stellar-mass of UF galaxies of about 30, what is almost the same one as in the principal spiral galaxies, like M31 and M81 in the nearest groups. We also note that ultra-flat galaxies look two times less “dusty” than other spirals of the same luminosity.  相似文献   

11.
We have studied the simultaneous and separate solutions of the basic kinematic equations obtained using the stellar velocities calculated on the basis of data from the Gaia TGAS and RAVE5 catalogues. By comparing the values of Ω'0 found by separately analyzing only the line-of-sight velocities of stars and only their proper motions, we have determined the distance scale correction factor p to be close to unity, 0.97 ± 0.04. Based on the proper motions of stars from the Gaia TGAS catalogue with relative trigonometric parallax errors less than 10% (they are at a mean distance of 226 pc), we have found the components of the group velocity vector for the sample stars relative to the Sun (U, V,W) = (9.28, 20.35, 7.36) ± (0.05, 0.07, 0.05) km s?1, the angular velocity of Galactic rotation Ω0 = 27.24 ± 0.30 km s?1 kpc?1, and its first derivative Ω'0 = ?3.77 ± 0.06 km s?1 kpc?2; here, the circular rotation velocity of the Sun around the Galactic center is V0 = 218 ± 6 km s?1 kpc (for the adopted distance R0 = 8.0 ± 0.2 kpc), while the Oort constants are A = 15.07 ± 0.25 km s?1 kpc?1 and B = ?12.17 ± 0.39 km s?1 kpc?1, p = 0.98 ± 0.08. The kinematics of Gaia TGAS stars with parallax errors more than 10% has been studied by invoking the distances from a paper by Astraatmadja and Bailer-Jones that were corrected for the Lutz–Kelker bias. We show that the second derivative of the angular velocity of Galactic rotation Ω'0 = 0.864 ± 0.021 km s?1 kpc?3 is well determined from stars at a mean distance of 537 pc. On the whole, we have found that the distances of stars from the Gaia TGAS catalogue calculated using their trigonometric parallaxes do not require any additional correction factor.  相似文献   

12.
We consider the problem of determining the geometric parameters of a Galactic spiral arm from its segment by including the distance to the spiral pole, i.e., the distance to the Galactic center (R0). The question about the number of points belonging to one turn of a logarithmic spiral and defining this spiral as a geometric figure has been investigated numerically and analytically by assuming the direction to the spiral pole (to the Galactic center) to be known. Based on the results obtained, in an effort to test the new approach, we have constructed a simplified method of solving the problem that consists in finding the median of the values for each parameter from all possible triplets of objects in the spiral arm segment satisfying the condition for the angular distance between objects. Applying the method to the data on the spatial distribution of masers in the Perseus and Scutum arms (the catalogue by Reid et al. (2014)) has led to an estimate of R0 = 8.8 ± 0.5 kpc. The parameters of five spiral arm segments have been determined from masers of the same catalogue. We have confirmed the difference between the spiral arms in pitch angle. The pitch angles of the arms revealed by masers are shown to generally correlate with R0 in the sense that an increase in R0 leads to a growth in the absolute values of the pitch angles.  相似文献   

13.
We perform a kinematic analysis of the Hipparcos and TRC proper motions of stars by using a linear Ogorodnikov-Milne model. All of the distant (r>0.2 kpc) stars of the Hipparcos catalog have been found to rotate around the Galactic y axis with an angular velocity of M 13 ? =?0.36±0.09 mas yr?1. One of the causes of this rotation may be an uncertainty in the lunisolar precession constant adopted when constructing the ICRS. In this case, the correction to the IAU (1976) lunisolar precession constant in longitude is shown to be Δp1=?3.26±0.10 mas yr?1. Based on the TRC catalog, we have determined the mean Oort constants: A=14.9±1.0 and B=?10.8±0.3 km s?1 kpc?1. The component of the model that describes the rotation of all TRC stars around the Galactic y axis is nonzero for all magnitudes, M 13 ? =?0.86±0.11 mas yr?1.  相似文献   

14.
Based on kinematic data on masers with known trigonometric parallaxes and measurements of the velocities of HI clouds at tangential points in the inner Galaxy, we have refined the parameters of the Allen-Santillan model Galactic potential and constructed the Galactic rotation curve in a wide range of Galactocentric distances, from 0 to 20 kpc. The circular rotation velocity of the Sun for the adopted Galactocentric distance R 0 = 8 kpc is V 0 = 239 ± 16 km s?1. We have obtained the series of residual tangential, ΔV θ , and radial, V R , velocities for 73 masers. Based on these series, we have determined the parameters of the Galactic spiral density wave satisfying the linear Lin-Shu model using the method of periodogram analysis that we proposed previously. The tangential and radial perturbation amplitudes are f θ = 7.0±1.2 km s?1 and f R = 7.8±0.7 km s?1, respectively, the perturbation wave length is λ = 2.3±0.4 kpc, and the pitch angle of the spiral pattern in a two-armed model is i = ?5.2° ±0.7°. The phase of the Sun ζ in the spiral density wave is ?50° ± 15° and ?160° ± 15° from the residual tangential and radial velocities, respectively.  相似文献   

15.
This study based on longitudinal Zeeman effect magnetograms and spectral line scans investigates the dependence of solar surface magnetic fields on the spectral line used and the way the line is sampled to estimate the magnetic flux emerging above the solar atmosphere and penetrating to the corona from magnetograms of the Mt. Wilson 150-foot tower synoptic program (MWO). We have compared the synoptic program λ5250 Å line of Fe?i to the line of Fe?i at λ5233 Å since this latter line has a broad shape with a profile that is nearly linear over a large portion of its wings. The present study uses five pairs of sampling points on the λ5233 Å line. Line profile observations show that the determination of the field strength from the Stokes V parameter or from line bisectors in the circularly polarized line profiles lead to similar dependencies on the spectral sampling of the lines, with the bisector method being the less sensitive. We recommend adoption of the field determined with the line bisector method as the best estimate of the emergent photospheric flux and further recommend the use of a sampling point as close to the line core as is practical. The combination of the line profile measurements and the cross-correlation of fields measured simultaneously with λ5250 Å and λ5233 Å yields a formula for the scale factor δ ?1 that multiplies the MWO synoptic magnetic fields. By using ρ as the center-to-limb angle (CLA), a fit to this scale factor is δ ?1=4.15?2.82sin?2(ρ). Previously δ ?1=4.5?2.5sin?2(ρ) had been used. The new calibration shows that magnetic fields measured by the MDI system on the SOHO spacecraft are equal to 0.619±0.018 times the true value at a center-to-limb position 30°. Berger and Lites (2003, Solar Phys. 213, 213) found this factor to be 0.64±0.013 based on a comparison using the Advanced Stokes Polarimeter.  相似文献   

16.
Based on the Gaia DR1 TGAS parallaxes and photometry from the Tycho-2, Gaia, 2MASS, andWISE catalogues, we have produced a sample of ~100 000 clump red giants within ~800 pc of the Sun. The systematic variations of the mode of their absolute magnitude as a function of the distance, magnitude, and other parameters have been analyzed. We show that these variations reach 0.7 mag and cannot be explained by variations in the interstellar extinction or intrinsic properties of stars and by selection. The only explanation seems to be a systematic error of the Gaia DR1 TGAS parallax dependent on the square of the observed distance in kpc: 0.18R 2 mas. Allowance for this error reduces significantly the systematic dependences of the absolute magnitude mode on all parameters. This error reaches 0.1 mas within 800 pc of the Sun and allows an upper limit for the accuracy of the TGAS parallaxes to be estimated as 0.2 mas. A careful allowance for such errors is needed to use clump red giants as “standard candles.” This eliminates all discrepancies between the theoretical and empirical estimates of the characteristics of these stars and allows us to obtain the first estimates of the modes of their absolute magnitudes from the Gaia parallaxes: mode(M H ) = ?1.49 m ± 0.04 m , mode(M Ks ) = ?1.63 m ± 0.03 m , mode(M W1) = ?1.67 m ± 0.05 m mode(M W2) = ?1.67 m ± 0.05 m , mode(M W3) = ?1.66 m ± 0.02 m , mode(M W4) = ?1.73 m ± 0.03 m , as well as the corresponding estimates of their de-reddened colors.  相似文献   

17.
Speckle-interferometric observations of FU Ori are performed with the 6-m telescope of the Special Astrophysical Observatory with 600/40 nm and 800/100 nm (central bandwidth/halfwidth) filters. The companion star FU Ori S that was recently discovered at λ >-1.25µm was recorded in observations with the λλ==800/100 nm filter. The positional parameters and magnitude difference of the companion in the filter considered are found to be θ = (163.9 ± 1.0)°, ρ = (0.493 ± 0.007)″, Δm = 3.96 ± 0.28. An analysis of the spectral energy distribution of the companion implies that for the extinction A V toward FU Ori to be greater than about 1.6 m , i.e., the minimum value required by the available models of the fuor, the spectral type of the companion star must be no later than K3. The reliability of this conclusion and the possible ways for obtaining more accurate estimates of A V are discussed.  相似文献   

18.
Based on the stellar proper motions of the TGAS (Gaia DR1) catalogue, we have analyzed the velocity field of main-sequence stars and red giants from the TGAS catalogue with heliocentric distances up to 1.5 kpc. We have obtained four variants of kinematic parameters corresponding to different methods of calculating the distances from the parallaxes of stars measured with large relative errors. We have established that within the Ogorodnikov–Milne model changing the variant of distances affects significantly only the solar velocity components relative to the chosen centroid of stars, provided that the solution is obtained in narrow ranges of distances (0.1 kpc). The estimates of all the remaining kinematic parameters change little. This allows the Oort coefficients and related Galactic rotation parameters as well as all the remaining Ogorodnikov–Milne model parameters (except for the solar terms) to be reliably estimated irrespective of the parallax measurement accuracy. The main results obtained from main-sequence stars in the range of distances from 0.1 to 1.5 kpc are: A = 16.29 ± 0.06 km s?1 kpc?1, B = ?11.90 ± 0.05 km s?1 kpc?1, C = ?2.99 ± 0.06 km s?1 kpc?1, K = ?4.04 ± 0.16 km s?1 kpc?1, and the Galactic rotation period P = 217.41 ± 0.60 Myr. The analogous results obtained from red giants in the range from 0.2 to 1.6 kpc are: the Oort constants A = 13.32 ± 0.09 km s?1 kpc?1, B = ?12.71 ± 0.06 km s?1 kpc?1, C = ?2.04 ± 0.08 km s?1 kpc?1, K = ?2.72 ± 0.19 km s?1 kpc?1, and the Galactic rotation period P = 236.03 ± 0.98 Myr. The Galactic rotation velocity gradient along the radius vector (the slope of the Galactic rotation curve) is ?4.32 ± 0.08 km s?1 kpc?1 for main-sequence stars and ?0.61 ± 0.11 km s?1 kpc?1 for red giants. This suggests that the Galactic rotation velocity determined from main-sequence stars decreases with increasing distance from the Galactic center faster than it does for red giants.  相似文献   

19.
We compare the line-of-sight velocities of stars in OB associations within 3 kpc of the Sun and the molecular clouds closest to them. The Perseus arm is used as an example to show that the line-of-sight velocity ranges in which OB-association stars, molecular clouds, and H II regions ionized by these association stars are observed overlap. The streaming motions produced by density waves in the (l, VLSR) plane were found to lead to an inversion of the distances to objects of the Perseus arm and the interarm space beyond this arm.  相似文献   

20.
A sample of classical Cepheids with known distances and line-of-sight velocities has been supplemented with proper motions from the Gaia DR1 catalogue. Based on the velocities of 260 stars, we have found the components of the peculiar solar velocity vector (U, V, W) = (7.90, 11.73, 7.39) ± (0.65, 0.77, 0.62) km s?1 and the following parameters of the Galactic rotation curve: Ω0 = 28.84 ± 0.33 km s?1 kpc?1, Ω′0 = ?4.05 ± 0.10 km s?1 kpc?2, and Ω″0 = 0.805 ± 0.067 km s?1 kpc?3 for the adopted solar Galactocentric distance R 0 = 8 kpc; the linear rotation velocity of the local standard of rest is V 0 = 231 ± 6 km s?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号