首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The Late Devonian-Early Carboniferous (Dinantian) within the Western Hercynides is marked by the formation of volcanic-hosted massive sulphide deposits: Chessy and Chizeuil in the Brévenne and Somme successions of the French Massif Central; Bodennec and La Porte-aux-Moines in the Châteaulin Basin of the French Armorican Massif; Rio Tinto, Neves-Corvo, Tharsis, etc., in the Volcano-Sedimentary formation of the Iberian Pyrite Belt; and Ketara, Draa Sfar and Hajar in the Jebilet-Guemassa district of the Moroccan Southern Meseta. Although these deposits show a slightly diachronous emplacement in response to a progressive migration of the metalliferous event from Late Devonian in France to Dinantian in Morocco, it is nevertheless possible to define an overall metalliferous ‘‘peak” around 350 Ma. The mineralization of the Armorican, Iberian and Moroccan sectors took place in epicontinental domains of the outer zone of the Hercynian belt, whereas that of the northeastern Massif Central occurred within the inner zone of the belt. This difference is registered by variations both in the geochemical characteristics of the ores (Sn in the outer zone and Mo-Ni in the inner zone) and in their lead isotopic signatures (clear mantle participation exclusively in the inner zone). In many cases the ores appear to be closely related to the felsic member of a bimodal magmatic association, although the massive sulphide deposits in the outer zone are more commonly associated with sedimentary rocks whereas those in the inner zone are hosted by felsic volcanic rocks. Another feature that should be noted is that the host sequences of the massive sulphide deposits commonly seem to be underlain by chaotic formations (notably with olistoliths) reflecting the beginning of Hercynian orogenic activity in the outer zone. It can be concluded that the peak mineralization took place within tensional domains developed during a period of plate convergence, and that it occurred around 350 Ma after a major period of Devonian compression but before the Carboniferous continental closure.  相似文献   

2.
The Pb and Sr isotope ratios of Plio-Pleistocene volcanic rocks from the Aleutian volcanic arc are used as tracers of the lithospheric subduction process at the converging Pacific and Bering plates. Aleutian arc lavas do not have the same Pb isotopic compositions as volcanic rocks of the subducted Pacific ocean crust or the nearby Pribilof Islands, but appear to contain an ‘old continental crustal component’ with high 207Pb/204Pb ratio, as has been found in some other volcanic arcs.87Sr/86Sr ratios in the Aleutian volcanic arc rocks average 0.70322, slightly higher than fresh volcanic rocks from normal ridge segments, but within the range of values from ‘Icelandic’ ridge segments, oceanic islands and the Pribolof Islands. The Pb and Sr isotopic compositions of Aleutian lavas show a positive correlation and the range of values does not change for volcanoes distributed along strike in the arc, even though the crustal type in the hanging wall of the Benioff zone changes from oceanic in the west to continental in the east. Since the basement of the continental arc segment is older than the basement of the oceanic segment, and probably has a different isotopic character, the constancy of isotopic ratios along the arc argues against contamination by wall rocks of the type exposed in the arc.A sufficient explanation for the isotopic data is the mixture of several per cent of continent-derived sediment with melt derived from the underthrust oceanic crust and overlying mantle. This small amount of contaminant is difficult to document by geophysical observations. Such a model implies extensive recycling of Ba, Pb, K and Rb through volcanism at convergent plate margins like the Aleutians.  相似文献   

3.
The Tongyu copper deposit, located in the western part of the North Qinling Orogen, China, is one of several volcanic-hosted massive sulphide(VHMS) deposits with industrial value and is also a typical example of mineralization related to the subduction and metallogenesis during the Caledonian orogeny. We conducted systematic lead-sulphur isotope geochemical analyses of the Tongyu deposit to understand the possible ore-forming material sources and tectonic settings. Twenty-six sulphide samples yielded clustered δ~(34)S_(CDT) values of 1.13‰-3.36‰, average 2.22‰, and show a tower-type distribution,implying that the sulphur of the Tongyu copper deposit mainly originated from a mantle source. The Pb isotope compositions of sulphides(~(206)Pb/~(204)Pb = 17.59225-18.56354, average 18.32020; ~(207)Pb/~(204)Pb =15.51770-15.69381, average 15.66217; ~(208)Pb/~(204)Pb= 37.99969-39.06953, average 38.52722) are close to the values of the volcanic host rocks(~(206)Pb/~(204)Pb= 18.10678-18.26293, average 18.21158; ~(207)Pb/~(204)Pb =15.63196-15.68188, average 15.65345; ~(208)Pb/~(204)Pb= 38.43676-38.56360, average 38.49171), thus consistent with the Pb in ores and volcanic host rocks having been derived from a common source that was island-arc Pb related to oceanic crust subduction. The northward subduction of the Palaeo-Qinling oceanic crust triggered dehydration of the slab, which generated a large amount of high-oxygen-fugacity aqueous hydrothermal fluid. The fluid rose into the mantle wedge, activated and extracted metallogenic material and promoted partial melting of the mantle wedge. The magma and ore-forming fluid welled up and precipitated, finally forming the Tongyu VHMS copper deposit.  相似文献   

4.
The Wadi Bidah Mineral District of Saudi Arabia contains more than 16 small outcropping stratabound volcanogenic Cu–Zn–(Pb) ± Au-bearing massive sulphide deposits and associated zones of hydrothermal alteration. Here, we use major and trace element analyses of massive sulphides, gossans, and hydrothermally altered and least altered metamorphosed host rock (schist) from two of the deposits (Shaib al Tair and Rabathan) to interpret the geochemical and petrological evolution of the host rocks and gossanization of the mineralization. Tectonic interpretations utilize high-field-strength elements, including the rare earth elements (REE), because they are relatively immobile during hydrothermal alteration, low-grade metamorphism, and supergene weathering and therefore are useful in constraining the source, composition, and physicochemical parameters of the primary igneous rocks, the mineralizing hydrothermal fluid and subsequent supergene weathering processes. Positive Eu anomalies in some of the massive sulphide samples are consistent with a high temperature (>250°C) hydrothermal origin, consistent with the Cu contents (up to 2 wt.%) of the massive sulphides. The REE profiles of the gossans are topologically similar to nearby hydrothermally altered felsic schists (light REE (LREE)-enriched to concave-up REE profiles, with or without positive Eu anomalies) suggesting that the REE experienced little fractionation during metamorphism or supergene weathering. Hydrothermally altered rocks (now schists) close to the massive sulphide deposits have high base metals and Ba contents and have concave-up REE patterns, in contrast to the least altered host rocks, consistent with greater mobility of the middle REE compared to the light and heavy REE during hydrothermal alteration. The gossans are interpreted to represent relict massive sulphides that have undergone supergene weathering; ‘chert’ beds within these massive sulphide deposits may be leached wall-rock gossans that experienced silicification and Pb–Ba–Fe enrichment from acidic groundwaters generated during gossan formation.  相似文献   

5.
The Iberian Pyrite Belt (IPB), SW Iberian Peninsula, Spain and Portugal, one of the most famous and oldest mining districts in the world, includes several major concentrations of massive sulphides, unique on Earth (e.g., Riotinto, Neves Corvo), as well as a large number of smaller deposits of this same type. All these deposits, in spite of their general similarities, show significant differences in geological setting, age, relations to country rocks, hydrothermal alteration, mineralogy and geochemistry. As a consequence of a review of the available data in the IPB, together with new findings on volcanism, hydrothermal alteration and ore mineralogy, we propose a modified genetic scenario, that can account particularly for the diversity of the geological situations in which sulphide deposits occur, as well as for their mineralogical and petrological diversity. It is concluded that there is no direct genetic relationship between felsic volcanic activity and massive sulphide deposition in the IPB, and that most of the massive sulphide bodies, including all of the giant ones, are closely related to hydrothermal vents, being therefore proximal. The available isotopic data yield additional genetic information: (a) Homogeneous lead isotope values indicate a single (or homogenized) metal source; (b) sea and connate water are the fluid reservoirs for hydrothermal input, and (c) bacterial reduction of sulphur is the most probable cause of differences in δ34S between stockwork and massive sulphide mineralizations. Finally, current geodynamic models suggested for the IPB are discussed. It is suggested that an intracontinental, ensialic rift or pull-apart environment is the most probable genetic environment for the IPB mineralizations.  相似文献   

6.
Lead isotope ratios of galena from the carbonate-hosted massive sulphide deposits of Kabwe (Pb-Zn) and Tsumeb (Pb-Zn-Cu) in Zambia and Namibia, respectively, have been measured and found to be homogeneous and characteristic of upper crustal source rocks. Kabwe galena has average isotope ratios of 206/204Pb = 17.997 ± 0.007, 207/204Pb = 15.713 ± 0.010 and 208/204Pb = 38.410 ± 0.033. Tsumeb galena has slightly higher 206/204Pb (18.112 ± 0.035) and slightly lower 207/204Pb (15.674 ± 0.016) and 208/204Pb (38.276 ± 0.073) ratios than Kabwe galena. The isotopic differences are attributed to local differences in the age and composition of the respective source rocks for Kabwe and Tsumeb. The homogeneity of the ore lead in the two epigenetic deposits suggests lead sources of uniform isotopic composition or, alternatively, thorough mixing of lead derived from sources with relatively similar isotopic compositions. Both deposits have relatively high 238U/204Pb ratios of 10.31 and 10.09 for Kabwe and Tsumeb galenas, respectively. These isotope ratios are considered to be typical of the upper continental crust in the Damaran-Lufilian orogenic belt, as also indicated by basement rocks and Cu-Co sulphides in stratiform Katangan metasediments which have a mean μ-value of 10.25 ± 0.12 in the Copperbelt region of Zambia and the Democratic Republic of Congo (formerly Zaire). The 232Th/204Pb isotope ratios of 43.08 and 40.42 for Kabwe and Tsumeb suggest Th-enriched source regions with 232Th/235U (κ-values) of 4.18 and 4.01, respectively. Model isotopic ages determined for the Kabwe (680 Ma) and Tsumeb (530 Ma) deposits indicate that the timing of the mineralisation was probably related to phases of orogenic activity associated with the Pan-African Lufilian and Damaran orogenies, respectively. Galena from the carbonate-hosted Kipushi Cu-Pb-Zn massive sulphide deposit in the Congo also has homogeneous lead isotope ratios, but its isotopic composition is comparable to that of the average global lead evolution curve for conformable massive sulphide deposits. The μ (9.84) and κ (3.69) values indicate a significant mantle component, and the isotopic age of the Kipushi deposit (456 Ma) suggests that the emplacement of the mineralisation was related to a post-tectonic phase of igneous activity in the Lufilian belt. The isotope ratios (206/204Pb, 207/204Pb, 208/204Pb) of the three deposits are markedly different from the heterogeneous lead ratios of the Katangan Cu-Co stratiform mineralisation of the Copperbelt as well as those of the volcanogenic Nampundwe massive pyrite deposit in the Zambezi belt which typically define radiogenic linear trends on lead-lead plots. The host-rock dolomite of the Kabwe deposit also has homogeneous lead isotope ratios identical to the ore galena. This observation indicates contamination of the Kabwe Dolomite Formation with ore lead during mineralisation. Received: 8 September 1997 / Accepted: 21 August 1998  相似文献   

7.
Draa Sfar is a Visean, stratabound, volcanogenic massive sulphide ore deposit hosted by a Hercynian carbonaceous, black shale-rich succession of the Jebilet terrane, Morocco. The ore deposit contains 10 Mt grading 5.3 wt.% Zn, 2 wt.% Pb, and 0.3 wt.% Cu within two main massive sulphides orebodies, Tazakourt (Zn-rich) and Sidi M'Barek (Zn–Cu rich). Pyrrhotite is by far the dominant sulphide (70 to 95% of total sulphides), sphalerite is fairly abundant, chalcopyrite and galena are accessory, pyrite, arsenopyrite and bismuth minerals are rare. Pyrrhotite is monoclinic and mineralogical criteria indicate that it is of primary origin and not formed during metamorphism. Its composition is very homogeneous, close to Fe7S8, and its absolute magnetic susceptibility is 2.10− 3 SI/g. Ar–Ar dating of hydrothermal sericites from a coherent rhyolite flow or dome within the immediate deposit footwall indicates an age of 331.7 ± 7.9 Ma for the Draa Sfar deposit and rhyolite volcanism.The Draa Sfar deposit has undergone a low-grade regional metamorphic event that caused pervasive recrystallization, followed by a ductile–brittle deformation event that has locally imparted a mylonitic texture to the sulphides and, in part, is responsible for the elongated and sheet-like morphology of the sulphide orebodies. Lead isotope data fall into two compositional end-members. The least radiogenic end-member, (206Pb/204Pb = 18.28), is characteristic of the Tazakourt orebody, whereas the more radiogenic end-member (206Pb/204Pb  18.80) is associated with the Sidi M'Barek orebody, giving a mixing trend between the two end-members. Lead isotope compositions at Draa Sfar testify to a significant continental crust source for the base metals, but are different than those of the Hajar and South Iberian Pyrite Belt VMS deposits.The abundance of pyrrhotite versus pyrite in the orebodies is attributed to low fO2 conditions and neither a high temperature nor a low aH2S (below 10− 3) is required. The highly anoxic conditions required to stabilize pyrrhotite over pyrite are consistent with formation of the deposit within a restricted, sediment-starved, anoxic basin characterized by the deposition of carbonaceous, pelagic sediments along the flank of a rhyolitic flow-dome complex that was buried by pelitic sediments. Deposition of sulphides likely occurred at and below the seafloor within anoxic and carbonaceous muds.Draa Sfar and other Moroccan volcanogenic massive sulphide deposits occur in an epicontinental volcanic domain within the outer zone of the Hercynian belt and formed within a sedimentary environment that has a high pelagic component. In spite of the diachronous emplacement between the IPB deposits (late Devonian to Visean) and Moroccan deposits (Dinantian), all were formed around 340 ± 10 Ma following a major phase of the Devonian compression.  相似文献   

8.
The Iberian type of volcano-sedimentary massive sulphide deposits   总被引:6,自引:0,他引:6  
The Iberian Pyrite Belt, located in the SW Iberian Peninsula, contains many Paleozoic giant and supergiant massive sulphide deposits, including the largest individual massive sulphide bodies on Earth. Total ore reserves exceed 1500 Mt, distributed in eight supergiant deposits (>100 Mt) and a number of other smaller deposits, commonly with associated stockwork mineralizations and footwall alteration haloes. Massive sulphide bodies largely consist of pyrite, with subordinated sphalerite, galena and chalcopyrite and many other minor phases, although substantial differences occur between individual deposits, both in mineral abundance and spatial distribution. These deposits are considered to be volcanogenic, roughly similar to volcanic-hosted massive sulphides (VHMS). However, our major conclusion is that the Iberian type of massive sulphides must be considered as a VHMS sub-type transitional to SHMS. This work is an assessment of the geological, geochemical and metallogenic data available up to date, including a number of new results. The following points are stressed; (a) ore deposits are located in three main geological sectors, with the southern one containing most of the giant and supergiant orebodies, whereas the northern one has mainly small to intermediate-sized deposits; (b) ore deposits differ one from another both in textures and mineral composition; (c) Co and Bi minerals are typical, especially in stockwork zones; (d) colloidal and other primary depositional textures are common in many localities; (e) a close relation has been found between ore deposits and some characteristic sedimentary horizons, such as black shales. In contrast, relationships between massive sulphides and cherts or jaspers remains unclear; (f) footwall hydrothermal alterations show a rough zoning, the inner alteration haloes being characterized in places by a high Co/Ni ratio, as well as by mobility of Zr, Y and REE; (g) 18O and D values indicate that fluids consist of modified seawater, whereas 34S data strongly suggest the participation of bacterial-reduced sulphur, at least during some stages of the massive sulphide genesis, and (h) lead isotopes suggest a single (or homogeneized) metal source, from both the volcanic piles and the underlying Devonian rocks (PQ Group). It is concluded that, although all these features can be compatible with classical VHMS interpretations, it is necessary to sketch a different model to account for the IPB characteristics. A new proposal is presented, based on an alternative association between massive sulphide deposits and volcanism. We consider that most of the IPB massive orebodies, in particular the giant and supergiant ones, were formed during pauses in volcanic activity, when hydrothermal activity was triggered by the ascent and emplacement of late basic magmas. In these conditions, deposits formed which had magmatic activity as the heat source; however, the depositional environment was not strictly volcanogenic, and many evolutionary stages could have occurred in conditions similar to those in sediment-hosted massive sulphides (SHMS). In addition, the greater thickness of the rock pile affected by hydrothermal circulation would account for the enormous size of many of the deposits. Received: 8 September 1998 / Accepted: 4 January 1999  相似文献   

9.
Scottish Dinantian transitional to mildly alkaline volcanism is represented by abundant outcrops in the Midland Valley, Southern Uplands and Highlands provinces. Dinantian volcanic rocks from Kintyre in the Scottish Highlands range in composition from basalt through basaltic hawaiite, hawaiite, mugearite and benmoreite to trachyte, the compositions of the evolved types being largely due to differentiation from the basaltic parents.Recent geochemical investigations of Scottish Caledonian granitoids, Siluro-Devonian Old Red Sandstone (ORS) lavas and xenolith suites from numerous vents and dykes of Permo-Carboniferous to Tertiary age have revealed that the Scottish crust and upper mantle both increase in age and are increasingly enriched in incompatible elements towards the north and northwest. The upper mantle and lower crust below the Highlands province are therefore largely considered to be more enriched and in parts older than those below the Midland Valley and Southern Uplands. Dinantian alkali basalts from these latter two provinces have Nd values predominantly in the range +3 to +6, initial 87Sr/86Sr values of 0.7029–0.7041 and 207Pb/ 204Pb values of 15.48–15.60. However, similar basalts from Kintyre and Arran in the Highlands have lower Nd (+0.1 to +3.4) and 207Pb/204Pb (for given 206Pb/204Pb ratios; 15.49–15.51) and slightly higher 87Sr/86Sr (0.7033–0.7046). This regional variation correlates well with the differences seen between Midland Valley and Highland magmas in the ORS calc-alkaline suite (Thirlwall 1986) and it is suggested that both the ORS and Dinantian basic rocks are derived from similar types of mantle, although no lithospheric slab component is present in the later Dinantian suites. Isotopically-distinct portions of mantle therefore appear to have been present below the Highland and Midland Valley-Southern Upland provinces from at least Caledonian to Carboniferous times. The combined incompatible element and Sr-Nd-Pd isotopic evidence from Kintyre and Arran basaltic rocks does not allow unequivocal distinction between a lithospheric mantle and a sublithospheric mantle source. The observed correlation between isotopic composition of Dinantian basalts and the chemical composition of the lithosphere, together with the apparent involvement of long-term separated source reservoirs suggests that Kintyre and Arran lavas were derived largely from a lithospheric mantle source. On the other hand, the isotopic enrichment of Kintyre basaltic rocks is not extreme; trace element and isotopic compositions are still comparable to modem OIB. Sublithospheric mantle could therefore also be a viable source for Kintyre and Arran Dinantian volcanism.  相似文献   

10.
Abstract The Dajiangping pyrite deposit located in the middle sector of the Yunkai uplift in western Guangdong is a stratiform sulphide deposit occurring in Sinian marine clastic and fine clastic rocks. The formation of the deposit was related to submarine exhalation and hot brine deposition. A part of it was reformed by late-stage hydro thermal solution. The δ34S values of pyrite vary from — 25.55‰ to + 21.07‰, which are inversely proportional to the content of organic carbon in ore and pyrite. Passing from striped fine-grained pyrite ore to massive coarse-grained pyrite ore, i.e. from south to north, the sulphur isotopic composition changes from the light sulphur-enriched one to the heavy sulphur-enriched one. The lead isotopic composition of striped ore is consistent with that of the country locks of orebodies and the lead is radiogenic lead derived from the upper crust. The lead isotopic composition of massive ore is relatively homogeneous and its 206/Pb204Pb, 207/Pb204Pb and 208/Pb204Pb ratios are a bit lower than those of striped ore; the lead result from mixing of synsedimentary ore lead with that derived from basement migmatite brought by late-stage hydrothermal solutions.  相似文献   

11.
Since lenses of chert are common within the volcano-sedimentary succession hosting the massive sulphide deposits of the Iberian Pyrite Belt (Spain and Portugal), we examined numerous chert occurrences, both petrographically and geochemically, to test their possible value for massive sulphide exploration. The chert is found at two main lithostratigraphic levels (upper and lower) that are also interpreted as massive-sulphide bearing. In both cases the chert is located at the top of acidic volcanic sequences or in the associated sediments; we have not been able to observe the relationships between massive sulphides and chert, but some of the large orebodies of the Province (Lousal, La Zarza, Tharsis, Planes-San Antonio body of Rio Tinto, Neves) are described as being locally capped by chert facies. Four main types are recognized among the chert and associated facies: (1) red hematitic chert?±?magnetite; (2) radiolarian and/or sedimentary-textured (conglomeratic) chert with hematite and/or Mn oxides; (3) pale sulphidic chert; (4) rhodonite and/or Mn carbonate?±?magnetite facies. In the Spanish part of the Province the radiolarian chert is confined to the upper level; the distribution of the other types appears to be haphazard. The hydrothermal origin of the South Iberian chert is shown by its high Fe-Mn and low Co-Ni-Cu contents. The presence of small positive Ce anomalies indicates a shallow marine environment (shelf or epicontinental sea), which is consistent with the volcanological and sedimentological data. The chert was emplaced below the sea floor through chemical precipitation and/or through alteration and replacement of the country rock, residual traces of which are ghost phenocrysts and high Al, Ti and rare earth contents. Macro- and microscopic relationships indicate that the oxide facies (hematite?±?magnetite) formed first, probably providing a protective insulating cover against the marine environment and enabling an evolution towards sulphide facies; a phase of Mn?carbonate and silicate + quartz?±?chlorite + sulphides appears to be even later. It was not possible, through discrimination, to isolate a chert that could be considered as representing a lateral marker of massive sulphides; moreover, both field observations and geochemical data seem to indicate a relative independence of this siliceous sulphide hydrothermal activity from the hydrothermal activity giving rise to the massive sulphides. Such is also indicated by the lead isotopic signature of the chert, which is appreciably more radiogenic than that of the massive sulphides; the lead enrichment in the sulphidic chert facies indicates the participation of a different source (sediments, sea water) from that of the massive sulphides. The hypothesis of an independent hydrothermal “chert” event can thus be envisaged, wherein the chert reflects submarine low-temperature hydrothermal activity that is most apparent during a “break” within the volcano-sedimentary succession and which may locally have competed with the high-temperature hydrothermal activity giving rise to the massive sulphides. The interest of the chert thus rests in its palaeodynamic significance, as a marker of periods of volcanic quiescence, and in its possible role as a protective insulating cap favourable to the deposition of massive sulphides.  相似文献   

12.
The Aznalcóllar mining district is located on the eastern edge of the Iberian Pyrite Belt (IPB) containing complex geologic features that may help to understand the geology and metallogeny of the whole IPB. The district includes several ore deposits with total reserves of up to 130 Mt of massive sulphides. Average grades are approximately 3.6% Zn, 2% Pb, 0.4% Cu and 65?ppm Ag. Mined Cu-rich stockwork mineralizations consist of 30?Mt with an average grade of 0.6% Cu. Outcropping lithologies in the Aznalcóllar district include detrital and volcanic rocks of the three main stratigraphic units identified in the IPB: Phyllite-Quartzite Group (PQ), Volcano-Sedimentary Complex (VSC) and Culm Group. Two sequences can be distinguished within the VSC. The Southern sequence (SS) is mainly detritic and includes unusual features, such as basaltic pillow-lavas and shallow-water limestone levels, the latter located in its uppermost part. In contrast, the Aznalcóllar-Los Frailes sequence (AFS) contains abundant volcanics, related to the two main felsic volcanic episodies in the IPB. These distinct stratigraphic features each show a different palaegeographic evolution during Upper Devonian and Lower Carboniferous. Massive sulphides occur in association with black shales overlying the first felsic volcanic package (VA1) Palynomorph data obtained from this black shale horizon indicate a Strunian age for massive sulphides, and consequently an Upper Devonian age for the VA1 cycle. Field and textural relationships of volcanics suggest an evolution from a subaerial pyroclastic environment (VA1) to hydroclastic subvolcanic conditions for the VA2. This evolution can be related to compartmentalizing and increasing depth of the sedimentary basin, which may also be inferred from changes in the associated sediments, including black shales and massive sulphides. Despite changes in the character of volcanism, the same dacitic to rhyolitic composition is found in both pyroclastic and subvolcanic igneous series. The main igneous process controlling chemical variation of volcanics is fractional crystallization of plagioclase (+accessories). This process took place in shallow, sub-surface reservoirs giving rise to a compositional range of rocks that covers the total variation range of felsic rocks in the IPB. The Hercynian orogeny produced a complex structural evolution with a major, ductile deformation phase (F1), and development of folds that evolved to thrusts by short flank lamination. These thrusts caused tectonic repetition of massive and stockwork orebodies. In Aznalcóllar, some of the stockwork mineralization overthrusts massive sulphides. These structures are cut by large brittle overthrusts and by late wrench faults. The original geometric features of massive sulphide deposits correspond to large blankets with very variable thicknesses (10 to 100?m), systematically associated with stockworks. Footwall rock alteration exhibits a zonation, with an inner chloritic zone and a peripheral sericitic zone. Silicification, sulphidization and carbonatization processes also occur. Hydrothermal alteration is considered a multi-stage process, geochemically characterized by Fe, Mg and Co enrichment and intense leaching of alkalies and Ca. REE, Zr, Y and Hf are also mobilized in the inner chloritic zones. Three ore types occur, both in stockworks and massive sulphides, named pyritic, polymetallic and Cu-pyritic. Of these, Cu-pyritic is more common in stockworks, whereas polymetallic is prevalent in massive sulphides. Zoning of sulphide masses roughly sketches a typical VHMS pattern, but many alternating polymetallic and barren pyritic zones are probably related to tectonics. Although the paragenesis is complex, several successive mineral associations can be distinguished, namely: framboidal pyritic, high-temperature pyritic (300?°C), colloform pyritic, polymetallic and a late, Cu-rich high-temperature association (350?°C). Fluid inclusion data suggest that hydrothermal fluids changed continuously in temperature and salinity, both in time and space. Highest Th and salinities correspond to inner stockworks zones and later fluids. Statistic population analysis of fluid inclusion data points to three stages of hydrothermal activity, at low (<200?°C), intermediate (200–300?°C) and high temperatures (300–400?°C). 34S values in massive sulphides are lower than in stockwork mineralization suggesting a moderate bacterial activity, favoured by the euxinoid environment prevailing during black shale deposition. The intimate relation between massive sulphides and black shales points to an origin of massive sulphides by precipitation and replacement within black shale sediments. These would have acted both as physical and chemical barriers during sulphide deposition. Hydrothermal activity started during black shale deposition, triggered by a rise in thermal gradient due to the ascent of basic magmas. We suggest a three-stage genetic model: (1) low temperature, diffuse fluid flow, producing pyrite-bearing lenses and disseminations interbedded with black shales; locally, channelized high-T fluid flow occurs; (2) hydrothermal cyclic activity at a low to intermediate temperature, producing most of the pyritic and polymetallic ores, and (3) a late high-temperature phase, yielding Cu-rich and Bi-bearing mineralization, mainly in the stockwork zone.  相似文献   

13.
The Filón Norte orebody (Tharsis, Iberian Pyrite Belt) is one of the largest pyrite-rich massive sulphide deposits of the world. The present structure of the mineralization consists of an internally complex low-angle north-dipping thrust system of Variscan age. There are three major tectonic units separated by thick fault zones, each unit with its own lithologic and hydrothermal features. They are internally organized in a hinterland dipping duplex sequence with high-angle horses of competent rocks (igneous and detritic rocks and massive sulphides) bounded by phyllonites. The mineralization is within the Lower Unit and is composed of several stacked sheets of massive sulphides and shales hosting a stockwork zone with no obvious zonation. The Intermediate Unit is made up of pervasively ankeritized shales and basalts (spilites). Here, hydrothermal breccias are abundant. The Upper Unit is the less hydrothermally altered one and consists of silicified dacites and a diabase sill. The tectonic reconstruction suggests that the sequence is inverted and the altered igneous rocks were originally below the orebody. Carbon, oxygen and sulphur isotopes in the massive sulphides and hydrothermal rocks as well as the mineral assemblage and the paragenetic succession suggest that the sulphide precipitation in the sea floor took place at a low temperature (<≈150?°C) without indication, at least in the exposed section, of a high-temperature copper-rich event. Sporadic deep subsea-floor boiling is probably responsible for the formation of hydrothermal breccias and the wide extension of the stockwork. Its Co-Au enrichment is interpreted as being related with the superposition of some critical factors, such as the relationship with black shales, the low temperature of formation and the boiling of hydrothermal fluids. The present configuration and thickness of the orebody is due to the tectonic stacking of a thin and extensive blanket (2–4?km2) of massive sulphides with low aspect ratio. They were formed by poorly focused venting of hot modified seawater equilibrated with underlying rocks into the seafloor. Massive sulphide precipitation took place by hydrothermal fluid quenching, bacteriogenic activity and particle settling in an unusual, restricted, euxinic and shallow basin (brine pool?) with a low detritic input but with important hydrothermal activity related to synsedimentary extensional faulting. Resedimentation of sulphides seems to be of major importance and responsible for the observed well-mixed proximal and distal facies. The tectonic deformation is largely heterogeneous and has been mostly channelled along the phyllonitic (tectonized shales) deformation bands. Thus, sedimentary and diagenetic textures are relatively well-preserved outside the deformation bands. In the massive sulphides, superimposed Variscan recrystallization is not very important and only some early textures are replaced by metamorphic/tectonic ones. The stockwork is much more deformed than the massive sulphides. The deformation has a critical effect on the present morphology of the orebody and the distribution of the ore minerals. This deposit is a typical example of the sheet-like, shale-hosted, anoxic, low temperature and Zn-rich massive sulphides developed in a ensialic extensional basin.  相似文献   

14.
新测行Jade热液活动区中5件块状硫化物样品的铅同位素组成,具有较小的变化范围,表现出较均一的铅同位素组成特征。在Pb-Pb图解上,块状硫化物的铅同位素数据构成线形排列,与该区沉积物和蚀变火山岩的铅同位素组成一致,而与该区新鲜火山岩相比具较高的放射成因铅,证实了该区海底块状硫化物中的铅是由沉积物长英质火山岩来源铅共同构成的混合铅。不同热液活动区铅同位素组成对比研究表明,地质-构造环境的不同是导致各  相似文献   

15.
Regional oxygen isotopic sytematics have been performed mainly on the felsic volcanic footwall rocks of the orebodies but also on purple schist characteristic of the hanging wall series, around two giant VMS deposits in the Spanish Iberian Pyrite Belt, Riotinto and La Zarza. As the terranes of the Iberian Pyrite Belt, these two giant deposits have been affected by the Hercynian tectono-metamorphic events, strongly modifying their geometry. About 60 and 40 samples were collected over a 10×4 km2 area at Riotinto and a 3×2 km2 area at La Zarza, respectively. Whole-rock powders were analysed for oxygen by CO2-laser fluorination. At both sites, a same type of low-δ18O anomaly down to +3.6‰, well differentiated from the regional background (up to 20‰), was identified near the orebodies. The lowest δ18O values (+4 to +11‰) correspond to the chlorite hydrothermal halo, essentially restricted to the feeder zones of the orebody. Intermediate δ18O values (+9 to +15‰) correspond to the sericite hydrothermal halo, mostly developed laterally to the orebody until 0.5–1 km. The regional background (+16 to +20‰) is represented by spilitised volcanic rocks. A same kind of low anomaly, but with less contrast, was defined in purple schist in the immediate hanging wall of the orebodies. All these results demonstrate that, despite high geometrical modifications of the orebodies related to the Hercynian tectonics, oxygen isotopic anomalies recorded by volcanic host rocks during the emplacement of the mineralising hydrothermal systems are still identified. This strongly suggests that oxygen isotopic systematics could be useful to identify target areas in the Iberian Pyrite Belt, as already demonstrated on other VMS targets in the world.  相似文献   

16.
Mike Solomon   《Ore Geology Reviews》2008,33(3-4):329-351
The Ordovician Zn–Pb–Cu massive sulphide ore deposits of the Bathurst mining camp share many features with those of the Devonian/Carboniferous Iberian pyrite belt, particularly the tendency to large size (tonnage and metal content); shape, as far as can be determined after allowing for deformation; metal content, particularly Fe/Cu, Pb/Zn and Sn; mineral assemblages (pyrite + arsenopyrite ± pyrrhotite and lack or rarity of sulphates); sulphide textures (particularly framboidal pyrite); lack of chimney structures and rubble mounds; irregular metal or mineral zoning; and the low degree of zone refining compared to Hokuroku ores. The major differences between the provinces are the lack of vent complexes and the presence of Sn–Cu ores in the Iberian pyrite belt. There are also similarities in the geological setting of the two camps: both lie within continental terranes undergoing arc-continent and continent–continent collision, and in each case massive sulphide mineralisation followed ophiolite obduction; the ore deposits are associated with bimodal volcanic rocks derived from MORB and continental crust and marine shales; and mineralisation was locally accompanied or followed by deposition of iron formations.Fluid inclusion data from veins in stockworks from at least six of the Iberian massive sulphide deposits point to sulphide deposition having taken place in basins containing mostly spent saline, ore-forming fluids (brine pools), and it is suggested that most of the major features of the Bathurst deposits can be explained by similar processes. The proposed model is largely independent of ocean sulphate and O2 content, whereas low values of each are requisites for the current, spreading-plume model of sulphide deposition in the Bathurst camp.  相似文献   

17.
Polymetallic sulfide-sulfate mineralization enriched in Pb-Ag-As-Sb-Hg occurs in the Bransfield Strait, a late Tertiary-Quaternary marginal basin close to the Antarctic Peninsula. The mineralization is associated with bimodal volcanism and pelagic and volcaniclastic sediment in rifted continental crust. Hydrothermal precipitates have been recovered from two shallow (1,050–1,000 m water depth) submarine volcanoes (Hook Ridge and Three Sisters) in the Central Bransfield Strait. Mineralization at Hook Ridge consists of polymetallic sulfides, massive barite, and pyrite and marcasite crusts in semilithified pelagic and volcaniclastic sediment. Native sulfur commonly infills void space and cements the volcaniclastic sediment. The polymetallic sulfides are dominated by sphalerite with minor galena, enargite, tetrahedrite-tennantite, pyrite, chalcopyrite, and traces of orpiment cemented by barite and opal-A. The presence of enargite at Hook Ridge, the abundance of native sulfur, and the low Fe content of sphalerite indicate a high sulfur activity of the hydrothermal fluids responsible for mineralization. The sulfur isotopic composition of Hook Ridge precipitates documents the complexity of the sulfur sources in this hydrothermal system with variable influence of biological activity and possibly magmatic contributions. Homogenization temperatures and salinities of fluid inclusions in barite and opal-A suggest that boiling may have affected the hydrothermal fluids during their ascent. The discovery of massive barite-silica precipitates at another shallow marine volcano (Three Sisters volcano) attests to the potential for hydrothermal mineralization at other volcanic edifices in the area. The characteristics of the mineralization in the Bransfield Strait with rifting of continental crust, the presence of bimodal volcanism, including highly evolved felsic volcanic rocks, the association with sediments, and the Pb-Ag-As-Sb-Hg enrichment are similar to the setting of massive sulfide deposits in the Okinawa Trough, and distinct from those of sediment-dominated hydrothermal systems such as Escanaba Trough, Middle Valley, and Guaymas Basin. The geological setting of the Bransfield Strait is also broadly similar to that of some of the largest volcanogenic massive sulfide deposits in the ancient record, such as the Iberian Pyrite Belt.Editorial handling: B. Lehmann  相似文献   

18.
The Duolong porphyry Cu–Au deposit (5.4 Mt at 0.72% Cu, 41 t at 0.23 g/t Au) was recently discovered in the southern Qiangtang terrane, central Tibet. Here, new whole‐rock elemental and Sr–Nd–Pb isotope and zircon Hf isotopic data of syn‐ and post‐ore volcanic rocks and barren and ore‐bearing granodiorite porphyries are presented for a reconstruction of magmas associated with Cu–Au mineralization. LA–ICP–MS zircon U–Pb dating yields mean ages of 117.0 ± 2.0 and 120.9 ± 1.7 Ma for ore‐bearing granodiorite porphyry and 105.2 ± 1.3 Ma for post‐ore basaltic andesite. All the samples show high‐K calc‐alkaline compositions, with enrichment of light rare earth elements (LREE) and large ion lithophile elements (LILE: Cs and Rb) and depletion of high field strength elements (HFSE: Nb and Ti), consistent with the geochemical characteristics of arc‐type magmas. Syn‐ and post‐ore volcanic rocks show initial Sr ratios of 0.7045–0.7055, εNd(t) values of −0.8 to 3.6, (206Pb/204Pb)t ratios of 18.408–18.642, (207Pb/204Pb)t of 15.584–15.672 and positive zircon εHf(t) values of 1.3–10.5, likely suggesting they dominantly were derived from metasomatized mantle wedge and contaminated by southern Qiangtang crust. Compared to mafic volcanic rocks, barren and ore‐bearing granodiorite porphyries have relatively high initial Sr isotopic ratios (0.7054–0.7072), low εNd(t) values (−1.7 to −4.0), similar Pb and enriched zircon Hf isotopic compositions [εHf(t) of 1.5–9.7], possibly suggesting more contribution from southern Qiangtang crust. Duolong volcanic rocks and granodiorite porphyries likely formed in a continental arc setting during northward subduction of the Bangong–Nujiang ocean and evolved at the base of the lower crust by MASH (melting, assimilation, storage and homogenization) processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
浙闽沿海大面积出露的中生代酸性火山岩区有少量早白垩世玄武岩分布,它们具典型钾富集和铌等元素亏损特征,其同位素组成表现为较高ISr(0.7055-0.7106)、低的εNd(1.2--10.6,大多介于-3.2--10.6之间)及富放射性成因铅(206Pb/204Pb=18.355-18.726,207Pb/204Pb=15.455-15.799,208Pb/204Pb=38.530-39.319).这些特征表明玄武岩源区为一富集型的陆下岩石圈地幔,由古老的俯冲地壳物质再循环进入并交代地幔而形成。没有证据表明本区早白垩世基性和酸性岩浆之间发生过大规模的化学混合,但不排除同位素之间的交换以及局部的化学和机械混合。壳-幔混合与地壳混染仅在少数玄武岩的形成过程中起着较重要的作用。  相似文献   

20.
A strong link between high Sr/Y arc magmas and porphyry Cu–Mo–Au deposits has been recognized in recent years. The Tongshan and Duobaoshan deposits are representative large Cu–Mo–Au deposits in NE China. We report LA–ICP–MS zircon U–Pb crystallization age of 471.5 ± 1.3 Ma for Tongshan ore-related granitoid. Re–Os isotopic analyses of the two chalcopyrite samples from Tongshan deposit show a model age range of 470.2–477.1 Ma. The Duobaoshan and Tongshan ore-related granitoids show higher Sr/Y and La/Yb ratios. The δ34S values of sulphides from the Duobaoshan and Tongshan deposits vary from −2.3‰ to 0.0‰, belonging to a magmatic-hydrothermal system. The Pb isotopic ratios of the sulphides from the Duobaoshan and Tongshan deposit range from 17.201 to 18.453 for 206Pb/204Pb, 15.445 to 15.551 for 207Pb/204Pb, and 36.974 to 37.999 for 208Pb/204Pb, indicating the addition of lower crustal material. The Duobaoshan and Tongshan granitoids were formed in a subduction-related continental arc setting, produced by partial melting of juvenile hydrous basalts underplating the deep continental crust during the Ordovician.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号