首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Groundwater seepage is known to influence beach erosion and accretion processes. However, field measurements of the variation of the groundwater seepage line (GWSL) and the vertical elevation difference between the GWSL and the shoreline are limited. We developed a methodology to extract the temporal variability of the shoreline and the wet-dry boundary using video imagery, with the overarching aim to examine elevation differences between the wet-dry boundary and the shoreline position in relation to rainfall and wave characteristics, during a tidal cycle. The wet-dry boundary was detected from 10 min time-averaged images collected at Ngaranui Beach, Raglan, New Zealand. An algorithm discriminated between the dry and wet cells using a threshold related to the maximum of the red, green, and blue intensities in Hue-Saturation-Value. Field measurements showed this corresponded to the location where the water table was within 2 cm of the beachface surface. Time stacks and time series of pixels extracted from cross-shore transects in the video imagery, were used to determine the location of the shoreline by manually digitizing the maximum run-up and minimum run-down location for each swash cycle, and averaging the result. In our test data set of 14 days covering a range of wave and rainfall conditions, we found 6 days when the elevation difference between the wet-dry boundary and the shoreline remained approximately constant during the tidal cycle. For these days, the wet-dry boundary corresponded to the upper limit of the swash zone. On the other 8 days, the wet-dry boundary and the shoreline decoupled with falling tide, leading to elevation differences of up to 2.5 m at low tide. Elevation differences between the GWSL and the shoreline at low tide were particularly large when the cumulative rainfall in the preceding month was greater than 200 mm. This research shows that the wet-dry boundary (such as often used in video shoreline-finding algorithms) is related to groundwater seepage on low-sloped, medium to fine sand beaches such as Ngaranui Beach (mean grain size ∼0.27 mm, beach slope ∼1:70) and may not be a good indicator of the position of the shoreline.  相似文献   

2.
Coastal imagery obtained from a coastal video monitoring station installed at Faro Beach, S. Portugal, was combined with topographic data from 40 surveys to generate a total of 456 timestack images. The timestack images were processed in an open-access, freely available graphical user interface (GUI) software, developed to extract and process time series of the cross-shore position of the swash extrema. The generated dataset of 2% wave run-up exceedence values R 2 was used to form empirical formulas, using as input typical hydrodynamic and coastal morphological parameters, generating a best-fit case RMS error of 0.39 m. The R 2 prediction capacity was improved when the shore-normal wind speed component and/or the tidal elevation η tide were included in the parameterizations, further reducing the RMS errors to 0.364 m. Introducing the tidal level appeared to allow a more accurate representation of the increased wave energy dissipation during low tides, while the negative trend between R 2 and the shore-normal wind speed component is probably related to the wind effect on wave breaking. The ratio of the infragravity-to-incident frequency energy contributions to the total swash spectra was in general lower than the ones reported in the literature E infra/E inci > 0.8, since low-frequency contributions at the steep, reflective Faro Beach become more significant mainly during storm conditions. An additional parameterization for the total run-up elevation was derived considering only 222 measurements for which η total,2 exceeded 2 m above MSL and the best-fit case resulted in RMS error of 0.41 m. The equation was applied to predict overwash along Faro Beach for four extreme storm scenarios and the predicted overwash beach sections, corresponded to a percentage of the total length ranging from 36% to 75%.  相似文献   

3.
This study is focused on the evaluation of a Digital Elevation Model (DEM) for Tokyo, Japan from data collected by the recently launched TerraSAR add-on for Digital Elevation Measurements (TanDEM-X), satellite of the German Aerospace Center (DLR). The aim of the TanDEM-X mission is to use Interferometric SAR techniques to generate a consistent high resolution global DEM dataset. In order to generate an accurate global DEM using TanDEM-X data, it is important to evaluate the accuracy at different sites around the world. Here, we report our efforts to generate a high-resolution DEM of the Tokyo metropolitan region using TanDEM-X data. We also compare the TanDEM-X DEM with other existing DEMs for the Tokyo region. Statistical techniques were used to calculate the elevation differences between the TanDEM-X DEM and the reference data. Two high-resolution LiDAR DEMs are used as independent reference data. The vertical accuracy of the TanDEM-X DEM evaluated using the Root Mean Square Error (RMSE) is considerably higher than the existing global digital elevation models. However, the local area DEM generated by Geospatial Information Authority of Japan (GSI DEM) showed the highest accuracy among all non-LiDAR DEM’s. The vertical accuracy in terms of RMSE estimated using the 2 m LiDAR as reference is 3.20 m for TanDEM-X, 2.44 m for the GSI, 7.00 m for SRTM DEM and 10.24 m for ASTER-GDEM. We also compared the accuracy of TanDEM-X with the other DEMs for different types of land cover classes. The results show that the absolute elevation error of TanDEM-X is higher for urban and vegetated areas, likewise to those observed for other global DEM’s. This is probably because the radar signals used by TanDEM-X tend to measure the first reflective surface that is encountered, which is often the top of the buildings or canopy. Hence, the TanDEM-X based DEM is more akin to a Digital Surface Model (DSM).  相似文献   

4.
Topographic data from the Shuttle Radar Topography Mission (SRTM) captures the permanent deformation of a prominent highstand of Mono Lake, California USA. Deformation of the Dechambeau Ranch highstand shoreline was measured using the elevation of the beach berm—shoreline bluff break-in-slope. Point source models and a boundary element dike model were used to approximate the source of deformation underneath the northern end of the Mono Craters. The point source model could not adequately explain the observed deformation. The dike model yielded the best results for a NW trending dike dipping 60° NE and inflated to widths greater than 60 m. The results suggest that the geometry of the source is more complex than a simple vertical dike and that the deformation is better explained with a dipping dike following a normal fault, or an elongated cryptodome.  相似文献   

5.
The dynamics of a semidiurnal internal tidal wave at a narrow Mexican Pacific shelf is discussed using the data of temperature obtained by an anchored instrument and data of field surveys. The internal tide on the shelf is dominated by an inclined wave, which propagates upward and onshore along a continental slope. Despite its reflection from the bottom and from the surface of the ocean, they remain inclined and totally destroyed over the course of one wavelength. Due to wave reflection from the inclined bottom, the horizontal and vertical wave number increase threefold when the wave goes into shallow waters. The wave undergoes nonlinear transformation and overturns forming several homogeneous temperature layers up to 20 m thick. The most intense disturbances of water layers are observed near the bottom, where the slope angle approaches its critical value. Because of nonlinear effects, the wave carries cool deep water out to the shallow depth and causes coastal upwelling. Intense solar warming together with vertical mixing results in a rapid rise of temperature in the 130-m water column that was observed.  相似文献   

6.
A forward modeling approach is proposed to simulate the preservation potential of tidal flat deposits. The preservation potential is expressed as a function of net deposition rate and a factor that represents the vertical flux of suspended load, or seabed lowering during erosion periods associated with bedload transport. The model takes into account a number of geometric parameters of a tidal flat sediment system and sediment dynamic processes. The former includes high water level, total sediment supply, the annual rate of the supply, the ratio of mud to bilk sediment in the supply, the bed slope of the tidal flat profile, as well as the slope of the stratigraphic boundary; the latter includes spring-neap cycles of tidal water level changes, boundary layer processes, resuspension of fine-grained sediments, bedload transport due to tidal currents, and bed elevation changes in response to sediment movement. Using this model, numerical experiments are carried out for a tidal flat system on the Jiangsu coast, eastern China, with the input data being derived from literature and from a series of sediment cores collected along an onshore–offshore transect. The results show that the preservation potential is highest over the upper part of the inter-tidal zone and in the lower part of the sub-tidal zone, and lowest near mean sea level and at low water on springs. The preservation potential tends to decrease with the advancement of the shoreline. The bed slope, tidal current direction and resuspension intensity influence the spatial distributions of the preservation potential. An implication of these results is that the temporal resolution of the tidal flat record depends upon the location and depth within the deposit; this should be taken into account in the interpretation of sedimentary records. Further studies are required to improve the model, on the hydrodynamic processes associated with extremely shallow water depths, sediment dynamic modeling of bed slope and profile shape, and the combined action of tides and waves for sediment transport on tidal flats.  相似文献   

7.
Tal Ezer  Hua Liu 《Ocean Dynamics》2010,60(5):1307-1318
A new method of integrating satellite remote sensing data and inundation models allows the mapping of extensive tidal mudflats in a sub-Arctic estuary, Cook Inlet (CI), Alaska. The rapid movement of the shorelines in CI due to the large tides (~10 m range) is detected from a series of Landsat imagery taken at different tidal stages, whereas GIS tools are used to identify the water coverage in each satellite image and to extract the coordinates of the shoreline. Then, water level along the shoreline for each satellite image is calculated from the observed water level at Anchorage and the statistics of an inundation model. Several applications of the analysis are demonstrated: 1. studying the dynamics of a tidal bore and the flood/ebb processes, 2. identifying climatic changes in mudflats morphology, and 3. mapping previously unobserved mudflat topographies in order to improve inundation models. The method can be used in other regions to evaluate models and improve predictions of catastrophic floods such as those associated with hurricane storm surges and tsunamis.  相似文献   

8.
Coastal foredunes provide the first line of defense against rising sea levels and storm surge and for this reason there is increasing interest in understanding and modeling foredune formation and post-storm recovery. However, there is limited observational data available to provide empirical guidance for the development of model parameterizations. To provide guidance for improved representation of dune grass growth in models, we conducted a two-year multi-species transplant experiment on Hog Island, VA, U.S.A. and measured the dependence of plant growth on elevation and distance from the shoreline, as well as the relationship between plant growth and sand accumulation. We tracked total leaf growth (length) and aboveground leaf length and found that Ammophila breviligulata (American beachgrass) and Uniola paniculata (sea oats) grew more than Spartina patens (saltmeadow cordgrass) by a factor of 15% (though not statistically significant) and 45%, respectively. Our results also suggest a range of basal/frontal area ratios (an important model parameter) from 0.5-1 and a strong correlation between transplant growth and total sand deposition for all species at the scale of two years, but not over shorter temporal scales. Distance from the shoreline and elevation had no effect on transplant growth rate but did have an effect on survival. Based on transplant survival, the seaward limit of vegetation at the end of the experiment was approximately 30 m from the MHWL and at an elevation of 1.43 m, corresponding to inundation less than 7.5% of the time according to total water level calculations. Results from this experiment provide evidence for the dune-building capacity of all three species, suggesting S. patens is not a maintainer species, as previously thought, but rather a moderate dune builder even though its growth is less stimulated by sand deposition than A. breviligulata and U. paniculata. © 2019 John Wiley & Sons, Ltd.  相似文献   

9.
Detailed mapping of geomorphological and biological sea-level markers around the Capo Vaticano promontory (western Calabria, Italy), has documented the occurrence of four Holocene paleo-shorelines raised at different altitudes. The uppermost shoreline (PS1) is represented by a deeply eroded fossiliferous beach deposit, reaching an elevation of ∼2.2 m above the present sea-level, and by a notch whose roof is at ∼2.3 m. The subjacent shoreline PS2 is found at an elevation of ∼1.8 m and is represented by a Dendropoma rim, a barnacle band and by a wave-cut platform. Shoreline PS3 includes remnants of vermetid concretions, a barnacle band, a notch and a marine deposit, and reaches an elevation of ∼1.4 m. The lowermost paleo-shoreline (PS4) includes a wave-cut platform and a notch and reaches an elevation of ∼0.8 m. Radiocarbon dating of material from individual paleo-shorelines points to an average uplift rate of 1.2–1.4 mm/yr in the last ∼6 ka at Capo Vaticano. Our data suggest that Holocene uplift was asymmetric, with a greater magnitude in the south-west sector of the promontory, in a manner similar to the long-term deformation attested by Pleistocene terraces. The larger uplift in the south-western sector is possibly related to the additional contribution, onto a large-wavelength regional signal, of co-seismic deformation events, which are not registered to the north-east. We have recognized four co-seismic uplift events at 5.7–5.4 ka, 3.9–3.5 ka, ∼1.9 ka and <1.8 ka ago, superposed on a regional uplift that in the area, is occurring at a rate of ∼1 mm/yr. Our findings places new constrains on the recent activity of border faults south of the peninsula and on the location of the seismogenic source the 1905 destructive earthquake.  相似文献   

10.
《Continental Shelf Research》1999,19(15-16):1905-1932
The M2 tidal component of the flow in the Dover Straits is reconstructed using a natural combination of two independent data sources: HF Ocean Surface Current Radar (HF OSCR) system and coastal tidal measurements. The method used is the variational data assimilation technique into a quasi-linearized finite element tidal model. The model uses triangular elements with horizontal resolution varying from 800 to 1200 m. It is controlled by the boundary conditions at open boundaries, which are adjusted to fit the available data in an optimal way. A “weak” formulation of the dynamical constraints is used. The interpolation scheme allows small (0.01%) deviations from the exact dynamics specified by the model. The optimal state of M2 parameters (sea surface elevation and depth-averaged velocities) is used to map both the M2 tidal flux through the strait and the M2 energy flux. The respective values obtained are the tidal flux amplitude 1.18±0.09×106 m3 s−1, the net residual transport (Stoke's drift) 40±3×103 m3 s−1, and the net energy flux 1.19±0.09×1010 W. These figures within the statistically estimated error band are in the close agreement with those obtained by Prandle et al., 1993. A rigorous error analysis is performed using an explicit inversion of the Hessian matrix, associated with the assimilation scheme. As a result, error charts for M2 velocities and sea surface elevation are obtained. It is shown that OSCR data combined with coastal level measurements and constrained by dynamics is able to provide quite accurate velocity estimates whose errors vary within the range of 0.05–0.45 m s−1 depending upon the location. Error maps also enable us to determine areas requiring better coverage by data, thus forming a basis of optimization approach to the design of the HFR measurements. The use of variational assimilation technique in providing integrated interpolation patterns from various sources of data demonstrates its capabilities in relation to future oceanographic monitoring systems of shelf circulation.  相似文献   

11.
The variation of seawater level resulting from tidal fluctuations is usually neglected in regional groundwater flow studies. Although the tidal oscillation is damped near the shoreline, there is a quasi‐steady‐state rise in the mean water‐table position, which may have an influence on regional groundwater flow. In this paper the effects of tidal fluctuations on groundwater hydraulics are investigated using a variably saturated numerical model that includes the effects of a realistic mild beach slope, seepage face and the unsaturated zone. In particular the impact of these factors on the velocity field in the aquifer is assessed. Simulations show that the tidal fluctuation has substantial consequences for the local velocity field in the vicinity of the exit face, which affects the nearshore migration of contaminant in coastal aquifers. An overheight in the water table as a result of the tidal fluctuation is observed and this has a significant effect on groundwater discharge to the sea when the landward boundary condition is a constant water level. The effect of beach slope is very significant and simplifying the problem by considering a vertical beach face causes serious errors in predicting the water‐table position and the groundwater flux. For media with a high effective capillary fringe, the moisture retained above the water table is important in determining the effects of the tidal fluctuations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
Presently, the application of digital elevation or surface models have increasing relevance in all areas of scientific research and in practical engineering applications. The ASTER GDEM and SRTM databases are the most widely used digital surface models, due to their free accessibility and global coverage. The SRTM model was produced using a radar-based technique and the ASTER GDEM was developed using optical stereo image-pairs. Therefore, as all models contain errors (i.e. differences stemming from real surface or vertical biases), errors in these models will also differ. Our aim was to examine these vertical biases and to calculate the rate of error variance. A TIN (Triangulated Irregular Network) model was used as a reference surface, derived from the contour lines of a large scale topographic map. Errors were evaluated with statistical and geoinformation techniques. We discovered significant differences between the surfaces. The mean difference between topographic elevations minus the SRTM-V2 is +2.6 ± 4 m, while the mean difference between topographic elevations minus the SRTM-V3 is +2.7 ± 2.5 m. With the GDEM, the mean difference was 2.7 ± 9.1 m. Furthermore, we found that in the case of SRTM, the differences were significant considering the aspects and the steepness of the slopes: southern and eastern directions and larger slope angles showed greater differences compared to the reference data. The GDEM V2 DEM had a larger error variance, but the error did not vary significantly with slope angle.  相似文献   

13.
Lake-level changes are important environmental events. The paleoshorelines of a lake reflect past water levels and record information on paleoclimatic changes. Dating these events places the climatic changes in a time sequence. From shorelines ∼1, ∼4, and ∼6 m above current lake level on the eastern shore of Linggo Co, central Tibet, we collected eight samples for optically stimulated Luminescence dating. Two stratigraphic units, distinguished on the basis of color and sedimentology, were recognized beneath each shoreline. The ages obtained were 0.9 ka (upper layer) and 3.1 ka (lower layer) for lowest shoreline, 1.9 ka (upper layer), and 6.1–9.0 ka (bottom layer) for middle shoreline, and 9.6 ka for high shoreline. Two dates were considered to be unreliable due to incomplete bleaching. We attribute the higher lake levels to increased precipitation brought by the Indian monsoon in the Holocene.  相似文献   

14.
Ice rafting is an important secondary sedimentation process that redistributes sediment form tidal flats, channel beds, and ponds to the vegetated marsh surface in northern temperate climates. Source location of ice-rafted sediment is identifiable based on distinct sediment properties. In New England salt marsh systems, ice raft thickness and entrained sediment load vary both during the season and interannually as a function of severity and duration of winter conditions; however, 97% of ice rafts carry measurable sediment loads. Thick rafts move sand or peat up to 100 m from source areas, whereas thinner rafts tend to transport mud still further onto the marsh platform, sometimes reaching the upland border. Based on these observations, we present relationships defining the theoretical sediment-carrying potential of ice rafts as well as empirical parameterizations for ice-rafted sediment with respect to ice volume. Our results suggest that ice-rafting deposits a volume of sediment contributing up to 5% of annual vertical accretion, an important input in a region where rates of vertical accretion barely compensate for sea-level rise. We provide conceptual models of ice-raft formation and sediment entrainment linking these processes to the general geomorphic evolution of northern temperate marshes, which must be understood in light of the modern acceleration in rates of sea-level rise.  相似文献   

15.
This paper discusses the variability of surface currents around Sekisei Lagoon using a nested grid ocean circulation model. We developed a triple-nested grid system that consists of a coarse-resolution (1/60° or ∼1.85 km) model off Taiwan, an intermediate-resolution (1/300° or ∼370 m) model around the Yaeyama Islands, and a fine-resolution (1/900° or ∼123 m) model of Sekisei Lagoon. The nested grid system was forced by wind and heat flux calculated from six-hourly atmospheric reanalysis data and integrated over the period from May to July 2003. The coarse-resolution model was driven by lateral boundary conditions calculated from daily ocean reanalysis data to include realistic variation of the Kuroshio and mesoscale eddies with spatial scales of ∼500–700 km in the open ocean. The tidal forcing was included in the intermediate-resolution model by interpolating sea level data obtained from a data-assimilative tidal model. The results were then used to drive the fine-resolution model to simulate the surface water circulation around Sekisei lagoon. Model results show that (1) currents inside the lagoon are mainly driven by tide and wind; (2) there exists a strong southwestward current along the bottom slope in the southeast portion of the lagoon; the current is mainly driven by remote mesoscale eddies and at times intensified by the local wind; (3) the flow relaxation scheme is effective in reducing biases along the open boundaries. The simulated currents were used to examine the retention and dispersion of passive particles in the surface layer. Results show that the surface dispersion in the strong open ocean current region is significantly higher than that inside the lagoon.  相似文献   

16.
《Journal of Hydrology》1999,214(1-4):32-48
The research described in this article investigates the utility of Artificial Neural Networks (ANNs) for short term forecasting of streamflow. The work explores the capabilities of ANNs and compares the performance of this tool to conventional approaches used to forecast streamflow. Several issues associated with the use of an ANN are examined including the type of input data and the number, and the size of hidden layer(s) to be included in the network. Perceived strengths of ANNs are the capability for representing complex, non-linear relationships as well as being able to model interaction effects. The application of the ANN approach is to a portion of the Winnipeg River system in Northwest Ontario, Canada. Forecasting was conducted on a catchment area of approximately 20 000 km2. using quarter monthly time intervals. The results were most promising. A very close fit was obtained during the calibration (training) phase and the ANNs developed consistently outperformed a conventional model during the verification (testing) phase for all of the four forecast lead-times. The average improvement in the root mean squared error (RMSE) for the 8 years of test data varied from 5 cms in the four time step ahead forecasts to 12.1 cms in the two time step ahead forecasts.  相似文献   

17.
The island of Crete in the forearc of the Hellenic subduction zone has a rugged topography with local relief exceeding 2 km. Based on the elevation of marine shorelines, rates of rock uplift during the Late Holocene were previously estimated to range between 1 and 4 mm/a in different parts of the island. These rates may, however, not be representative for longer timescales, because subduction earthquakes with up to 9 m of vertical coseismic displacement have affected Crete in the Late Holocene. Here we use a well preserved sequence of marine terraces near Kato Zakros in eastern Crete to determine the rate of rock uplift over the last ∼600 ka. Field investigations and topographic profiles document a flight of more than 13 marine bedrock terraces that were carved into limestones of the Tripolitza unit. Preliminary age constraints for the terraces were obtained by 10Be exposure dating of rare quartz-bearing sandstone clasts, which are present on some terraces. The 10Be ages of these samples, which have been corrected for an inherited nuclide component, yielded exposure ages between ∼100 ka and zero. Combined with geomorphologic evidence the two oldest 10Be ages suggest that the terraces T4 and T5, with shoreline angles at an elevation of ∼68 and ∼76 m above sea level, respectively, formed during the marine isotope stage 5e about 120 ka ago. The correlation of the higher terraces (T6 to T13) with regional sea-level highstands indicates sustained rock uplift at a rate of ∼0.5 m/ka since at least ∼600 ka. As normal faulting has dominated the tectonics of Crete during the last several million years, upper crustal shortening can be ruled out as a cause for rock uplift. We argue that the sustained uplift of the island results from the continuous underplating of sediments, which are transferred from the subducting African plate to the base of the crust beneath Crete.  相似文献   

18.
Analyses of shoreline and bathymetry change near Calais, northern coast of France, showed that shoreline evolution during the 20th century was strongly related with shoreface and nearshore bathymetry variations. Coastal erosion generally corresponds to areas of nearshore seabed lowering while shoreline progradation is essentially associated with areas of seafloor aggradation, notably east of Calais where an extensive sand flat experienced seaward shoreline displacement up to more than 300 m between 1949 and 2000. Mapping of bathymetry changes since 1911 revealed that significant variation in nearshore morphology was caused by the onshore and alongshore migration of a prominent tidal sand bank that eventually welded to the shore. Comparison of bathymetry data showed that the volume of the bank increased by about 10×107 m3 during the 20th century, indicating that the bank was acting as a sediment sink for some of the sand transiting alongshore in the coastal zone. Several lines of evidence show that the bank also represented a major sediment source for the prograding tidal flat, supplying significant amounts of sand to the accreting upper beach. Simulation of wave propagation using the SWAN wave model (Booij et al., 1999) suggests that the onshore movement of the sand bank resulted in a decrease of wave energy in the nearshore zone, leading to more dissipative conditions. Such conditions would have increased nearshore sediment supply, favoring aeolian dune development on the upper beach and shoreline progradation. Our results suggest that the onshore migration of nearshore sand banks may represent one of the most important, and possibly the primary mechanism responsible for supplying marine sand to beaches and coastal dunes in this macrotidal coastal environment.  相似文献   

19.
《Continental Shelf Research》2007,27(10-11):1477-1500
Constraining the exchange of water from the shoreline to the mid-shelf is necessary for the development of accurate and predictive models of nearshore circulation. Ra isotopes, which emanate from sediments and have a variety of half-lives, may be useful in measuring cross-shelf mixing rates. The distributions of Ra isotopes were measured in transects extending perpendicular from the shoreline at Sunset Beach and Huntington Beach, CA. The average inventory at Sunset Beach was four times greater than at Huntington Beach. Building on previous research on Ra inputs and circulation in San Pedro Bay, a two-dimensional model for surface water Ra was developed to identify the importance of onshore flow and cross-shelf mixing near Huntington Beach. For the mean summertime conditions, the eddy diffusivity (Kh) was 1.4±0.4 m2 s−1, with 8% of the water from Sunset Beach moving down the coast. The remaining water must be low-Ra water that has moved onshore. At time scales greater than a week, the short-lived Ra inventory at Huntington Beach varied by 50%, which reflects changes in the fractions of water moving down-coast and/or in the longshore advection rate. The shoreline Ra concentration varied on time scales of hours, which may be generated by tidal changes in the Ra input at the shoreline and short-period fluctuations in the mixing rate. The low Kh observed in this study in comparison to higher values measured further offshore is evidence that Kh increases with distance offshore. When scale-dependent mixing beyond 455 m offshore is incorporated into the model, the results are consistent with the observed data for 223Ra, 224Ra, and 228Ra. Using the model, the 228Ra input flux to the summertime mixed layer was between 3.4×106 and 4.0×106 atoms s−1 (m shoreline)−1.  相似文献   

20.
Many lakes in the Tibetan Plateau (TP) experienced dramatic lake level changes in the late Quaternary, as suggested by well-preserved paleo-shorelines up to ∼200 m above present lake levels. These relic shorelines provide direct geomorphic record to reconstruct past lake level fluctuation history and water volume changes, linked closely to variations in paleo-climatic controls including Asian monsoon, westerlies and glacial meltwater. In this study, 27 near-shore sediment samples from three of eight paleo-shorelines at north of Nam Co were dated by Optically Stimulated Luminescence (OSL) technique, using coarse grains of quartz and potassium feldspar.Our results indicate that: 1) S1 is the highest/most developed shoreline (+26 m). Sediment from upper part of S1 has a consistent age of ∼25 ka (nine samples from 3 gullies), suggesting a high lake level of Nam Co occurred around 25 ka. An overflow point west of Nam Co has a close elevation to that of S1 and thus limits the presence of higher lake levels; 2) sediment profile from the slightly lower S2 (+22 m) contains two parts, silty sand (6.9–8.9 ka) at the bottom and shoreline deposits atop (∼2.3 ka), suggesting Nam Co maintained a relative high lake level in the early Holocene and such lake level occurred again at about 3.0–2.0 ka; 3) In contrast to the swift variations of monsoon precipitation and glacial meltwater in the late Quaternary, water level of Nam Co remained relatively stable during the period from ∼25 ka to about early Holocene (from +26 m to +22 m), implying a continuous outflowing stage and lake infill constantly exceeds evaporation; 4) S5 (+11 m) has an age of 0.7–1.4 ka. Nam Co showed a much accelerated pace of shrinkage since about 2.0 ka in the late Holocene in roughly two steps: it dropped from +22 m to +11 m from ∼2.0 ka to 1.4 ka, and subsequently dropped another 11 m after 0.7 ka.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号