共查询到20条相似文献,搜索用时 15 毫秒
1.
AbstractIn the Radicondoli–Travale area of the Larderello geothermal field (Italy) new structural and petrologic data on some metamorphic units, cored from geothermal wells, reveal the existence of a wide complex of hornfels rocks. The development of the complex is related to the emplacement of Neogene magmatic rocks at a shallow depth within a Permo–Triassic terrigenous metasedimentary sequence of a low metamorphic grade. The sequence was subjected to alpine tectonic-metamorphic events. This reconstruction gives new insights in the tectonic setting of metamorphic units below the Tuscan Nappe, in southern Tuscany. Particularly, the medium and high grade metamorphic rocks seem strictly related to the development of Neogene thermal aureoles and do not represent remnants of a Paleozoic basement. Furthermore, in this sector of the Larderello geothermal system, the presence of deep geothermal reservoir at a depth of 3 000 m is mainly linked to the enhanced permeability caused by fracturing in these hornfels rocks. This fracturing is a consequence of the dehydration reaction occurring in the metapelites due to Neogene thermal metamorphism. This mechanism allowed the development of a long-lived hydrothermal system, shown by the secondary mineralogical assemblages. These testify the presence of at least two hydrothermal stages which are well preserved in the less permeable units. © 2000 Editions scientifiques et médicales Elsevier SAS 相似文献
2.
Comparison of numerical models of two debris flows in the Cortina d’ Ampezzo area,Dolomites, Italy 总被引:2,自引:0,他引:2
The accurate prediction of runout distances, velocities and the knowledge of flow rheology can reduce the casualties and property
damage produced by debris flows, providing a means to delineate hazard areas, to estimate hazard intensities for input into
risk studies and to provide parameters for the design of protective measures. The application of most of models that describe
the propagation and deposition of debris flow requires detailed topography, rheological and hydrological data that are not
always available for the debris-flow hazard delineation and estimation. In the Cortina d’Ampezzo area, Eastern Dolomites,
Italy, most of the slope instabilities are represented by debris flows; 325 debris-flow prone watersheds have been mapped
in the geomorphological hazard map of this area. We compared the results of simulations of two well-documented debris flows
in the Cortina d’Ampezzo area, carried on with two different single-phase, non-Newtonian models, the one-dimensional DAN-W
and the two-dimensional FLO-2D, to test the possibility to simulate the dynamic behaviour of a debris flow with a model using
a limited range of input parameters. FLO-2D model creates a more accurate representation of the hazard area in terms of flooded
area, but the results in terms of runout distances and deposits thickness are similar to DAN-W results. Using DAN-W, the most
appropriate rheology to describe the debris-flow behaviour is the Voellmy model. When detailed topographical, rheological
and hydrological data are not available, DAN-W, which requires less detailed data, is a valuable tool to predict debris-flow
hazard. Parameters obtained through back-analysis with both models can be applied to predict hazard in other areas characterized
by similar geology, morphology and climate. 相似文献
3.
Andrea Festa Kei Ogata Gian Andrea Pini Yildirim Dilek Giulia Codegone 《International Geology Review》2015,57(5-8):540-562
In the Northern Apennines of Italy, mud-rich olistostromes (sedimentary mélanges) occur at different stratigraphic levels within the late Oligocene–early Miocene sedimentary record of episutural/wedge-top basins. They are widely distributed along the exhumed outer part of the Ligurian accretionary complex, atop the outer Apenninic prowedge, over an area about 300 km long and 10–15 km wide. Olistostromes represent excellent examples of ancient submarine mass-transport complexes (MTCs), consisting of stacked cohesive debris flows that can be directly compared to some of those observed in modern accretionary wedges. We describe the internal arrangement of olistostrome occurrences in the sector between Voghera and the Monferrato area, analysing their relationships with mesoscale liquefaction features, which are commonly difficult to observe in modern MTCs. Slope failures occurred in isolated sectors along the wedge front, where out-of-sequence thrusting, seismicity, and different pulses of overpressured tectonically induced fluid flows acted concomitantly. Referring to the Northern Apennines regional geology, we also point out a gradual lateral rejuvenation (from late Oligocene to early Miocene) toward the SE and an increasing size and thickness of the olistostromes along the strike of the frontal Apenninic prowedge. This suggests that morphological reshaping of the outer prowedge via mass-transport processes balanced, with different pulses over a short time span, the southeastward migration and segmentation of accretionary processes. The latter were probably favoured by the occurrence in the northwestern part of the Northern Apennines of major, inherited palaeogeographic features controlling the northward propagation of the prowedge. Detailed knowledge of olistostromes, as ancient examples of MTCs related to syn-sedimentary tectonics and shale diapirism, and of their lateral variations in term of age and size, provides useful information in regard to better understanding of both the tectono-stratigraphic evolution of the Apenninic prowedge and the submarine slope failures in modern accretionary wedges. 相似文献
4.
《Geodinamica Acta》2000,13(6):345-366
In the Radicondoli–Travale area of the Larderello geothermal field (Italy) new structural and petrologic data on some metamorphic units, cored from geothermal wells, reveal the existence of a wide complex of hornfels rocks. The development of the complex is related to the emplacement of Neogene magmatic rocks at a shallow depth within a Permo–Triassic terrigenous metasedimentary sequence of a low metamorphic grade. The sequence was subjected to alpine tectonic-metamorphic events. This reconstruction gives new insights in the tectonic setting of metamorphic units below the Tuscan Nappe, in southern Tuscany. Particularly, the medium and high grade metamorphic rocks seem strictly related to the development of Neogene thermal aureoles and do not represent remnants of a Paleozoic basement. Furthermore, in this sector of the Larderello geothermal system, the presence of deep geothermal reservoir at a depth of 3 000 m is mainly linked to the enhanced permeability caused by fracturing in these hornfels rocks. This fracturing is a consequence of the dehydration reaction occurring in the metapelites due to Neogene thermal metamorphism. This mechanism allowed the development of a long-lived hydrothermal system, shown by the secondary mineralogical assemblages. These testify the presence of at least two hydrothermal stages which are well preserved in the less permeable units. 相似文献
5.
The early Paleozoic tectonic evolution of the Xing'an-Mongolian Orogenic Belt is dominated by two oceanic basins on the northwestern and southeastern sides of the Xing'an Block,i.e.,the Xinlin-Xiguitu Ocean and the Nenjiang Ocean.However,the early development of the Nenjiang Ocean remains unclear.Here,we present zircon U-Pb geochronology and whole-rock elemental and Sr-Nd isotopic data on the gabbros in the Xinglong area together with andesitic tuffs and basalts in the Duobaoshan area.LA-ICP-MS zircon U-Pb dating of gabbros and andesitic tuffs yielded crystallization ages of 443-436 Ma and 452-451 Ma,respectively.The Early Silurian Xinglong gabbros show calc-alkaline and E-MORB affinities but they are enriched in LILEs,and depleted in HFSEs,with relatively low U/Th ratios of 0.18-0.36 andεNd(t)values of-1.6 to+0.5.These geochemical features suggest that the gabbros might originate from a mantle wedge modified by pelagic sediment-derived melts,consistent with a back-arc basin setting.By contrast,the andesitic tuffs are characterized by high MgO(>5 wt.%),Cr(138-200 ppm),and Ni(65-110 ppm)contents,and can be termed as high-Mg andesites.Their low Sr/Y ratios of 15.98-17.15 and U/Th values of 0.24-0.25 and moderate(La/Sm)_n values of 3.07-3.26 are similar to those from the Setouchi Volcanic Belt(SW Japan),and are thought to be derived from partial melting of subducted sediments,and subsequent melt-mantle interaction.The Duobaoshan basalts have high Nb(8.44-10.30 ppm)and TiO2 contents(1.17-1.60 wt.%),typical of Nb-enriched basalts.They are slightly younger than regional adakitic rocks and have positiveεNd(t)values of+5.2 to+5.7 and are interpreted to be generated by partial melting of a depleted mantle source metasomatized by earlier adakitic melts.Synthesized with coeval arc-related igneous rocks from the southeastern Xing'an Block,we propose that the Duobaoshan high-Mg andesitic tuffs and Nbenriched basalts are parts of the Late Ordovician and Silurian Sonid Zuoqi-Duobaoshan arc belt,and they were formed by the northwestern subduction of the Nenjiang Ocean.Such a subduction beneath the integrated Xing'an-Erguna Block also gave rise to the East Ujimqin-Xinglong igneous belt in a continental back-arc basin setting.Our new data support an early Paleozoic arc-back-arc model in the northern Great Xing'an Range. 相似文献
6.
Stefano Conti Daniela Fontana Claudio Corrado Lucente Gian Andrea Pini 《International Journal of Earth Sciences》2014,103(1):281-295
The Montardone mélange (Mm) is a chaotic, block-in-matrix unit outcropping in the Montebaranzone syncline in the northern Apennines. The Mm occurs in the uppermost part of the Termina Fm, the Middle–Late Miocene interval of a succession deposited in a wedge-top slope basin (Epiligurian succession). The Mm is closely associated with bodies of authigenic carbonates, characterized by negative values of δ13C (from ?18.22 to ?39.05 ‰ PDB) and chemosynthetic benthic fauna (lucinid and vesicomyid bivalves). In this paper, we propose that the Mm is a mud volcano originated by the post-depositional reactivation and rising of a stratigraphically lower mud-rich mass transport body (Canossa–Val Tiepido sedimentary mélange or olistostrome) triggered by fluid overpressure. We base our conclusion on (1) the Mm pierces the entire Termina Fm and older Epiligurian units and represents the direct continuation of the underlying Canossa–Val Tiepido mélange; (2) the geometry and facies distribution of the Montebaranzone sandstone body, which are compatible with a confined basin controlled by the rising of the Mm; (3) the systematic presence of large-scale (lateral extension 300–400 m) seep-carbonates associated with the mélange, suggesting a persistent gas-enriched fluid vent from the ascending overpressured mud; (4) blocks and clasts sourced from the Mm, hosted by the authigenic carbonates, conveyed by ascending mud and gas-enriched fluids. The Mm represents one of the few fossil examples of reactivation of a basin-scale sedimentary mélange (olistostrome); a three-stage model showing mechanisms of Mm raising is proposed. 相似文献
7.
Zentilli Marcos Maksaev Victor Boric Ricardo Wilson Jessica 《International Journal of Earth Sciences》2018,107(3):1097-1126
International Journal of Earth Sciences - The MMH porphyry type copper–molybdenum deposit in northern Chile is the newest mine in the Chuquicamata District, one of largest copper... 相似文献
8.
The Marnoso‐arenacea Formation in the Italian Apennines is the only ancient rock sequence where individual submarine sediment density flow deposits have been mapped out in detail for over 100 km. Bed correlations provide new insight into how submarine flows deposit sand, because bed architecture and sandstone shape provide an independent test of depositional process models. This test is important because it can be difficult or impossible to infer depositional process unambiguously from characteristics seen at just one outcrop, especially for massive clean‐sandstone intervals whose origin has been controversial. Beds have three different types of geometries (facies tracts) in downflow oriented transects. Facies tracts 1 and 2 contain clean graded and ungraded massive sandstone deposited incrementally by turbidity currents, and these intervals taper relatively gradually downflow. Mud‐rich sand deposited by cohesive debris flow occurs in the distal part of Facies tract 2. Facies tract 3 contains clean sandstone with a distinctive swirly fabric formed by patches of coarser and better‐sorted grains that most likely records pervasive liquefaction. This type of clean sandstone can extend for up to 30 km before pinching out relatively abruptly. This abrupt pinch out suggests that this clean sand was deposited by debris flow. In some beds there are downflow transitions from turbidite sandstone into clean debrite sandstone, suggesting that debris flows formed by transformation from high‐density turbidity currents. However, outsize clasts in one particular debrite are too large and dense to have been carried by an initial turbidity current, suggesting that this debris flow ran out for at least 15 km. Field data indicate that liquefied debris flows can sometimes deposit clean sand over large (10 to 30 km) expanses of sea floor, and that these clean debrite sand layers can terminate abruptly. 相似文献
9.
The Northern Tyrrhenian Sea is located on the collisional zone between the Alpine Corsica and the Northern Apennines and is a key area for gaining a better understanding of the complex relationships between these two systems. The knowledge of the wide offshore part of this zone, located between Corsica (France) and mainland Italy, is based primarily on the analysis of several seismic profiles tied to the outcropping geology and unpublished preliminary reports of few offshore wells. The here presented study of two offshore wells provides a revision of the sedimentology, biostratigraphy and petrography of the thick, mainly siliciclastic, Tertiary successions (about 3,600 m) composing the Elba–Pianosa Ridge (EPR), a structural/morphological high separating the Tuscan Shelf to the east from the Corsica Basin to the west. A comparison with similar deposits cropping out in the surrounding onshore areas (Northern Apennines, Corsica, Tuscan Archipelago, Piedmont Tertiary Basin) provides additional constraints for refinement of the complex geodynamic and regional setting in which the EPR evolved. 相似文献
10.
Cenozoic marine strata occur in the western, eastern, and central parts of the North Patagonian Andes between ∼43°S and 44°S. Correlation of these deposits is difficult because they occur in small and discontinuous outcrops and their ages are uncertain. In order to better understand the age and sedimentary environment of these strata, we combined U–Pb (LA-MC-ICPMS) geochronology on detrital zircons with sedimentologic and paleontologic (foraminifers and molluscs) studies. Sedimentologic analyses suggest that the Puduhuapi Formation on the western flank of the Andean Cordillera was deposited in a deep-marine setting, the Vargas Formation in the central part of the Andes was deposited at outer-neritic or bathyal depths, and the La Cascada Formation on the eastern flank of the range was deposited in a shallow-marine environment. Geochronologic and paleontologic results indicate that the three marine units were deposited during the late Oligocene-early Miocene interval, although it is not clear whether this occurred during one or more marine incursions in the area. The alluvial(?) conglomeratic deposits of the La Junta Formation, exposed in the proximity of the Vargas Formation outcrops, have a maximum depositional age of ∼26 Ma and could have been deposited during the initial stage of subsidence that affected this region prior to the marine transgression over this area. The occurrence of both Pacific and Atlantic molluscan taxa in the La Cascada and Vargas formations suggests that a marine strait connected both oceans during the accumulation of these units. The new data on the age of the Puduhuapi, Vargas, and La Cascada formations indicate that these units may correlate with lower Miocene marine deposits in the forearc of central and southern Chile (Navidad Formation and equivalent units) and on the eastern flank of the Patagonian Andes (Río Foyel Formation and equivalent units). A late Oligocene−early Miocene age for these marine deposits is a reliable maximum age for the deformation and uplift of the North Patagonian Andes. 相似文献
11.
Peng-Chuan Li Shi-Chao Li Qing-Ying Zhao Qiang Shi Chang-Hai Li 《International Geology Review》2019,61(1):1-16
Northeast (NE) China is characterized by large areas of Mesozoic and Paleozoic granitoids, whereas Cenozoic granitoids are scarce. This paper reports LA-ICP-MS zircon U–Pb ages and whole-rock geochemical data for late Paleocene–early Eocene granitoids from the Jiamusi Massif, NE China, in order to determine their petrogenesis and tectonic implications. Geochronological data indicate that the granodiorite and dioritic porphyry from the Wudingshan pluton formed at 51.5 ± 0.3 Ma and 56.3 ± 0.8 Ma, respectively. The biotite–quartz diorite, biotite granodiorite, and dioritic porphyry have high SiO2 (68.38–70.06 wt.%), Al2O3 (15.34–15.79 wt.%), and Na2O (3.96–4.49 wt.%) contents, low MgO contents (1.10–1.26 wt.%), A/CNK ratios of 0.99–1.11, and are classified as medium- to high-K calc-alkaline and weakly peraluminous I-type granitoids. They are enriched in LREEs and LILEs, and depleted in HFSEs, with Nb/Ta ratios of 10.4–15.0. Moreover, they have negative Nb–Ta–Ti anomalies, indicating that they were derived from continental crust. Combining with the previously published isotopic data and regional geological results, we suggest that the late Paleocene–early Eocene granitoids (56–52 Ma) were probably derived from partial melting of juvenile lower crust, and formed in an active continental margin setting, possibly related to subduction slab rollback of the Paleo-Pacific Plate. 相似文献
12.
13.
Palaeotemperatures during the late Barremian–early Aptian (Early Cretaceous) on the Russian Platform have been determined on the basis of oxygen isotope analysis of aragonitic bivalve molluscan and ammonoid shells and belemnite rostra with well-preserved microstructure from the Ulyanovsk area. Those obtained from the planispiral and heteromorph ammonoid shells from the lower Aptian Volgensis–Schilovkensis, Deshayesi–Tuberculatum, and Deshayesi–Renauxianum zones range from 26.7 to 33.2 °C, from 29.2 to 33.1 °C, and from 27.0 to 29.5 °C, respectively. A heteromorph Helicancylus? cf. philadelphius shell from the uppermost lower Aptian Bowerbanki Zone was secreted in highest temperature conditions (32.8–35.2 °C). In contrast, upper Barremian molluscs (bivalve Cyprina sp. and belemnite Oxyteuthis sp.) of the Ulyanovsk area show significantly lower palaeotemperatures: 16.9–18.5 °C and 7.9–17.8 °C, respectively, which is in accordance with known palaeogeographic and palaeobotanical evidences, showing that a distinct climatic optimum seems to have occurred during the late early Aptian, when warm Tethyan water penetrated into the basin. Marked changes in calculated growth temperatures for investigated molluscs from the Russian Platform were most likely connected with both the general warming trend during the late Barremian–early Aptian and local palaeonvironmental conditions. New data from the Bowerbanki Zone of the Russian Platform provide evidence on existence of the positive carbon isotope anomaly (2.4–6‰) at the end of the lower Aptian. There were apparently the three positive C-isotope anomalies during the late Barremian–early Aptian. The onset of mid early Aptian Oceanic Anoxic Event (OAE) 1a seems to coincide with both the beginning of significant warm conditions (followed by short-term cooling) and the abrupt decline in heavy carbon isotope concentrations in marine carbonates, which partly were the likely consequences of the intensive release of CO2 (biased by volcanic activity) and/or dissociation of methane gas hydrate. 相似文献
14.
《Tectonophysics》2001,330(1-2):25-43
A detailed gravimetric study has been integrated with the most recent stratigraphic data in the area comprised between the Arno river and the foothills of the Northern Apennines, in northern Tuscany (central Italy). A Plio–Pleistocene basin lies in this area; its sedimentary succession can be subdivided from the bottom, in five allostratigraphic units: (1) Lower–Middle Pliocene shallow marine deposits; (2) Late Pliocene (?)–Early Pleistocene fluvio-lacustrine deposits; (3) late–Early Pleistocene–Middle Pleistocene alluvial to fluvial red conglomerates (Montecarlo Formation); (4) Middle Pleistocene alluvial to fluvial red conglomerates (Cerbaie and Casa Poggio ai Lecci Formations); (5) alluvial to fluvial deposits of Late Pleistocene age. The Bouguer anomaly map displays a strong minimum in the northeastern sector of the basin, and a gentle gradient from west to east. The map of the horizontal gradients permits to recognise three major fault zones, two of which along the southwestern and northeastern margins of the basin, and one along the southeastern edge of the Pisani Mountains. A 2.5D gravimetric modelling along a SW–NE section across the basin displays a thick wedge of sediments of density 2.25 g/cm3 (about 1700 m in the depocenter) overlying a layer of density 2.55 g/cm3, 1000 m thick, which rests on a basement of 2.72 g/cm3. The most of the sediment wedge is here referred to Upper Pliocene (?)–Lower Pleistocene, because borehole data show Pliocene marine deposits thinning northward close to the southern margin of the area. The layer below is referred to Ligurids and upper Tuscan Nappe units; the densest layer is interpreted as composed of Triassic evaporites, quartzites and Palaeozoic basement. According to Carmignani low-angle extensional tectonics began between Serravallian and early Messinian, thinning the Apennine nappe stack. At the end of Middle Pliocene, syn-rift deposition ceased in the Viareggio Basin (west of the investigated area) as demonstrated by Argnani and co-workers, and high-angle extensional tectonics migrated eastward up to the Monte Albano Ridge. A syn-rift continental sedimentary wedge developed in Late Pliocene–Early Pleistocene, until its hanging wall block was dismembered, during late Early Pleistocene, by NE-dipping faults, causing the uplift of its western portion (the Pisani Mountains). This breakup caused exhumation and erosion of Triassic units whose clastics where shed into the surrounding palaeo-Arno Valley in alluvial–fluvial deposits unconformably overlying the Lower Pleistocene syn-rift deposits. In the late Pleistocene SW–NE-trending fault systems created the steep southeastern edge of the Pisani Mountains and the resulting throw is recorded in Middle Pleistocene deposits across the present Arno Valley. This tectonic phase probably continues at present, offshore Livorno, as evidenced by the epicentres of earthquakes. 相似文献
15.
Gabriele Cruciani Marcello Franceschelli Giovanni Musumeci Maria Elena Spano Massimo Tiepolo 《International Journal of Earth Sciences》2013,102(8):2077-2096
In the external units of the Sardinian Variscides Nappe Zone, volcanic and volcanoclastic successions of Middle Ordovician age follow Lower Paleozoic calc-alkaline magmatism developed at the northern Gondwana margin. We present geochemical and zircon U–Pb isotopic data for the Truzzulla Formation, a low-to-medium-grade metamorphic volcanic–volcanoclastic succession belonging to the Monte Grighini Unit, the deepest unit in the Nappe Zone. Geochemical and radiometric data allow us to define a Late Ordovician (Katian) magmatic (volcanic) event of calc-alkaline affinity. These new data, in conjunction with previously published data, indicate that in the Sardinian Variscides, the age of Lower Paleozoic Andean-type calc-alkaline magmatism spans from Middle to Late Ordovician. Moreover, the age distribution of calc-alkaline volcanics and volcanoclastic rocks in the Nappe Zone is consistent with a diachronous development of Middle–Late Ordovician Andean-type magmatic arc through the portion of the northern Gondwanian margin now represented by the Sardinian Variscides. This reconstruction of the Sardinian Variscides reflects the complex magmatic and tectonic evolution of the northern margin of Gondwana in the Lower Paleozoic. 相似文献
16.
Thomas Heymes Patrick Monié Nicolas Arnaud Arnaud Pêcher Jean-Pierre Bouillin Roberto Compagnoni 《Lithos》2010,114(3-4):451-472
This study provides new 40Ar/39Ar geochronological constraints on the age of the Alpine tectonics in the Aspromonte Massif (southern part of the Calabrian–Peloritan belt). This massif exposes the upper units of the Calabride Complex which originated from the European continental margin. The Calabride Complex was incorporated in the Alpine orogenic wedge and then integrated into the Apennines and Maghrebides fold-and-thrust belts. Throughout the Calabride Complex there is evidence for a two stage tectonic history, which remains however rather poorly dated: Alpine nappe stacking is followed by extensional reworking along the former thrust contacts or along new detachment surfaces. Our new ages suggest that exhumation of the uppermost units, which accompanied nappe stacking, probably started at 45 Ma and that the deepest units were almost completely exhumed at 33 Ma. This kinematics probably corresponds to syn-orogenic extension while the end of exhumation is clearly related to the extensional tectonics dated at 28.6 Ma along detachment structures.Our geochronological data reveal a very short lag time between accretional and extensional processes in this part of the Mediterranean Alpine orogenic belt. The direction of extension, when the units are restored to their initial position (i.e. before the opening of the Western Mediterranean basins and the bending of the arc) is NNE–SSW. Such a direction does not fit with the eastward slab-retreat model generally put forward to explain extension in the Western Mediterranean. In contrast, we provide evidence for roughly N–S middle Oligocene extension in the accretionary prism, not previously described in this part of the Mediterranean domain. 相似文献
17.
18.
This study describes the stratigraphic and palaeoenvironmental significance of the Lower-“middle” Oligocene sediments based on the fauna from the Delikarkas? Formation and the microflora from the ?ncesu Formation of the ?ncesu area (northern part of the western Taurides, Isparta province, Turkey). In the area, the Oligocene sediments show a regressive succession, which begins with the limestones of the Delikarkas? Formation indicating marine conditions followed by conglomerates, sandstones and coaly mudstones of alluvial and fluvial (shallow marine-continental) origin. A well preserved foraminiferal assemblage including Nummulites intermedius, Nummulites vascus and Halkyardia maxima proves an Early Oligocene age for the Delikarkas? Formation. Due to palynological markers such as Boehlensipollis hohli, Slowakipollis hippophaëoides, Dicolpopollis kockelii, Magnolipollis neogenicus ssp. minor, Plicapollis pseudoexcelsus, Caryapollenites simplex and Intratriporopollenites instructus the ?ncesu Formation, which concordantly rests on the Delikarkas? Formation, may be assigned to the Early-“middle” Oligocene. From the palynomorph assemblage, three zones have been recognised according to abundance of species. Zone 1 is characterized by predominance of C. simplex and Momipites punctatus and rarely presence of tricolpate and tricolporate pollen. Zone 2 consists mainly of Inaperturopollenites dubius, Leiotriletes maxoides ssp. maximus, Verrucatosporites favus, Verrucatosporites alienus and infrequently marine dinoflagellate cysts. Zone 3 is characterized by a high percentage of ferns such as Echinatisporis?chattensis and Polypodiaceoisporites saxonicus. The presence of marine dinoflagellate cysts like Apectodinium sp. and Cleistosphaeridium sp., back-mangrove elements such as Acrostichum aureum and lepidocaryoid palms (e.g. Longapertites discordis, Longapertites punctatus and Longapertites psilatus) in the sediments of the ?ncesu Formation imply coastal or near-coastal conditions. Terrestrial palynomorphs in more inland settings were transported by running water towards the sea. Conifers are represented by poorly preserved and rare pollen grains of Pityosporites, Cathayapollis and Piceapollis which may have been transported by wind. In this study, the terrestrial climate of the ?ncesu Formation is also discussed on the basis of the Coexistence Approach method. The climate was warm at the coast (over 20 °C), as evidenced by A. aureum and lepidocaryoid palms, whereas there was a mean annual temperature of 17.2–17.4 °C must be assumed for the upland environment(s). 相似文献
19.
Shahrouz Babazadeh Michael Bröcker Massimo D’Antonio John Cottle Thorsten Gebbing 《International Geology Review》2017,59(12):1590-1608
The south Ardestan plutonic rocks constitute major outcrops in the central part of Iran’s Cenozoic magmatic belt and encompass a wide compositional spectrum from gabbro to granodiorite. U–Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) dating of zircon three granodiorites yielded ages of 24.6 ± 0.1, 24.6 ± 0.1, and 24.5 ± 0.1 Ma. For tonalitic rocks, internal Rb–Sr isochron ages (biotite, feldspars) indicate cooling ages of 20.4 ± 0.1, 20.5 ± 0.1, and 22.3 ± 0.1 Ma, which are slightly younger than the zircons’ ages. The limited variations in their Sr–Nd isotope ratios indicate derivation from an asthenospheric mantle source. A geodynamic model is presented in which late Oligocene–Miocene rollback of the Neotethyan subducting slab triggered asthenospheric upwelling and partial melting in the south Ardestan. These melts were subsequently modified through fractional crystallization and minor crustal contamination en-route to the surface. Plagioclase + orthopyroxene-dominated fractional crystallization accounts for differentiation of gabbro to gabbroic diorite, whereas fractionation of clinopyroxene, titanomagnetite, and orthopyroxene led to differentiation of gabbroic diorite to diorite. Amphibole fractionation at deeper levels led to the development of tonalites. 相似文献
20.
Paul G. Spry Ryan D. Mathur Todd A. Bonsall Panagiotis Ch. Voudouris Vasilios Melfos 《Mineralogy and Petrology》2014,108(4):503-513
The Lavrion ore district contains carbonate-replacement and vein-type Pb–Zn–Ag deposits as well as low-grade porphyry Mo, Cu–Fe skarn, and minor breccia-hosted Pb–Zn–Cu sulfide mineralization. These ore types are spatially related to a Late Miocene granodiorite intrusion (7 to 10 Ma), and various sills and dikes of mafic to felsic composition. Samples of sphalerite and pyrite from the Ilarion carbonate replacement deposit, and galena from Vein 80 (vein-type mineralization) in the Adami deposit show heterogeneous Re–Os values. These values were partially disturbed by hydrothermal activity associated with the formation of hydrothermal veins (e.g., Vein 80). A plot of initial 187Os/188Os versus 1/Oscommon ratios for pyrite and sphalerite from the Ilarion deposit form a mixing line (r2?=?0.78) between high concentration crustal-like and low concentration mantle-like end-members, or two crustal end-members one of which was more radiogenic than the other. Based on the Re–Os systematics and previously published geological and geochemical evidence, the most plausible explanation for the Re–Os isotope data is that ore-forming components were derived from mixed sources, one of which was a radiogenic crustal source from schists and carbonates probably near intrusion centers and the other, intrusive rocks in the district that are less radiogenic. Although the Re and Os concentrations of galena from Vein 80 are above background values they cannot be used as a chronometer. However, the results of the current study suggest that although pyrite, sphalerite, and galena are poor geochronometers in this ore deposit, due to partial open-system behavior, they still yield valuable information on the origin of the source rocks in the formation of bedded replacement and vein mineralization in the Lavrion district. 相似文献