首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies indicate that the climate has experienced a dramatic change in the Heihe River Basin with scope of temperature rise reaching 0.5-1.1oC in the 1990s compared to the mean value of the period 1960-1990, precipitation increased 18.5 mm in the 1990s compared to the 1950s, and 6.5 mm in the 1990s compared to the mean value of the period 1960-1990, water resources decreased 2.6×108 m3 in the 1990s compared to the 1950s, and 0.4×108 m3 in the 1990s compared to the mean value of the period 1960-1990. These changes have exerted a greater effect on the local environment and socio-economy, and also made the condition worsening in water resources utilizations in the Heihe Rver Basin.  相似文献   

2.
黑河流域气候变化对水资源的影响   总被引:3,自引:1,他引:3  
1IntroductionThe climate conditions of temperature and precipitation are of primary importance for arid region and a change of climate in the direction to warmer or colder, wetter or drier would have large water resources, biological and socio-economic consequences (Raino Heino, 1994; Guido V etal., 2001).Since last century, there has been a warming trend for global climate with greenhouse gases such as CO2 continually increasing. The trend got intensified particularly in the late 20th centu…  相似文献   

3.
Evapotranspiration is one of the key components of hydrological processes. Assessing the impact of climate factors on evapotranspiration is helpful in understanding the impact of climate change on hydrological processes. In this paper, based on the daily meteorological data from 1960 to 2007 within and around the Aksu River Basin, reference evapotranspiration (RET) was estimated with the FAO Penman-Monteith method. The temporal and spatial variations of RET were analyzed by using ARCGIS and Mann-Kendall method. Multiple Regression Analysis was employed to attribute the effects of the variations of air temperature, solar radiation, relative humidity, vapour pressure and wind speed on RET. The results showed that average annual RET in the eastern plain area of the Aksu River Basin was about 1100 mm, which was nearly twice as much as that in the western mountainous area. The trend of annual RET had significant spatial variability. Annual RET was reduced significantly in the southeastern oasis area and southwestern plain area and increased slightly in the mountain areas. The amplitude of the change of RET reached the highest in summer, contributing most of the annual change of RET. Except in some high elevation areas where relative humidity predominated the change of the RET, the variations of wind velocity predominated the changes of RET almost throughout the basin. Taking Kuqa and Ulugqat stations as an example, the variations of wind velocity accounted for more than 50% of the changes of RET.  相似文献   

4.
Evapotranspiration is one of the key components of hydrological processes. Assessing the impact of climate factors on evapotranspiration is helpful in understanding the impact of climate change on hydrological processes. In this paper, based on the daily meteorological data from 1960 to 2007 within and around the Aksu River Basin, reference evapotranspiration (RET) was estimated with the FAO Penman-Monteith method. The temporal and spatial variations of RET were analyzed by using ARCGIS and Mann-Kendall met...  相似文献   

5.
To reveal the changing trend and annual distribution of the surface water hydrology and the local climate in the Bayanbuluk alpine-cold wetlands in the past 50 years, we used temperature, precipitation, different rank precipitation days, evaporation, water vapor pressure, relative humidity, dust storm days and snow depth to analyze their temporal variations. We conclude that there were no distinct changes in annual mean temperature, and no obvious changes in the maximum or minimum temperatures. Precipitation in warm season was the main water source in the wetlands of the study area and accounted for 92.0% of the annual total. Precipitation dropped to the lowest in the mid-1980s in the past 50 years and then increased gradually. The runoff of the Kaidu River has increased since 1987 which has a good linear response to the annual precipitation and mean temperature in Bayanbuluk alpine-cold wetland. Climate change also affected ecosystems in this area due to its direct relations to the surface water environment.  相似文献   

6.
开都河流域气候变化对地表水的影响   总被引:4,自引:0,他引:4  
1IntroductionWetlands, forests and oceans are the three main ecosystems with the highest ecological values in the world. According to the data of United Nations Environment Programme in 2002, the annual production value of the wetland ecosystems per hecta…  相似文献   

7.
新疆伊犁河流域气候变化(英文)   总被引:3,自引:0,他引:3  
In this paper, the monthly precipitation and temperature data collected at 7 stations in the Ili River Basin from 1961 to 2007 were analyzed by means of simple regression analysis, running mean, db6 wavelet function and Mann-Kendall test. This study revealed the characteristics of climate change and abrupt change points of precipitation and temperature during different time scales in the Ili River Basin within the past 50 years. The results showed that the precipitation increased from the mid-1980s until 2000 and has continued to increase at a smaller magnitude since 2000. Over the studied period, the precipitation increased significantly during the summer and winter months. The temperature increased greatly in the late 1980s, and has continued to show an increasing trend from the year 2000 to present. The temperature increases were most significant during the summer, autumn and winter months. In terms of different geographies, the temperature increase was significant during the winter in the plains and hilly regions; the increase was also significant during autumn in the intermontane basins. The climate change trends in the Ili River Basin were consistent with the changing trends of the North Atlantic Oscillation and the plateau monsoon.  相似文献   

8.
新疆水文水资源变化及对区域气候变化的响应   总被引:6,自引:1,他引:5  
Based on the surface runoff, temperature and precipitation data over the last 50 years from eight representative rivers in Xinjiang, using Mann-Kendall trend and jump detection method, the paper investigated the long-term trend and jump point of time series, the surface runoff, mean annual temperature and annual precipitation. Meanwhile, the paper analyzed the relationship between runoff and temperature and precipitation, and the flood frequency and peak flow. Results showed that climate of all parts of Xinjiang conformably has experienced an increase in temperature and precipitation since the mid-1980s. Northern Xinjiang was the area that changed most significantly followed by southern and eastern Xinjiang. Affected by temperature and precipitation variation, river runoff had changed both inter-annually and intra-annually. The surface runoff of most rivers has increased significantly since the early 1990s, and some of them have even witnessed the earlier spring floods, later summer floods and increasing flood peaks. The variation characteristics were closely related with the replenishment types of rivers. Flood frequency and peak flow increased all over Xinjiang. Climate warming has had an effect on the regional hydrological cycle.  相似文献   

9.
Ba  Wulong  Du  Pengfei  Liu  Tie  Bao  Anming  Chen  Xi  Liu  Jiao  Qin  Chengxin 《地理学报(英文版)》2020,30(1):164-176

In the context of climate change and over-exploitation of water resources, water shortage and water pollution in arid regions have become major constraints to local sustainable development. In this study, we established a Soil and Water Assessment Tool (SWAT) model for simulating non-point source (NPS) pollution in the irrigation area of the lower reaches of the Kaidu River Basin, based on spatial and attribute data (2010–2014). Four climate change scenarios (2040–2044) and two agricultural management scenarios were input into the SWAT model to quantify the effects of climate change and agricultural management on solvents and solutes of pollutants in the study area. The simulation results show that compared to the reference period (2010–2014), with a decline in streamflow from the Kaidu River, the average annual irrigation water consumption is expected to decrease by 3.84x108 m3 or 8.87% during the period of 2040–2044. Meanwhile, the average annual total nitrogen (TN) and total phosphorus (TP) in agricultural drainage canals will also increase by 10.50% and 30.06%, respectively. Through the implementation of agricultural management measures, the TN and TP in farmland drainage can be reduced by 14.49% and 16.03%, respectively, reaching 661.56 t and 12.99 t, accordingly, and the increasing water efficiency can save irrigation water consumption by 4.41 x108 m3 or 4.77%. The results indicate that although the water environment in the irrigation area in the lower reaches of the Kaidu River Basin is deteriorating, the situation can be improved by implementing appropriate agricultural production methods. The quantitative analysis results of NPS pollutants in the irrigation area under different scenarios provide a scientific basis for water environmental management in the Kaidu River Basin.

  相似文献   

10.
乌鲁木齐河流域气候变化的区域差异特征及突变分析   总被引:3,自引:2,他引:3  
利用乌鲁木齐河流域气象站的气温和降水资料,运用一元回归分析法和5年趋势滑动,进行了气候变化的趋势分析。结果表明:乌鲁木齐河流域的年平均气温在20世纪60-80年代偏低,90年代以后偏高,即80年代前呈下降趋势,90年代后呈上升趋势,并且秋、冬季升温幅度较大;60年代降水量最少,之后逐渐增多,2000年以来迅速增多;气温变化在空间上表现出上游气温低于下游,秋、冬季气候变暖明显早于春、夏季;降水变化的空间差异也明显。在此基础上,利用滑动T检验法、YAMAMOTO检验信噪比(SNR)、Mann-Kendall法、Cramer法和Pettitt法进行气候突变分析。结果表明:乌鲁木齐河流域气温降水突变不明显,不同方法检验的结果不太一致;春、夏季气温可能在1997年发生突变,而秋、冬季在80年代末90年代初发生突变。  相似文献   

11.
Based on the surface runoff, temperature and precipitation data over the last 50 years from eight representative rivers in Xinjiang, using Mann-Kendall trend and jump detection method, the paper investigated the long-term trend and jump point of time series, the surface runoff, mean annual temperature and annual precipitation. Meanwhile, the paper analyzed the relationship between runoff and temperature and precipitation, and the flood frequency and peak flow. Results showed that climate of all parts of Xinjiang conformably has experienced an increase in temperature and precipitation since the mid-1980s. Northern Xinjiang was the area that changed most significantly followed by southern and eastern Xinjiang. Affected by temperature and precipitation variation, river runoff had changed both inter- annually and intra-annually. The surface runoff of most rivers has increased significantly since the early 1990s, and some of them have even witnessed the earlier spring floods, later summer floods and increasing flood peaks. The variation characteristics were closely related with the replenishment types of rivers. Flood frequency and peak flow increased all over Xinjiang. Climate warming has had an effect on the regional hydrological cycle.  相似文献   

12.
In this paper, the monthly precipitation and temperature data collected at 7 stations in the Ili River Basin from 1961 to 2007 were analyzed by means of simple regression analysis, running mean, db6 wavelet function and Mann-Kendall test. This study revealed the characteristics of climate change and abrupt change points of precipitation and temperature during different time scales in the Ili River Basin within the past 50 years. The results showed that the precipitation increased from the mid-1980s until 2000 and has continued to increase at a smaller magnitude since 2000. Over the studied period, the precipitation increased significantly during the summer and winter months. The temperature increased greatly in the late 1980s, and has continued to show an increasing trend from the year 2000 to present. The temperature increases were most significant during the summer, autumn and winter months. In terms of different geographies, the temperature increase was significant during the winter in the plains and hilly regions; the increase was also significant during autumn in the intermontane basins. The climate change trends in the Ili River Basin were consistent with the changing trends of the North Atlantic Oscillation and the plateau monsoon.  相似文献   

13.
黄河流域气候变化研究综述   总被引:2,自引:0,他引:2  
黄河流域从西到东跨越多省,地形复杂,作为中国生态安全战略格局的重要组成部分,是中国气候变化敏感区和生态环境脆弱区.本文主要综述了在气候变暖背景下,黄河流域气候变化特征、影响以及成因和对策建议的最新研究进展:(1)近60年黄河流域气温呈上升趋势,平均升温速率为0.30℃/10a,上游升温速率最大,下游次之,冬季升温趋势最...  相似文献   

14.
Chen  Qihui  Chen  Hua  Zhang  Jun  Hou  Yukun  Shen  Mingxi  Chen  Jie  Xu  Chongyu 《地理学报(英文版)》2020,30(1):85-102
The climate change and Land Use/Land Cover(LULC) change both have an important impact on the rainfall-runoff processes. How to quantitatively distinguish and predict the impacts of the above two factors has been a hot spot and frontier issue in the field of hydrology and water resources. In this research, the SWAT(Soil and Water Assessment Tool) model was established for the Jinsha River Basin, and the method of scenarios simulation was used to study the runoff response to climate change and LULC change. Furthermore, the climate variables exported from 7 typical General Circulation Models(GCMs) under RCP4.5 and RCP8.5 emission scenarios were bias corrected and input into the SWAT model to predict runoff in 2017–2050. Results showed that:(1) During the past 57 years, the annual average precipitation and temperature in the Jinsha River Basin both increased significantly while the rising trend of runoff was far from obvious.(2) Compared with the significant increase of temperature in the Jinsha River Basin, the LULC change was very small.(3) During the historical period, the LULC change had little effect on the hydrological processes in the basin, and climate change was one of the main factors affecting runoff.(4) In the context of global climate change, the precipitation, temperature and runoff in the Jinsha River Basin will rise in 2017–2050 compared with the historical period. This study provides significant references to the planning and management of large-scale hydroelectric bases at the source of the Yangtze River.  相似文献   

15.
塔里木河是我国最大的内陆河,也是南疆各族人民的母亲河,对其水资源研究的脉络梳理有助于指导当前和未来一段历史时期的水资源研究方向,为水资源合理优化配置提供理论依据,促进南疆经济发展与社会稳定。针对塔里木河流域水资源问题的研究从时间脉络上大致可划分为三个阶段。20世纪50年代之前,主要是中国的历史典籍、自然地理图志和近代国外探险家的探险历程,如实记录了塔里木河的水系变迁和自然风貌,间接反映了流域水资源受到自然-人类活动影响的缓慢变化;20世纪50年代-90年代,随着南疆大规模开发,水资源研究逐渐聚焦于水资源的合理配置与有效管理,其主要针对的是近几十年来人类活动加剧造成的流域内水资源短缺、生态恶化、水资源管理混乱等一系列相关问题;21世纪以来,由于气候变化和人类活动影响造成的塔里木河水文过程变化、水资源承载力及供需矛盾、地下水资源利用与保护等逐渐成为塔里木河水资源研究的新热点。本文在系统梳理三个阶段的研究成果后,进一步提出了未来塔里木河流域水资源研究应的重点关注方向,包括生态调度、水权配置与生态补偿、跨流域调水等。  相似文献   

16.
黑河流域水资源动态变化与绿洲发育及发展演变的关系   总被引:4,自引:4,他引:4  
通过探讨流域及绿洲发育及其发展演变的水资源动态变化的特征,阐明它们之间的独特关系,并以此来揭示绿洲系统发育的河流流域地带性问题及特征。研究表明,本区水资源动态变化主要在径流形成、利用和消失三个区域内具有依次性体现的特征。其中占总流域面积10%左右的河川径流形成区,对全流域的水资源动态变化具有先决性作用,并在各个区域水动态变化体现上又受到系统对水的吞吐、留存、蒸散和转化能力大小的影响。因此,河流流域是地域分异现象中通过水流作用所体现出的水平地带性与垂直地带性的一种交汇,同时也是地带性与非地带性系统分异的主要区域。作为河流流域地带发育的绿洲系统,其发展演变规律和特征是相当独特的,如开放性、动态性、脆弱性以及资源有限性等。其中有限的水土资源及其动态变化是制约区域内各层次流域发展及绿洲系统发育的关键,并在不同区段上存在着显著差异性,且彼此间常体现出互为依存、互为消长的依次性制约关系。如水资源量的多寡、质的优劣和时空动态变化及分布、以及人为作用等决定着绿洲类型体现和规模分布、发育层次及阶段或发展演变过程及趋势、和社会经济价值体现等。  相似文献   

17.
长江源区地表水资源对气候变化的响应及趋势预测(英文)   总被引:2,自引:0,他引:2  
In this paper,variations of surface water flow and its climatic causes in China are analyzed using hydrological and meteorological observational data,as well as the impact data set(version 2.0) published by the National Climate Center in November 2009.The results indicate that surface water resources showed an increasing trend in the source region of the Yangtze River over the past 51 years,especially after 2004.The trend was very clearly shown,and there were quasi-periods of 9 years and 22 years,where the Tibetan Plateau heating field enhanced the effect,and the plateau monsoon entered a strong period.Precipitation notably increased,and glacier melt water increased due to climate change,all of which are the main climatic causes for increases in water resources in the source region.Based on global climate model prediction,in the SRESA1B climate change scenarios,water resources are likely to increase in this region for the next 20 years.  相似文献   

18.
The Yangtze River Source Region has an area of 137,704 km2.Its mean annual runoff of 12.52 billion m3,which was recorded by the Chumda Hydrological Station in 1961-2000,accounts for only 0.13 percent of the Yangtze River’s total annual streamflow.The extensive rivers,lakes,wetlands,glaciers,snow fields,and permafrost of the Yangtze River Source Region,as well as the region’s vast alpine grasslands,play a critical role in storing and regulating the flow of water not only in the upper Yangtze River watershed of Qinghai,Sichuan,the Tibet Autonomous Region (TAR) (Tibet) and Yunnan,but also throughout the entire lower Yangtze River basin.Climate change has been the dominant factor in recent fluctuation in the volume of the Yangtze River Source Region’s glacier resources.The Chumda Hydrological Station on the lower Tongtian River has registered a mean annual glacial meltwater of 1.13 billion m3 for the period 1961-2000,makes up 9 percent of the total annual runoff.Glacial meltwater makes up a significant percentage of streamflow in the Yangtze River Source Region,the major rivers of the upper Yangtze River Source Region:the Togto,Dam Chu,Garchu,and Bi Chu (Bu Chu) rivers all originate at large glaciers along the Tanggula Range.Glaciers in the Yangtze River Source Region are typical continental-type glaciers with most glacial meltwater flow occurring June-August;the close correlation between June-August river flows and temperature illustrates the important role of glacial meltwater in feeding rivers.Glaciers in the source region have undergone a long period of rapid ablation beginning in 1993.Examination of flow and temperature data for the 1961-2000 period shows that the annual melting period for glacial ice,snow,and frozen ground in the Yangtze River Source Region now begins earlier because of increasing spring temperatures,resulting in the reduction of summer flood season peak runoffs;meanwhile,increased rates of glacier ablation have resulted in more uneven annual distribution of runoff in the source region.T  相似文献   

19.
 中亚咸海流域地处全球气候变化的敏感中心,生态环境脆弱、水资源紧缺,过去百年来中亚咸海流域气候、人类活动、生态环境均经历了较为显著的变化,分析中亚咸海流域气候-水-生态-人类活动的关系,对自然与人文相近的新疆可持续发展具有重要的借鉴意义。以最新收集的资料为基础,对比研究近50 a来新疆及近80 a来中亚咸海流域的气温、降水和主要河流的径流变化情况,结合二者水资源开发利用的演变历程,分析气候变化与人类活动对研究区生态环境与持续发展的影响,最后借鉴中亚咸海流域气候变化、人类活动、生态环境的综合关系,讨论气候变化下新疆水资源开发利用的适应性对策。结果表明:近80 a来,新疆与中亚咸海流域气候呈现较为一致的变暖趋势,尤其是20世纪80年代以来,二者绝大部分地区气候呈现“暖干”向“暖湿”转型迹象,河川径流也有不同程度的增加,但由于人类活动规模与强度的迅速、持续增强,研究区生态环境呈现尚未得到有效遏制的恶化趋势。立足于有利的气候时期,强化水资源开发利用管理,提高水资源利用效率和效益,加快关键水源工程建设,完善水资源配置网络体系的建设,是未来一段时期内应对气候变化下新疆水资源开发利用的主要适应性对策。  相似文献   

20.
全球气候变化对黄河流域天然径流量影响的情景分析   总被引:23,自引:6,他引:23  
张光辉 《地理研究》2006,25(2):268-275
本文从干旱指数蒸发率函数出发,以HadCM3 GCM对降水和温度的模拟结果为基础,在IPCC不同发展情景下,分析了未来近100年内黄河流域天然径流量的变化趋势。研究结果表明,在不同气候变化情景下,多年平均年径流量的变化随着区域的不同而有显著差异,其变化幅度在-48.0%203.0%之间。全球气候变化引起的多年平均天然径流量的变化从东向西逐渐减小。就黄河流域而言,20062035年、20362065年、20662095年A2情景下(人口快速增长、经济发展缓慢)多年平均天然径流量的变化量分别为5.0%、11.7%、8.1%,B2情景下(强调社会技术创新)相应的变化分别为7.2%、-3.1%、2.6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号