首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The solar wind interacts directly with the lunar surface material resulting in an essentially complete absorption of the corpuscles producing no upstream bowshock but a cavity downstream from the Moon. The main source of most neutral species of the atmosphere, except probably40Ar, is the solar-wind interaction products. The other sources which appear to be minor contributors to the atmosphere are the interaction products of cosmic rays, planetary degassing, effects of meteorite impacts and radioactive decays. Most of the hydrogen atoms derived from the solar-wind protons contribute to the atmosphere as hydrogen molecules rather than atoms. Only on the basis of the solar-wind protons, alpha particles and ions of oxygen and carbon, the atmospheric species concentration (cm–3) near the lunar surface at 300K are as follows: H2 3.3 to 9.9 × 103; He 2.4 to 4.7 × 103; H 3.7; OH 0.25; H2O 0.24; and O2, O, CO, CO2 and CH4 in concentrations smaller than H2. Whatever the source, the OH and H2O concentrations in the atmosphere are about the same. The calculated concentrations are in good agreement with the observations by the Apollo 17 lunar surface mass spectrometer and the Apollo 17 orbital UV spectrometer. At the time of sample collection from the Moon, the hydrogen content in the trapped gas layer of the lunar surface material was partly as hydrogen atoms and partly as hydrogen molecules, but at the time of sample analysis hydrogen was mostly in molecular form. The H2O content at the time of sample analysis was only a few parts per million by weight.Paper presented at the Conference on Interactions of the Interplanetary Plasma with the Modern and Ancient Moon, sponsored by the Lunar Science Institute, Houston, Texas and held at the Lake Geneva Campus of George Williams College, Wisconsin, between September 30 and October 4, 1974.  相似文献   

2.
The lunar atmosphere and magnetic field are very tenuous. The solar wind, therefore, interacts directly with the lunar surface material and the dominant nature of interaction is essentially complete absorption of solar-wind particles by the surface material resulting in no upstream bowshock, but a cavity downstream. The solar-wind nitrogen ion species induce and undergo a complex set of reactions with the elements of lunar material and the solar-wind-derived trapped elements. The nitrogen concentration indigeneous to the lunar surface material is practically nil. Therefore any nitrogen and nitrogen compounds found in the lunar surface material are due to the solar-wind implantation of nitrogen ions. The flux of the solar-wind nitrogen ion species is about 6×103 cm–2 s–1. Since there is no evidence for accumulation of nitrogen species in the lunar surface material, the outflux of nitrogen species from the lunar material to the atmosphere is the same as the solar-wind nitrogen ion flux. The species of the outflux are primarily NO and NH3, and their respective concentrations in the near surface lunar atmosphere are found by calculation to be 327 and 295 cm–3. The calculated concentration of NH3 seems to be consistent with the sunrise concentration results of the mass spectrometer implanted on the lunar surface. This is not the case for the concentration of NO. According to the presently calculated concentration value of NO, the mass spectrometer should have detected NO at sunrise, but no report was made for its detection. There is also discrepancy about the concentration of N2 which is explained in this paper. The concentrations of nitrogen species in the lunar material at the time of sample collection on the Moon remained about the same when the samples were analyzed on the Earth. However, no specific experiment was planned to detect the nitrogen species in the lunar material samples.  相似文献   

3.
The solar and galactic cosmic rays interact directly with lunar surface materials, and the dominant nature of interactions is essentially the complete absorption of corpuscles. These corpuscles damage the lattice structure, and induce a complex set of reactions in the materials producing various species. The cosmic ray damage of the lattice would not produce an amorphous layer, similar to that produced by the solar wind, because the solar wind erosion rate is faster than the cosmic ray-induced amorphous layer formation rate. The species formation rate considered in this paper are those produced by protons, the dominant component of cosmic rays. Protons produce H, H2, OH, H2O, and hydrogenated species of carbon, nitrogen, sulfur, etc. These species, while migrating in the material, encounter oncoming cosmic ray corpuscles, and undergo a complex set of reactions. Although a variety of species are produced by protons, the dominant contributor to the atmosphere is H2. The H2 flux (molecules cm–2 sec–1) is about 1.5 × 105 as compared to the H flux of 8.4 × 101 and the H2O flux of 4.6 × 10–2. These fluxes are about 10–3 smaller than the fluxes of the same species produced by the solar wind protons. Thus the contributions of the cosmic ray-induced species to the atmosphere is very small compared to the solar wind-induced species. Although simulated experiments showed high concentractions of OH and H2O in the terrestrial materials of lunar type, these species concentrations in the lunar materials under the lunar environment is much smaller than those observed in the simulated experiments.  相似文献   

4.
Measurements of40Ar and helium made by the Apollo 17 lunar surface mass-spectrometer are used in the synthesis of atmospheric supply and loss mechanisms. The argon data indicate that about 8% of the40Ar produced in the Moon due to decay of40K is released to the atmosphere and subsequently lost. Variability of the atmospheric abundance of argon requires that the source be localized, probably in an unfractionated, partially molten core. If so, the radiogenic helium released with the argon amounts to 10% of the atmospheric helium supply. The total rate of helium escape from the Moon accounts for only 60% of the solar windα particle influx. This seems to require a nonthermal escape mechanism for trapped solar-wind gases, probably involving weathering of exposed soil grain surfaces by solar wind protons.  相似文献   

5.
The principal chemical element composition and inferred mineralogy of the powdered lunar surface material at seven mare and one terra sites on the Moon are compared. The mare compositions are all similar to one another and comparable to those of terrestrial ocean ridge basalts except in having higher titanium and much lower sodium contents than the latter. These analyses suggest that most, if not all, lunar maria have this chemical composition and are derived from rocks with an average density of 3.19 g cm–3. Mare Tranquillitatis differs from the other maria in having twice the titanium content of the others.The chemical composition of the single highland site studied (Surveyor 7) is distinctly different from that of any of the maria in having much lower amounts of titanium and iron and larger amounts of aluminium and calcium. Confirmation of these general characteristics of lunar highland material has come from recent observations by the Apollo 15 Orbiter. The inferred mineralogy is 45 mole percent high anorthite plagioclase and the parent rocks have an estimated density of 2.94 g cm–3. The Surveyor 7 chemical composition is the principal contributor to present estimates of the overall chemical composition of the lunar surface.Presented at the NATO Advanced Study Institute on Lunar Studies, Patras, Greece, September 14–25, 1971. This paper is an expanded and updated version of a paper presented at the Apollo 12 Lunar Science Conference, Houston, Texas, January 11–14, 1971, and published in the Proceedings of this Conference (Turkevich, 1971).  相似文献   

6.
Soil from the scoop of Surveyor 3, returned to Earth by Apollo 12 astronauts, has been tested in a miniature shear box at five bulk densities, from 0.99 to 1.87 g cm–3. Cohesion increased with bulk density from 3 × 10–2 to 3 × 10–1 N cm–2; internal friction angle increased from 13° to 56°. Shear stress vs normal stress data fit a logarithmic relationship better than a linear one, at normal stresses of 3 × 10–3 to 3 x 100 N cm–2. Results of these tests, in air, show no systematic differences from those for tests made elsewhere in vacuum and nitrogen. Results agree with those obtained in remotely controlled lunar surface operations with Surveyor 3 and other spacecraft provided that the bulk density was slightly underestimated for the on-surface measurements.Paper dedicated to Prof. Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.This work represents one phase of research conducted at the Jet Propulsion Laboratory, California Institute of Technology, for the National Aeronautics and Space Administration, under Contract NAS 7-100.  相似文献   

7.
The Apollo 14 Suprathermal Ion Detector Experiment observed a series of bursts of 48.6 eV water vapor ions at the lunar surface during a 14-h period on March 7, 1971. The maximum flux observed was 108 ions cm–2 s–1 sr–1. These ions were also observed at Apollo 12, 183 km to the west. Evaluation of specific artificial sources including the Apollo missions and the Russian Lunokhod leads to the conclusion that the water vapor did not come from a man-made source. Natural sources exogenous to the Moon such as comets and the solar wind are also found to be inadequate to explain the observed fluxes. Consequently, these water vapor ions appear to be of lunar origin.Paper dedicated to Prof. Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.  相似文献   

8.
One of the most exciting recent developments in the field of lunar science has been the unambiguous detection of water (either as OH or H2O) or water ice on the Moon through instruments flown on a number of orbiting spacecraft missions. At the same time, continued laboratory-based investigations of returned lunar samples by Apollo missions using high-precision, low-detection, analytical instruments have for the first time, provided the absolute abundance of water (present mostly as structurally bound OH in mineral phases) in lunar samples. These new results suggest that the Moon is not an anhydrous body, questioning conventional wisdom, and indicating the possibility of a wet lunar interior and the presence of distinct reservoirs of water on the lunar surface. However, not all recent results point to a wet Moon and it appears that the distribution of water on the Moon may be highly heterogeneous. Additionally, a number of sources are likely to have contributed to the water inventory of the Moon ranging from primordial water to meteorite-derived water ice through to the water formed during the reaction of solar-wind hydrogen with the lunar soil. Water on the Moon has implications for future astrobiological investigations as well as for generating resources in situ during future exploration of the Moon and other airless bodies in the Solar System.  相似文献   

9.
Seismic refraction data, obtained at the Apollo 14 and 16 sites, when combined with other lunar seismic data, allow a compressional wave velocity profile of the lunar near-surface and crust to be derived. The regolith, although variable in thickness over the lunar surface, possesses surprisingly similar seismic properties. Underlying the regolith at both the Apollo 14 Fra Mauro site and the Apollo 16 Descartes site is low-velocity brecciated material or impact derived debris. Key features of the lunar seismic velocity profile are: (i) velocity increases from 100–300 m s–1 in the upper 100 m to 4 km s–1 at 5 km depth, (ii) a more gradual increase from 4 km s–1 to 6 km s–1 at 25 km depth, (iii) a discontinuity at a depth of 25 km and (iv) a constant value of 7 km s–1 at depths from 25 km to about 60 km. The exact details of the velocity variation in the upper 5 to 10 km of the Moon cannot yet be resolved but self-compression of rock powders cannot duplicate the observed magnitude of the velocity change and the steep velocity-depth gradient. Other textural or compositional changes must be important in the upper 5 km of the Moon. The only serious candidates for the lower lunar crust are anorthositic or gabbroic rocks.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April, 1973.  相似文献   

10.
Seismic data from the Apollo Passive Seismic Network stations are analyzed to determine the velocity structure and to infer the composition and physical properties of the lunar interior. Data from artificial impacts (S-IVB booster and LM ascent stage) cover a distance range of 70–1100 km. Travel times and amplitudes, as well as theoretical seismograms, are used to derive a velocity model for the outer 150 km of the Moon. TheP wave velocity model confirms our earlier report of a lunar crust in the eastern part of Oceanus Procellarum.The crust is about 60 km thick and may consist of two layers in the mare regions. Possible values for theP-wave velocity in the uppermost mantle are between 7.7 km s–1 and 9.0 km s–1. The 9 km s–1 velocity cannot extend below a depth of about 100 km and must decrease below this depth. The elastic properties of the deep interior as inferred from the seismograms of natural events (meteoroid impacts and moonquakes) occurring at great distance indicate that there is an increase in attenuation and a possible decrease of velocity at depths below about 1000 km. This verifies the high temperatures calculated for the deep lunar interior by thermal history models.Paper presented at the Lunar Science Institute Conference on Geophysical and Geochemical Exploration of the Moon and Planets, January 10–12, 1973.  相似文献   

11.
We report new nitrogen and argon isotope and abundance results for single breccia clasts and agglutinates from four different sections of the Luna 24 drill core in order to re-evaluate the provenance of N trapped in lunar regolith, and to place limits on the flux of planetary material to the Moon’s surface. Single Luna 24 grains with 40Ar/36Ar ratios <1 show δ15N values between ?54.5‰ and +123.3‰ relative to terrestrial atmosphere. Thus, low-antiquity lunar soils record both positive and negative δ15N signatures, and the secular increase of the δ15N value previously postulated by Kerridge (Kerridge, J.F. [1975]. Science 188(4184), 162–164. doi:10.1126/science.188.4184.162) is no longer apparent when the Luna and Apollo data are combined. Instead, the N isotope signatures, corrected for cosmogenic 15N, are consistent with binary mixing between isotopically light solar wind (SW) N and a planetary N component with a δ15N value of +100‰ to +160‰. The lower δ15N values of Luna 24 grains compared to Apollo samples reflect a higher relative proportion of solar N, resulting from the higher SW fluence in the region of Mare Crisium compared to the central near side of the Moon. Carbonaceous chondrite-like micro-impactors match well the required isotope characteristics of the non-solar N component trapped in low-antiquity lunar regolith. In contrast, a possible cometary contribution to the non-solar N flux is constrained to be ?3–13%. Based on the mixing ratio of SW to planetary N obtained for recently exposed lunar soils, we estimate the flux of micro-impactors to be (2.2–5.7) × 103 tons yr?1 at the surface of the Moon. Our estimate for Luna 24 agrees well with that for young Apollo regolith, indicating that the supply of planetary material does not depend on lunar location. Thus, the continuous influx of water-bearing cosmic dust may have represented an important source of water for the lunar surface over the past ~1 Ga, provided that water removal rates (i.e., by meteorite impacts, photodissociation, and sputtering) do not exceed accumulation rates.  相似文献   

12.
Bearing load vs penetration curves have been measured on a 1.3 g sample of lunar soil from the scoop of the Surveyor 3 soil mechanics surface sampler, using a circular indentor 2 mm in diameter. Measurements were made in an Earth laboratory, in air. This sample provided a unique opportunity to evaluate earlier, remotely controlled, in-situ measurements of lunar surface bearing properties. Bearing capacity, measured at a penetration equal to the indentor diameter, varied from 0.02–0.04 N cm–2 at bulk densities of 1.15 g cm–3 to 30-100 N cm–2 at 1.9 g cm–3. Deformation was by compression directly below the indentor at bulk densities below 1.61 g cm–3, by outward displacement at bulk densities over 1.62 g cm–3. Preliminary comparison of in-situ remote measurements with those on returned material indicates good agreement if the lunar regolith at Surveyor 3 has a bulk density of 1.6 g cm–3 at 2.5 cm. depth; definitive comparison awaits both better data on bulk density of the undisturbed lunar soil and additional mechanical-property measurements on returned material.  相似文献   

13.
We report on the detection of H2 as seen in our analysis of twilight observations of the lunar atmosphere observed by the LAMP instrument aboard NASA’s Lunar Reconnaissance Orbiter. Using a large amount of data collected on the lunar atmosphere between September 2009 and March 2013, we have detected and identified, the presence of H2 in the native lunar atmosphere, for the first time. We derive a surface density for H2 of 1.2 ± 0.4 × 103 cm−3 at 120 K. This is about 10 times smaller than originally predicted, and several times smaller than previous upper limits from the Apollo era data.  相似文献   

14.
Measurements are reported of particle-track densities in 100–200µ crystalline grains taken from one level of the soil column returned from the lunar highlands between Mare Fecunditatis and Mare Crisium by Luna 20 and from two levels in that from Mare Fecunditatis by Luna 16. Ninety-three percent of the grains from Luna 16 have very high densities, > 108 cm–2 and the lower-track density grains are all in the deeper soil level. In contrast, most Luna 20 grains show densities < 108 cm–2. Track density gradients and exposure times have been measured for six Luna 16 grains with a wide spread in absolute track densities. The more extensive track counts in crystals strengthens our earlier conclusion that the Luna 16 soil has received long irradiations very close to the surface. Two possible histories are that the highly irradiated soil blanket at the Luna 16 site is either well mixed and thin, or else has accumulated by transport from surrounding higher regions. The single sample of doubtful depth from Luna 20 shows a much lesser near-surface irradiation, giving results similar to those on the Apollo 12 core and the 54–80 depth sample from the Apollo 15 deep core.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April, 1973.  相似文献   

15.
An empirically derived lunar gravity field   总被引:1,自引:0,他引:1  
The heat-flow experiment is one of the Apollo Lunar Surface Experiment Package (ALSEP) instruments that was emplaced on the lunar surface on Apollo 15. This experiment is designed to make temperature and thermal property measurements in the lunar subsurface so as to determine the rate of heat loss from the lunar interior through the surface. About 45 days (1 1/2 lunations) of data has been analyzed in a preliminary way. This analysis indicates that the vertical heat flow through the regolith at one probe site is 3.3 × 10–6 W/cm2 (±15%). This value is approximately one-half the Earth's average heat flow. Further analysis of data over several lunations is required to demonstrate that this value is representative of the heat flow at the Hadley Rille site. The mean subsurface temperature at a depth of 1 m is approximately 252.4K at one probe site and 250.7K at the other. These temperatures are approximately 35K above the mean surface temperature and indicate that conductivity in the surficial layer of the Moon is highly temperature dependent. Between 1 and 1.5m, the rate of temperature increase as a function of depth is 1.75K/m (±2%) at the probe 1 site. In situ measurements indicate that the thermal conductivity of the regolith increases with depth. Thermal-conductivity values between 1.4 × 10–4 and 2.5 × 10–4 W/cm K were determined; these values are a factor of 7 to 10 greater than the values of the surface conductivity. If the observed heat flow at Hadley Base is representative of the moonwide rate of heat loss (an assumption which is not fully justified at this time), it would imply that overall radioactive heat production in the Moon is greater than in classes of meteorites that have formed the basis of Earth and Moon bulk composition models in the past.Lamont-Doherty Geological Observatory Contribution Number 1800.  相似文献   

16.
The depth variations of the fossil cosmic ray tracks and agglutinates have been examined in the (0.6–0.7)m deep Apollo 12 and 16 drive cores, in the 2.4 m Apollo 15 deep drill core and in a 0.6 m long section of the Apollo 17 deep drill core. These data indicate Moon-wide short duration episodes of impacts of meteorites of size 10 cm–1m on the lunar surface. Based on the longest continuous Apollo 15 deep drill core record, these impact episodes occurred about 150, 400 and 700 m.y. ago. The enhancements in the meteorite flux may be due to solar dynamical processes or they may be related to excursions of the solar system, once in each orbit, through a certain dusty region of the galaxy.Paper dedicated to Professor Hannes Alfvén on the occasion of his 70th birthday, 30 May 1978.  相似文献   

17.
Paleocratering of the Moon: Review of post-Apollo data   总被引:1,自引:0,他引:1  
As a result of the dating of lunar samples, we are in a position to utilize the lunar surface as a recorder of environmental conditions in the Earth-Moon neighborhood in the past. Plots of crater density vs rock age at different lunar landing sites can be used to date unexplored lunar provinces. These plots also demonstrate evolution in the population of planetesimals that struck the Moon. Prior to 4.1 aeons ago, the cratering rate on the Moon was at least 103 times the present rate, and the rate declined with a half-life less than 8×107 yr. During the interval from 4.1 to 3.2 aeons ago, the number of planetesimals showed an exponential decay with a half-life about 3×108 yr, corresponding to sweep-up of particles from solar orbits somewhat similar to those of Apollo asteroids. A more nearly constant cratering rate applied in the last three aeons. These data indicate that the Moon displays at least the final stages of an ancient accretion process; they also set certain conditions on possible capture processes relating to the Moon's origin. Pre-Apollo expectations that the Moon would provide a Rosetta Stone for interpreting solar system history and planet formation thus appear justified.Paper given at Philadelphia meeting of American Association for Advancement of Science, December, 1971.  相似文献   

18.
There is good evidence for the existence of very small amounts of methane, ammonia and carbon dioxide in the very tenuous lunar atmosphere which consists primarily of the rare gases helium, neon and argon. All of these gases, except40Ar, originate from solar wind particles which impinge on the lunar surface and are imbedded in the surface material. Here they may form molecules before being released into the atmosphere, or may be released directly, as is the case for rare gases. Evidence for the existence of the molecular gas species is based on the pre-dawn enhancement of the mass peaks attributable to these compounds in the data from the Apollo 17 Lunar Mass Spectrometer. Methane is the most abundant molecular gas but its concentration is exceedingly low, 1 × 103 mol cm?3, slightly less than36Ar, whereas the solar wind flux of carbon is approximately 2000 times that of36Ar. Several reasons are advanced for the very low concentration of methane in the lunar atmosphere.  相似文献   

19.
Wenzhe Fa 《Icarus》2007,190(1):15-23
3He (helium-3) in the lunar regolith implanted by the solar wind is one of the most valuable resources because of its potential as a fusion fuel. The abundance of 3He in the lunar regolith is related to solar wind flux, lunar surface maturity and TiO2 content, etc. A model of solar wind flux, which takes account of variations due to shielding of the nearside when the Moon is in the Earth's magnetotail, is used to present a global distribution of relative solar wind flux over the lunar surface. Using Clementine UV/VIS multispectral data, the global distribution of lunar surface optical maturity (OMAT) and the TiO2 content in the lunar regolith are calculated. Based on Apollo regolith samples, a linear relation between 3He abundance and normalized solar wind flux, optical maturity, and TiO2 content is presented. To simulate the brightness temperature of the lunar surface, which is the mission of the Chinese Chang-E project's multichannel radiometers, a global distribution of regolith layer thickness is first empirically constructed from lunar digital elevation mapping (DEM). Then an inversion approach is presented to retrieve the global regolith layer thickness. It finally yields the total amount of 3He per unit area in the lunar regolith layer, which is related to the regolith layer thickness, solar wind flux, optical maturity and TiO2 content, etc. The global inventory of 3He is estimated as 6.50×108 kg, where 3.72×108 kg is for the lunar nearside and 2.78×108 kg is for the lunar farside.  相似文献   

20.
This paper presents a review of research findings on the various forms of water on the Moon. First, this is the water of the Moon’s interior, which has been detected by sensitive mass spectrometric analysis of basaltic glasses delivered by the Apollo 15 and Apollo 17 missions. The previous concepts that lunar magmas are completely dehydrated have been disproved. Second, this is H2O and/or OH in a thin layer (a few upper millimeters) of the lunar regolith, which is likely a result of bombardment of the oxygen contained in the lunar regolith with solar wind protons. This form of water is highly unstable and quite easily escapes from the surface, possibly being one of the sources of the water ice reservoirs at the Moon’s poles. Third, this is water ice associated with other frozen gases in cold traps at the lunar poles. Its possible sources are impacts of comets and meteorites, the release of gas from the Moon’s interior, and solar wind protons. The ice trapped at the lunar polars could be of practical interest for further exploration of the Moon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号