首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Rare earth element (REE) geochemistry on monomineral has been widely used in various fields of geosciences to reveal the origin of ore-forming materials and fluid. Quartz are ubiquitous mineral in the Shihu gold deposit that is situated in central shear zone of mesocenozoic Fuping metamorphic core complex in the middle-northern part of Taihang Mountains. Gold-bearing quartz veins are their most important industrial orebodies. Rare earth element abundances in quartz from the Shihu gold mine, as determined by laser ablation-indutively coupled plasma-mass spectrometry (LA-ICP-MS) analysis, are shown to be sensitive to identify barren quartz and mineralized quartz. Amounts of REE concentrations in barren quartz and mineralized quartz are 97 × 10−9 and 85 × 10−9, respectively. The average (La/Yb)N and (La/Sm)N ratios for the barren quartz are 0.25 and 0.13, and the ratios for mineralized quartz are 0.28 and 0.19, respectively. There is a pronounced positive correlation between (La/Yb)N and (La/Sm)N ratios. There is no obvious correlation between REE characteristics and sampling sites. The mineralized quartz show the most pronounced negative Ce anomalies, whereas weak negative Ce anomalies are typical of barren quartz vein. A negative Eu anomaly becomes more significant in mineralized quartz than barren quartz. δCe have a broadly positive correlation with δEu. Y/Ho ratio of barren quartz and mineralized quartz are ranging from 2.14–28.75, and from 1.28–9.92, respectively. The REE characteristics of quartz indicate that the ore-forming fluids of the gold deposit were derived from the deep fluid and its formation was dually controlled by Precambrian metamorphic basement and Mesozoic granitoids. The results significantly enhance the usefulness of quartz in tracing the sources of ore-forming fluid to discuss the genesis of the gold deposit, and as an indicator mineral in mineral exploration in Taihang mountain region.  相似文献   

2.
The role of municipal solid waste (MSW) landfill leachate on the genesis of minor amounts of pyrite associated with gypsum in an otherwise predominantly evaporitic sequence was studied in geological and geochemical terms. The potential association between landfill leachate and the conditions required for bacterial reduction of sulfate and fixation of H2S as pyrite were examined. The lithological column was generally found to contain little or no Fe. The δ34S values for sulfates were consistent with previously reported data; however, the measured δ18O values were slightly higher. Sulfides disseminated in the marl/lutite exhibited higher δ34S values (≈−8‰) than gypsum-coating pyrite crystals (δ34S < −30‰). Dissolution of gypsum to sulfate and the supply of metabolizable organic matter and Fe required for H2S fixation as sulfides may have originated from landfill leachate. Intermittent availability of leachate, a result of the precipitation regime, can facilitate sulfur disproportionation and lead to fractionations as high as   相似文献   

3.
Five Cu–Au epidote skarns are associated with the Mt. Shea intrusive complex, located in the 2.7–2.6 Ga Eastern Goldfields Province of the Archean Yilgarn craton, in greenstones bounded by the Boulder Lefroy and Golden Mile strike-slip faults, which control the Golden Mile (1,435 t Au) at Kalgoorlie and smaller “orogenic” gold deposits at Kambalda. The Cu–Au deposits studied are oxidized endoskarns replacing faulted and fractured quartz monzodiorite–granodiorite. The orebodies are up to 140 m long and 40 m thick. Typical grades are 0.5% Cu and 0.3 g/t Au although parts are richer in gold (1.5–4.5 g/t). At the Hannan South mine, the skarns consist of epidote, calcite, chlorite, magnetite (5–15%), and minor quartz, muscovite, and microcline. Gangue and magnetite are in equilibrium contact with pyrite and chalcopyrite. The As–Co–Ni-bearing pyrite contains inclusions of hematite, gold, and electrum and is intergrown with cobaltite and Cu–Pb–Bi sulfides. At the Shea prospect, massive, net-textured, and breccia skarns are composed of multistage epidote, actinolite, albite, magnetite (5%), and minor biotite, calcite, and quartz. Gangue and magnetite are in equilibrium with Co–Ni pyrite and chalcopyrite. Mineral-pair thermometry, mass-balance calculations, and stable-isotope data (pyrite δ34SCDT = 2.5‰, calcite δ13CPDB = −5.3‰, and δ18OSMOW = 12.9‰) indicate that the Cu–Au skarns formed at 500 ± 50°C by intense Ca–Fe–CO2–S metasomatism from fluids marked by an igneous isotope signature. The Mt. Shea stock–dike–sill complex postdates the regional D1 folding and metamorphism and the main phase of D2 strike-slip faulting. The suite is calc-akaline and comprises hornblende–plagioclase monzodiorite, quartz monzodiorite, granodiorite, and quartz–plagioclase tonalite porphyry. The intrusions display a wide range in silica content (53–73 wt% SiO2), in ratio (0.37–0.89), and in ratio (0.02–0.31). Chromium (62–345 ppm), Ni (23–158), Sr (311–1361 ppm), and Ba (250–2,581 ppm) contents are high, Sr/Y ratios are high (24–278, mostly >50), and the rare earth element patterns are fractionated . These features and a negative niobium anomaly relative to the normal mid-ocean ridge basalt indicate that the suite formed by hornblende fractionation from a subduction-related monzodiorite magma sourced from metasomatized peridotite in the upper mantle. The magnesian composition of many intrusions was enhanced due to hornblende crystallization under oxidizing hydrous conditions and during the subsequent destruction of igneous magnetite by subsolidus actinolite–albite alteration. At the Shea prospect, main-stage Cu–Au epidote skarn is cut by biotite–albite–dolomite schist and by red biotite–albite replacement bands. Post-skarn alteration includes 20-m-thick zones of sericite–chlorite–ankerite schist confined to two D3 reverse faults. The schists are mineralized with magnetite + pyrite + chalcopyrite (up to 0.62% Cu, 1.6 g/t Au) and are linked to skarn formation by shared Ca–Fe–CO2 metasomatism. Red sericitic alteration, marked by magnetite + hematite + pyrite, occurs in fractured porphyry. The biotite/sericite alteration and oxidized ore assemblages at the Shea prospect are mineralogically identical to magnetite–hematite-bearing gold lodes at Kambalda and in the Golden Mile. Published fluid inclusion data suggest that a “high-pressure”, oxidized magmatic fluid (2–9 wt% NaCl equivalent, , 200–400 MPa) was responsible for gold mineralization in structural sites of the Boulder Lefroy and Golden Mile faults. The sericite–alkerite lodes in the Golden Mile share the assemblages pyrite + tennantite + chalcopyrite and bornite + pyrite, and accessory high-sulfidation enargite with late-stage sericitic alteration zones developed above porphyry copper deposits.  相似文献   

4.
At Sams Creek, a gold-bearing, peralkaline granite porphyry dyke, which has a 7 km strike length and is up to 60 m in thickness, intrudes camptonite lamprophyre dykes and lower greenschist facies metapelites and quartzites of the Late Ordovician Wangapeka formation. The lamprophyre dykes occur as thin (< 3 m) slivers along the contacts of the granite dyke. δ18Omagma values (+5 to +8‰, VSMOW) of the A-type granite suggest derivation from a primitive source, with an insignificant mature crustal contribution. Hydrothermal gold–sulphide mineralisation is confined to the granite and adjacent lamprophyre; metapelite country rocks have only weak hydrothermal alteration. Three stages of hydrothermal alteration have been identified in the granite: Stage I alteration (high fO2) consisting of magnetite–siderite±biotite; Stage II consisting of thin quartz–pyrite veinlets; and Stage III (low fO2) consisting of sulphides, quartz and siderite veins, and pervasive silicification. The lamprophyre is altered to an ankerite–chlorite–sericite assemblage. Stage III sulphide veins are composed of arsenopyrite + pyrite ± galena ± sphalerite ± gold ± chalcopyrite ± pyrrhotite ± rutile ± graphite. Three phases of deformation have affected the area, and the mineralised veins and the granite and lamprophyre dykes have been deformed by two phases of folding, the youngest of which is Early Cretaceous. Locally preserved early-formed fluid inclusions are either carbonic, showing two- or three-phases at room temperature (liquid CO2-CH4 + liquid H2O ± CO2 vapour) or two-phase liquid-rich aqueous inclusions, some of which contain clathrates. Salinities of the aqueous inclusions are in the range of 1.4 to 7.6 wt% NaCl equiv. Final homogenisation temperatures (Th) of the carbonic inclusions indicate minimum trapping temperatures of 320 to 355°C, which are not too different from vein formation temperatures of 340–380°C estimated from quartz–albite stable isotope thermometry. δ18O values of Stage II and III vein quartz range from +12 and +17‰ and have a bimodal distribution (+14.5 and +16‰) with Stage II vein quartz accounting for the lower values. Siderite in Stage III veins have δ18O (+12 to +16‰) and δ13C values (−5‰, relative to VPDB), unlike those from Wangapeka Formation metasediments (δ13Cbulk carbon values of −24 to −19‰) and underlying Arthur Marble marine carbonates (δ18O = +25‰ and δ13C = 0‰). Calculated δ18Owater (+8 to +11‰, at 340°C) and (−5‰) values from vein quartz and siderite are consistent with a magmatic hydrothermal source, but a metamorphic hydrothermal origin cannot be excluded. δ34S values of sulphides range from +5 to +10‰ (relative to CDT) and also have a bimodal distribution (modes at +6 and +9‰, correlated with Stage II and Stage III mineralisation, respectively). The δ34S values of pyrite from the Arthur Marble marine carbonates (range from +3 to +13‰) and Wangapeka Formation (range from −4 to +9.5‰) indicate that they are potential sources of sulphur for sulphides in the Sams Creek veins. Another possible source of the sulphur is the lithospheric mantle which has positive values up to +14‰. Ages of the granite, lamprophyre, alteration/mineralisation, and deformation in the region are not well constrained, which makes it difficult to identify sources of mineralisation with respect to timing. Our mineralogical and stable isotope data does not exclude a metamorphic source, but we consider that the source of the mineralisation can best be explained by a magmatic hydrothermal source. Assuming that the hydrothermal fluids were sourced from crystallisation of the Sams Creek granite or an underlying magma chamber, then the Sams Creek gold deposit appears to be a hybrid between those described as reduced granite Au–Bi deposits and alkaline intrusive-hosted Au–Mo–Cu deposits.  相似文献   

5.
New mineralogical, thermobarometric, isotopic, and geochemical data provide evidence for long and complex formation history of the Sarylakh and Sentachan Au-Sb deposits conditioned by regional geodynamics and various types of ore mineralization, differing in age and source of ore matter combined in the same ore-localizing structural units. The deposits are situated in the Taryn metallogenic zone of the East Yakutian metallogenic belt in the central Verkhoyansk-Kolyma Fold Region. They are controlled by the regional Adycha-Taryn Fault Zone that separates the Kular-Nera Terrane and the western part of the Verkhoyansk Fold-Thrust Belt. The fault extends along the strike of the northwest-trending linear folds and is deep-rooted and repeatedly reactivated. The orebodies are mineralized crush zones accompanied by sulfidated (up to 100 m wide) quartz-sericite metasomatic rocks and replacing dickite-pyrophyllite alteration near stibnite veinlets. Two stages of low-sulfide gold-quartz and stibnite mineralization are distinguished. The formation conditions of the early milk white quartz in orebodies with stibnite mineralization at the Sarylakh and Sentachan deposits are similar: temperature interval 340–280°C, salt concentration in fluids 6.8–1.6 wt % NaCl equiv, fluid pressure 3430–1050 bar, and sodic bicarbonate fluid composition. The ranges of fluid salinity overlapped at both deposits. In the late regenerated quartz that attends stibnite mineralization, fluid inclusions contain an aqueous solution with salinity of 3.2 wt % NaCl equiv and are homogenized into liquid at 304–189°C. Syngenetic gas inclusions contain nitrogen 0.19 g/cm3 in density. The pressure of 300 bar is estimated at 189°C. The composition of the captured fluid is characterized as K-Ca bicarbonatesulfate. The sulfur isotopic composition has been analyzed in pyrite and arsenopyrite from ore and metasomatic zones, as well as in coarse-, medium-, and fine-grained stibnite varieties subjected to dynamometamorphism. The following δ34S values, ‰ have been established at the Sarylakh deposit: −2.0 to −0.9 in arsenopyrite, −5.5 to −1.1 in pyrite, and −5.5 to −3.6 in stibnite. At the Sentachan deposit: −0.8 to +1.0 in arsenopyrite, +0.5 to +2.6 in pyrite, and −3.9 to +0.6 in stibnite. Sulfides from the Sentachan deposit is somewhat enriched in 34S. The 18O of milk white quartz at the Sarylakh deposit varies from +14.8 to 17.0‰ and from +16.4 to + 19.3‰ at the Sentachan. The δ18O of regenerated quartz is +16.5‰ at the Sarylakh and +17.6 to +19.8‰ at the Sentachan. The δ18O of carbonates varies from +15.0 to 16.3% at the Sarylakh and from +16.7 to +18.2‰ at the Sentachan. The δ13C of carbonates ranges from −9.5 to −12.1‰ and −7.8 to −8.5‰, respectively. The calculated $ \delta ^{18} O_{H_2 O} $ \delta ^{18} O_{H_2 O} of the early fluid in equilibrium with quartz and dolomite at 300δC are +7.9 to +10.1‰ for the Sarylakh deposit and +9.5 to +12.4‰ for the Sentachan deposit (+4.9 and 6.0‰ at 200°C for the late fluid, respectively). Most estimates fall into the interval characteristic of magmatic water (°18O = +5.5 to +9.5‰).  相似文献   

6.
The Jinshan orogenic gold deposit is a world-class deposit hosted by a ductile shear zone caused by a transpressional terrane collision during Neoproterozoic time. Ore bodies at the deposit include laminated quartz veins and disseminated pyrite-bearing mylonite. Most quartz veins in the shear zone, with and without gold mineralization, were boudinaged during progressive shear deformation with three generations of boudinage structures produced at different stages of progressive deformation. Observations of ore-controlling structures at various scales indicate syn-deformational mineralization. Fluid inclusions from pyrite intergrown with auriferous quartz have 3He/4He ratios of 0.15–0.24 Ra and 40Ar/36Ar ratios 575–3,060. δ18Ofluid values calculated from quartz are 5.5–8.4‰, and δD values of fluid inclusions contained in quartz range between −61‰ and −75‰. The δ13C values of ankerite range from −5.0‰ to −4.2‰, and ankerite δ18O values from 4.4‰ to 8.0‰. The noble gas and stable isotope data suggest a predominant crustal source of ore fluids with less than 5% mantle component. Data also show that in situ fluids were generated locally by pervasive pressure solution, and that widespread dissolution seams acted as pathways of fluid flow, migration, and precipitation. The in situ fluids and fluids derived from deeper levels of the crust were focused by deformation and deformation structures at various scales through solution-dissolution creep, crack-seal slip, and cyclic fault-valve mechanisms during progressively localized deformation and gold mineralization.  相似文献   

7.
The Serrinha gold deposit of the Gurupi Belt, northern Brazil, belongs to the class of orogenic gold deposits. The deposit is hosted in highly strained graphitic schist belonging to a Paleoproterozoic (∼2,160 Ma) metavolcano-sedimentary sequence. The ore-zones are up to 11 m thick, parallel to the regional NW–SE schistosity, and characterized by quartz-carbonate-sulfide veinlets and minor disseminations. Textural and structural data indicate that mineralization was syn- to late-tectonic and postmetamorphic. Fluid inclusion studies identified early CO2 (CH4-N2) and CO2 (CH4-N2)-H2O-NaCl inclusions that show highly variable phase ratios, CO2 homogenization, and total homogenization temperatures both to liquid and vapor, interpreted as the product of fluid immiscibility under fluctuating pressure conditions, more or less associated with postentrapment modifications. The ore-bearing fluid typically has 18–33mol% of CO2, up to 4mol% of N2, and less than 2mol% of CH4 and displays moderate to high densities with salinity around 4.5wt% NaCl equiv. Mineralization occurred around 310 to 335°C and 1.3 to 3.0 kbar, based on fluid inclusion homogenization temperatures and oxygen isotope thermometry with estimated oxygen fugacity indicating relatively reduced conditions. Stable isotope data on quartz, carbonate, and fluid inclusions suggest that veins formed from fluids with δ18OH2O and δDH2O (310–335°C) values of +6.2 to +8.4‰ and −19 to −80‰, respectively, which might be metamorphic and/or magmatic and/or mantle-derived. The carbon isotope composition (δ13C) varies from −14.2 to −15.7‰ in carbonates; it is −17.6‰ in fluid inclusion CO2 and −23.6‰ in graphite from the host rock. The δ34S values of pyrite are −2.6 to −7.9‰. The strongly to moderately negative carbon isotope composition of the carbonates and inclusion fluid CO2 reflects variable contribution of organic carbon to an originally heavier fluid (magmatic, metamorphic, or mantle-derived) at the site of deposition and sulfur isotopes indicate some oxidation of the originally reduced fluid. The deposition of gold is interpreted to have occurred mainly in response to phase separation and fluid-rock interactions such as CO2 removal and desulfidation reactions that provoked variations in the fluid pH and redox conditions.  相似文献   

8.
The rare-earth element (REE) concentrations of representative granite samples from the southeast of the Obudu Plateau, Nigeria, were analyzed with an attempt to determine the signatures of their source, evolutionary history and tectonic setting. Results indicated that the granites have high absolute REE concentrations (190×10^-6-1191×10^-6; av.=549×10^-6) with the chondrite-normalized REE patterns characterized by steep negative slopes and prominent to slight or no negative Eu anomalies. All the samples are also characterized by high and variable concentrations of the LREE (151×10^-6-1169×10^-6; av.= 466×10^-6), while the HREE show low abundance (4×10^-6-107×10^-6; av.=28×10^-6). These are consistent with the variable levels of REE fractionation, and differentiation of the granites. This is further supported by the range of REE contents, the chondrite-normalized patterns and the ratios of LaN/YbN (2.30-343.37), CeN/YbN (5.94-716.87), LaN/SmN (3.14-11.68) and TbN/YbN (0.58-1.65). The general parallelism of the REE patterns, suggest that all the granites were comagmatic in origin, while the high Eu/Eu* ratios (0.085-2.807; av.=0.9398) indicate high fo2 at the source. Similarly, irregular variations in LaN/YbN, CeN/YbN and Eu/Eu* ratios and REE abundances among the samples suggest behaviors that are related to mantle and crustal sources.  相似文献   

9.
The Yaoan vein-type gold deposit is located in the Ailaoshan-Jinshajiang alkaline intrusive belt, Yunnan Province, China, and is associated both in time and space with 33.5±1.0-Ma-old alkaline intrusions. The gold mineralization is associated with potassic wall-rock alteration. The REE distribution patterns of secondary K-feldspar are generally similar to those of the igneous perthite but with about seven times higher total REE abundances. The alteration is ascribed to a high-REE magmatic fluid derived from the Yaoan alkaline intrusive suite. The hydrothermal Yaoan gold deposit formed during two gold-bearing stages, i.e. a sulfide (pyrite) stage and a sulfide-oxide stage (pyrite-specularite). The REE abundance of early stage I pyrite is relatively high with strong enrichment in LREE, (La/Yb)n of 40–290, generally positive Eu anomalies (Eu/Eu*=0.86–1.55), and REE patterns very similar to those of secondary feldspar. In contrast, the later stage II pyrite has much lower REE concentrations and lower (La/Yb)n of 5.5–11.8, Eu/Eu* of 0.49–0.76, and flat chondrite-normalized spidergram patterns. The stage I pyrite has 34S in the range of –2.2 to +3.2, and overlaps with regionally distributed pyrite in least-altered syenite porphyry. In contrast, stage II pyrite has much higher 34S values between +7.8 and +16.5. Carbon isotope data for four samples from stage II revealed 13C (PDB) values between –6 and –8. These stable isotope and REE data suggest that magmatic fluids of the alkaline intrusions caused both potassic alteration and stage I sulfide mineralization. The system evolved from stage I to stage II mineralization by influx of meteoric fluids with relatively heavier sulfur, although calcite carbon isotope data suggest that the CO2 remained dominantly of magmatic origin.Editorial handling: B. Lehmann  相似文献   

10.
Nature of the crust in Maine,USA: evidence from the Sebago batholith   总被引:7,自引:0,他引:7  
 Neodymium and lead isotope and elemental data are presented for the Sebago batholith (293±2 Ma), the largest exposed granite in New England. The batholith is lithologically homogeneous, yet internally heterogeneous with respect to rare earth elements (REE) and Nd isotopic composition. Two-mica granites in the southern/central portion of the batholith (group 1) are characterized by REE patterns with uniform shapes [CeN/YbN (chondrite normalized) = 9.4–19 and Eu/Eu* (Eu anomaly) = 0.27–0.42] and ɛ Nd(t) = −3.1 to −2.1. Peripheral two-mica granites (group 2), spatially associated with stromatic and schlieric migmatites, have a wider range of total REE contents and patterns with variable shapes (CeN/YbN = 6.1–67, Eu/Eu* = 0.20–0.46) and ɛ Nd(t) = −5.6 to −2.8. The heterogeneous REE character of the group 2 granites records the effects of magmatic differentiation that involved monazite. Coarse-grained leucogranites and aplites have kinked REE patterns and low total REE, but have Nd isotope systematics similar to group 2 granites with ɛ Nd(t) = −5.5 to −4.7. Rare biotite granites have steep REE patterns (CeN/YbN = 51–61, Eu/Eu* = 0.32–0.84) and ɛ Nd(t) = −4.6 to −3.8. The two-mica granites have a restricted range in initial Pb isotopic composition (206Pb/204Pb = 18.41–18.75; 207Pb/204Pb = 15.60–15.68; 208Pb/204Pb = 38.21–38.55), requiring and old, high U/Pb (but not Th/U) source component. The Nd isotope data are consistent with magma derivation from two sources: Avalon-like crust (ɛ Nd>−3), and Central Maine Belt metasedimentary rocks (ɛ Nd<−4), without material input from the mantle. The variations in isotope systematics and REE patterns are inconsistent with models of disequilibrium melting which involved monazite. Received: 8 December 1995 / Accepted: 29 April 1996  相似文献   

11.
In the Mazowe area some 40 km NW of Harare in Zimbabwe, gold mineralization is hosted in a variety of lithologies of the Archean Harare-Bindura-Shamva greenstone belt, in structures related to the late Archean regional D2/3 event. Conspicuous mineralzogical differences exist between the mines; the mainly granodiorite-hosted workings at Mazowe mine are on pyrite-rich reefs, mines of the Bernheim group have metabasalt host rocks and are characterized by arsenopyrite-rich ores, and Stori's Golden Shaft and Alice mine, both in metabasalts, work sulfide-poor quartz veins. In contrast to the mineralogical diversity, near-identical fluid inventories were found at the different mines. Both H2O-CO2-CH4 fluids of low salinity, and highly saline fluids are present and are regarded to indicate fluid mixing during the formation of the deposits. Notably, these fluid compositions in the Mazowe gold field markedly contrast to ore fluids “typical” of Archean mesothermal gold deposits on other cratons. Stable isotope compositions of quartz from the various deposits (δ18O=10.8 to 13.2‰ SMOW), calcite (δ18O=9.5 to 11.9‰ SMOW and δ13C=−3.2 to −8.0‰ PDB), inclusion water (δD=−28 to −40‰ SMOW) and sulfides (δ34S=1.3 to 3.2‰ CDT) are uniform within the range typical for Archean lode gold deposits worldwide. The fluid and stable isotope compositions support the statement that the mineralization in the Mazowe gold field formed from relatively reduced fluids with a “metamorphic” signature during a single event of gold mineralization. Microthermometric data further indicate that the deposits formed in the PT range of 1.65–2.3 kbar and 250–380 °C. Ages obtained by using the Sm/Nd and Rb/Sr isotope systems on scheelites are 2604 ± 84 Ma for the mineralization at Stori's Golden Shaft mine, and 2.40 ± 0.20 Ga for Mazowe mine. The Archean age at Stori's is regarded as close to the true age of gold mineralization in the area, whereas the Proterozoic age at Mazowe mine probably reflects later resetting. Received: 30 September 1998 / Accepted: 17 August 1999  相似文献   

12.
Based on the data of 64 samples ,the REE geochemical characteristics of volcanic rocks in northern Zhejiang and eastern Jiangxi provinces are discussed in this paper.The REE distribution patterns in acid and intermediate-acid volcanic rocks in these areas display some similarities,as indicated by rightward-inclined V-shaped curves with negative Eu anomalies,which are parallel to earch other.In addi-tion,their REE parameters(ΣREE,ΣLREE/ΣHREE,δEu,Ce/Yb,La/Sm,La/Yb,etc)also va-ry over a narrow range with small deviations.HREE are particularly concentrated in the volcanic rocks as-sociated with uranium mineralization.The initial ^87Sr/^86Sr ratio in the volcanic rocks is about 0.7056-0.7139.All these features in conjunction with strontium isotopic data indicate that the rock-forming materials come from the sialic crust.The REE distribution patterns and REE geochemical parameters of the volcanic rocks ,as well as La/Sm-La and Ce/Yb-Eu/Yb diagrams may be applied to the sources of rock-forming and ore-forming materials.  相似文献   

13.
Fluid inclusions in granite quartz and three generations of veins indicate that three fluids have affected the Caledonian Galway Granite. These fluids were examined by petrography, microthermometry, chlorite thermometry, fluid chemistry and stable isotope studies. The earliest fluid was a H2O-CO2-NaCl fluid of moderate salinity (4–10 wt% NaCl eq.) that deposited late-magmatic molybdenite mineralised quartz veins (V1) and formed the earliest secondary inclusions in granite quartz. This fluid is more abundant in the west of the batholith, corresponding to a decrease in emplacement depth. Within veins, and to the east, this fluid was trapped homogeneously, but in granite quartz in the west it unmixed at 305–390 °C and 0.7–1.8 kbar. Homogeneous quartz δ18O across the batholith (9.5 ± 0.4‰n = 12) suggests V1 precipitation at high temperatures (perhaps 600 °C) and pressures (1–3 kbar) from magmatic fluids. Microthermometric data for V1 indicate lower temperatures, suggesting inclusion volumes re-equilibrated during cooling. The second fluid was a H2O-NaCl-KCl, low-moderate salinity (0–10 wt% NaCl eq.), moderate temperature (270–340 °C), high δD (−18 ± 2‰), low δ18O (0.5–2.0‰) fluid of meteoric origin. This fluid penetrated the batholith via quartz veins (V2) which infill faults active during post-consolidation uplift of the batholith. It forms the most common inclusion type in granite quartz throughout the batholith and is responsible for widespread retrograde alteration involving chloritization of biotite and hornblende, sericitization and saussuritization of plagioclase, and reddening of K-feldspar. The salinity was generated by fluid-rock interactions within the granite. Within granite quartz this fluid was trapped at 0.5–2.3 kbar, having become overpressured. This fluid probably infiltrated the Granite in a meteoric-convection system during cooling after intrusion, but a later age cannot be ruled out. The final fluid to enter the Granite and its host rocks was a H2O-NaCl-CaCl2-KCl fluid with variable salinity (8–28 wt% NaCl eq.), temperature (125–205 °C), δD (−17 to −45‰), δ18O (−3 to + 1.2‰), δ13CCO2 (−19 to 0‰) and δ34Ssulphate (13–23‰) that deposited veins containing quartz, fluorite, calcite, barite, galena, chalcopyrite sphalerite and pyrite (V3). Correlations of salinity, temperature, δD and δ18O are interpreted as the result of mixing of two fluid end-members, one a high-δD (−17 to −8‰), moderate-δ18O (1.2–2.5‰), high-δ13CCO2 (> −4‰), low-δ34Ssulphate (13‰), high-temperature (205–230 °C), moderate-salinity (8–12 wt% NaCl eq.) fluid, the other a low-δD (−61 to −45‰), low-δ18O (−5.4 to −3‰), low-δ13C (<−10‰), high-δ34Ssulphate (20–23‰) low-temperature (80–125 °C), high-salinity (21–28 wt% NaCl eq.) fluid. Geochronological evidence suggests V3 veins are late Triassic; the high-δD end-member is interpreted as a contemporaneous surface fluid, probably mixed meteoric water and evaporated seawater and/or dissolved evaporites, whereas the low-δD end-member is interpreted as a basinal brine derived from the adjacent Carboniferous sequence. This study demonstrates that the Galway Granite was a locus for repeated fluid events for a variety of reasons; from expulsion of magmatic fluids during the final stages of crystallisation, through a meteoric convection system, probably driven by waning magmatic heat, to much later mineralisation, concentrated in its vicinity due to thermal, tectonic and compositional properties of granite batholiths which encourage mineralisation long after magmatic heat has abated. Received: 3 April 1996 / Accepted: 5 May 1997  相似文献   

14.
Summary The eastern Pyrenees host a large number of talc-chlorite mineralizations of Albian age (112–97 Ma), the largest of which occur in the St. Barthelemy massif. There talc develops by hydrothermal replacement of dolostones, which were formed by alteration of calcite marbles. This alteration is progressive. Unaltered calcite marbles have oxygen isotope composition of about 25‰ (V-SMOW). The δ18O values decrease down to values of 12‰ towards the contact with dolostones. This 18O depletion is accompanied by Mg enrichment, LREE fractionation and systematic shifts in the Sr isotope compositions, which vary from 87Sr/86Sr = 0.7087–0.7092 in unaltered calcite marbles to slightly more radiogenic compositions with 87Sr/86Sr = 0.7094 near dolomitization fronts. Dolostones have δ18O values (about 9‰) lower than calcitic marbles, higher REE content and more radiogenic Sr isotope composition (87Sr/86Sr = 0.7109 to 0.7130). Hydrothermal calcites have δ18O values close to dolostones but substantially lower δ13C values, down to −6.5‰, which is indicative of the contribution of organic matter. The REE content of hydrothermal calcite is one order of magnitude higher than that of calcitic marbles. Its highly radiogenic Sr composition with 87Sr/86Sr = 0.7091 to 0.7132 suggests that these elements were derived from silicate rocks, which experienced intense chlorite alteration during mineralization. The chemical and isotopic compositions of the calcite marbles, the dolostones and the hydrothermal calcites are interpreted as products of successive stages of fluid-rock interaction with increasing fluid-rock ratios. The hydrothermal quartz, calcite, talc and chlorite are in global mutual isotopic equilibrium. This allows the calculation of the O isotope composition of the infiltrating water at 300 °C, which is in the δ18O = 2–4.5‰ range. Hydrogen isotope compositions of talc and chlorite indicate a δD = 0 to −20‰. This water probably derived from seawater, with minor contribution of evolved continental water.  相似文献   

15.
The Early Devonian Gumeshevo deposit is one of the largest ore objects pertaining to the dioritic model of the porphyry copper system paragenetically related to the low-K quartz diorite island-arc complex. The (87Sr/86Sr)t and (ɛNd)t of quartz diorite calculated for t = 390 Ma are 0.7038–0.7045 and 5.0–5.1, respectively, testifying to a large contribution of the mantle component to the composition of this rock. The contents of typomorphic trace elements (ppm) are as follows: 30–48 REE sum, 5–10 Rb, 9–15 Y, and 1–2 Nb. The REE pattern is devoid of Eu anomaly. Endoskarn of low-temperature and highly oxidized amphibole-epidote-garnet facies is surrounded by the outer epidosite zone. Widespread retrograde metasomatism is expressed in replacement of exoskarn and marble with silicate (chlorite, talc, tremolite)-magnetite-quartz-carbonate mineral assemblage. The 87Sr/86Sr ratios of epidote in endoskarn and carbonate in retrograde metasomatic rocks (0.7054–0.7058 and 0.7053–0.7065, respectively) are intermediate between the Sr isotope ratios of quartz dioritic rocks and marble (87Sr/86Sr = 0.70784 ± 2). Isotopic parameters of the fluid equilibrated with silicates of skarn and retrograde metasomatic rocks replacing exoskarn at 400°C are δ18O = +7.4 to +8.5‰ and δD = −49 to −61‰ (relative to SMOW). The δ13C and δ18O of carbonates in retrograde metasomatic rocks after marble are −5.3 to +0.6 (relative to PDB) and +13.0 to +20.2% (relative to SMOW), respectively. Sulfidation completes metasomatism, nonuniformly superimposed on all metasomatic rocks and marbles with formation of orebodies, including massive sulfide ore. The δ34S of sulfides is 0 to 2‰ (relative to CDT);87Sr/86Sr of calcite from the late calcite-pyrite assemblage replacing marble is 0.704134 ± 6. The δ13C and 87Sr/86Sr of postore veined carbonates correlate positively (r = 0.98; n = 6). The regression line extends to the marble field. Its opposite end corresponds to magmatic (in terms of Bowman, 1998b) calcite with minimal δ13C, δ18O, and 87Sr/86Sr values (−6.9 ‰, +6.7‰, and 0.70378 ± 4, respectively). The aforementioned isotopic data show that magmatic fluid was supplied during all stages of mineral formation and interacted with marble and other rocks, changing its Sr, C, and O isotopic compositions. This confirms the earlier established redistribution of major elements and REE in the process of metasomatism. A contribution of meteoric and metamorphic water is often established in quartz from postore veins.  相似文献   

16.
Stable and radiogenic isotope composition of stratiform Cu–Co–Zn mineralization and associated sedimentary rocks within the Boléo district of the Miocene Santa Rosalía basin, Baja California Sur, constrains the evolution of seawater and hydrothermal fluids and the mechanisms responsible for sulfide and oxide deposition. Stable isotope geochemistry of limestone and evaporite units indicates a strong paleogeographic influence on the chemistry of the water column. Near-shore limestone at the base of the Boléo Formation is characterized by modified marine carbon (δ 13CPDB=−6.0 to +4.4‰) and oxygen (δ 18OSMOW=+19.5 to +26.2‰) isotope composition due to the influx of 13C- and 18O-depleted fluvial water. Sulfate sulfur isotope composition (δ 34SCDT=+17.21 to +22.3‰ and δ 18OSMOW=+10.7 to +13.1‰) for basal evaporite and claystone facies are similar to Miocene seawater. Strontium isotopes are less radiogenic than expected for Miocene seawater due to interaction with volcanic rocks. Low S/C ratios, high Mn contents and sedimentological evidence indicate the basin water column was oxidizing. The oxygenated basin restricted sulfide precipitation to within the sedimentary pile by replacement of early diagenetic framboidal pyrite and pore-space filling by Cu–Co–Zn sulfides to produce disseminated sulfides. Quartz–Mn oxide oxygen isotope geothermometry constrains mineralization temperature between 18 and 118°C. Sulfur isotopes indicate the following sources of sulfide: (1) bacterial sulfate reduction within the sedimentary pile produced negative δ 34S values (<−20‰) in framboidal pyrite; and (2) bacterial sulfate reduction at high temperature (80–118°C) within the sedimentary pile during the infiltration of the metal-bearing brines produced Cu–Co–Zn sulfides with negative, but close to 0‰, δ 34S values. Isotope modeling of fluid-rock reaction and fluid mixing indicates: (1) sedimentary and marine carbonates (δ 13C=−11.6 to −3.2‰ and δ 18O=+19.0 to +21.8‰) precipitated from basin seawater/pore water that variably mixed with isotopically depleted meteoric waters; and (2) hydrothermal calcite (δ 13C=−7.9 to +4.3‰ and δ 18O=+22.1 to +25.8‰) formed by dissolution and replacement of authigenic marine calcite by downward-infiltrating metalliferous brine and brine-sediment exchange, that prior to reaction with calcite, had mixed with isotopically depleted pore water. The downward infiltration of metalliferous brine is inferred from lateral and stratigraphic metal distributions and from the concentration of Cu sulfides along the upper contact of pyrite-bearing laminae. The co-existence and textural relationships among framboidal pyrite, base metal sulfides, carbonate and Mn–Fe oxides (including magnetite) within mineralized units are consistent with carbonate replacement and high-temperature bacterial reduction within the sedimentary pile occurring simultaneously below a seawater column under predominantly oxygenated conditions.  相似文献   

17.
A set of sheeted quartz veins cutting 380 Ma monzogranite at Sandwich Point, Nova Scotia, Canada, provide an opportunity to address issues regarding fluid reservoirs and genesis of intrusion-related gold deposits. The quartz veins, locally with arsenopyrite (≤5%) and elevated Au–(Bi–Sb–Cu–Zn), occur within the reduced South Mountain Batholith, which also has other zones of anomalous gold enrichment. The host granite intruded (P = 3.5 kbars) Lower Paleozoic metaturbiditic rocks of the Meguma Supergroup, well known for orogenic vein gold mineralization. Relevant field observations include the following: (1) the granite contains pegmatite segregations and is cut by aplitic dykes and zones (≤1–2 m) of spaced fracture cleavage; (2) sheeted veins containing coarse, comb-textured quartz extend into a pegmatite zone; (3) arsenopyrite-bearing greisens dominated by F-rich muscovite occur adjacent the quartz veins; and (4) vein and greisen formation is consistent with Riedel shear geometry. Although these features suggest a magmatic origin for the vein-forming fluids, geochemical studies indicate a more complex origin. Vein quartz contains two types of aqueous fluid inclusion assemblages (FIA). Type 1 is a low-salinity (≤3 wt.% equivalent NaCl) with minor CO2 (≤2 mol%) and has T h = 280–340°C. In contrast, type 2 is a high-salinity (20–25 wt.% equivalent NaCl), Ca-rich fluid with T h = 160–200°C. Pressure-corrected fluid inclusion data reflect expulsion of a magmatic fluid near the granite solidus (650°C) that cooled and mixed with a lower temperature (400°C), wall rock equilibrated, Ca-rich fluid. Evidence for fluid unmixing, an important process in some intrusion-related gold deposit settings, is lacking. Stable isotopic (O, D, S) analyses for quartz, muscovite and arsenopyrite samples from vein and greisens indicate the following: (1) δ18Oqtz = +11.7‰ to 17.8‰ and δ18Omusc = +10.7‰ to +11.2‰; (2) δDmusc = −44‰ to−54‰; and (3) δ34Saspy = +7.8‰ to +10.3‰. These data are interpreted, in conjunction with fluid inclusion data, to reflect contamination of a magmatic-derived fluid (d18OH2O {\delta^{{{18}}}}{{\hbox{O}}_{{{{\rm{H}}_{{2}}}{\rm{O}}}}}  ≤ +10‰) by an external fluid (d18OH2O {\delta^{{{18}}}}{{\hbox{O}}_{{{{\rm{H}}_{{2}}}{\rm{O}}}}}  ≥ +15‰), the latter having equilibrated with the surrounding metasedimentary rocks. The δ34S data are inconsistent with a direct igneous source based on other studies for the host intrusion (d18OH2O {\delta^{{{18}}}}{{\hbox{O}}_{{{{\rm{H}}_{{2}}}{\rm{O}}}}}  = +5‰) and are, instead, consistent with an external reservoir for sulphur based on δ34SH2S data for the surrounding metasedimentary rocks. Divergent fluid reservoirs are also supported by analyses of Pb isotopes for pegmatitic K-feldspar and vein arsenopyrite. Collectively the data indicate that the vein- and greisen-forming fluids had a complex origin and reflect both magmatic and non-magmatic reservoirs. Thus, although the geological setting suggests a magmatic origin, the geochemical data indicate involvement of multiple reservoirs. These results suggest multiple reservoirs for this intrusion-related gold deposit setting and caution against interpreting the genesis of intrusion-related gold deposit mineralization in somewhat analogous settings based on a limited geochemical data set.  相似文献   

18.
Summary ?A carbonatite dyke, extremely enriched in rare earth elements (REE), is reported from Bayan Obo, Inner Mongolia, North China. The REE content in the dyke varies from 1 wt% to up to 20 wt%. The light REEs are enriched and highly fractionated relative to the heavy REEs, and there is no Eu anomaly. Although carbon isotope δ13C (PDB) values of the carbonatites (−7.3 to −4.7‰) are within the range of normal mantle (−5±2‰), oxygen isotope δ18O (SMOW) (11.9 to 17.7‰) ratios apparently are higher than those of the mantle (5.7±1.0‰), indicating varying degrees of exchange with hydrothermal fluids during or after magmatic crystallization. The carbonatite is the result of partial melting followed by fractional crystallization. Primary carbonatite melt was formed by less than 1% partial melting of enriched mantle, leaving a garnet-bearing residue. The melt then rose to a crustal magma chamber and underwent fractional crystallization, producing further REE enrichment. The REE and trace element distribution patterns of the carbonatites are similar to those of fine-grained dolomite marble, the ore-host rock of the Bayan Obo REE–Nb–Fe giant mineral deposit. This fact may indicate a petrogenetic link between the dykes described here and the Bayan Obo mineral deposit. Received November 1, 2001; revised version accepted June 16, 2002  相似文献   

19.
The strata-bound Cu−Pb−Zn polymetallic sulfide deposits occur in metamorphic rocks of greenschist phase of the middle-upper Proterozoic Langshan Group in central Inner Mongolia. δ34S values for sulfides range from −3.1‰ to +37.3‰, and an apparent difference is noticed between vein sulfides and those in bedded rocks. For example, δ34S values for bedded pyrite range from +10.6‰ to +20.0‰, while those for vein pyrite vary from −3.1‰ to +14.1‰. δ34S of bedded pyrrhotite is in the range +7.9‰–+23.5‰ in comparison with +6.5‰–+17.1‰ for vein pyrrhotite. The wide scatter of δ34S and the enrichment of heavier sulfur indicate that sulfur may have been derived from H2S as a result of bacterial reduction of sulfates in the sea water. Sulfur isotopic composition also differs from deposit to deposit in this area because of the difference in environment in which they were formed. The mobilization of bedded sulfides in response to regional metamorphism and magmatic intrusion led to the formation of vein sulfides. δ18O and δ13C of ore-bearing rocks and wall rocks are within the range typical of ordinary marine facies, with the exception of lower values for ore-bearing marble at Huogeqi probably due to diopsidization and tremalitization of carbonate rocks. Pb isotopic composition is relatively stable and characterized by lower radio-genetic lead. The age of basement rocks was calculated to be about 23.9 Ma and ore-forming age 7.8 Ma.207Pb/204Pb−206Pb/204Pb and208Pb/204Pb−206Pb/204Pb plots indicate that Pb may probably be derived from the lower crust or upper mantle. It is believed that the deposits in this region are related to submarine volcanic exhalation superimposed by later regional metamorphism and magmatic intrusion.  相似文献   

20.
Trace, rare earth elements (REE), Rb-Sr, Sm-Nd and O isotope studies have been carried out on ultramafic (harzburgite and lherzolite) dykes belonging to the newer dolerite dyke swarms of eastern Indian craton. The dyke swarms were earlier considered to be the youngest mafic magmatic activity in this region having ages not older than middle to late Proterozoic. The study indicates that the ultramafic members of these swarms are in fact of late Archaean age (Rb-Sr isochron age 2613 ± 177 Ma, Sri ∼ 0.702 ± 0.004) which attests that out of all the cratonic blocks of India, eastern Indian craton experienced earliest stabilization event. Primitive mantle normalized trace element plots of these dykes display enrichment in large ion lithophile elements (LILE), pronounced Ba, Nb and Sr depletions but very high concentrations of Cr and Ni. Chondrite normalised REE plots exhibit light REE (LREE) enrichment with nearly flat heavy REE (HREE; (ΣHREE)N ∼ 2–3 times chondrite, (Gd/Yb)N ∼ 1). The εNd(t) values vary from +1.23 to -3.27 whereas δ18O values vary from +3.16‰ to +5.29‰ (average +3.97‰±0.75‰) which is lighter than the average mantle value. Isotopic, trace and REE data together indicate that during 2.6 Ga the nearly primitive mantle below the eastern Indian Craton was metasomatised by the fluid (± silicate melt) coming out from the subducting early crust resulting in LILE and LREE enriched, Nb depleted, variable εNd, low Sri(0.702) and low δ18O bearing EMI type mantle. Magmatic blobs of this metasomatised mantle were subsequently emplaced in deeper levels of the granitic crust which possibly originated due to the same thermal pulse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号