首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The occurrence of tors within glaciated regions has been widely cited as evidence for the preservation of relic pre-Quaternary landscapes beneath protective covers of non-erosive dry-based ice. Here, we test for the preservation of pre-Quaternary landscapes with cosmogenic surface exposure dating of tors. Numerous granite tors are present on summit plateaus in the Cairngorm Mountains of Scotland where they were covered by local ice caps many times during the Pleistocene. Cosmogenic 10Be and 26Al data together with geomorphic relationships reveal that these landforms are more dynamic and younger than previously suspected. Many Cairngorm tors have been bulldozed and toppled along horizontal joints by ice motion, leaving event surfaces on tor remnants and erratics that can be dated with cosmogenic nuclides. As the surfaces have been subject to episodic burial by ice, an exposure model based upon ice and marine sediment core proxies for local glacial cover is necessary to interpret the cosmogenic nuclide data. Exposure ages and weathering characteristics of tors are closely correlated. Glacially modified tors and boulder erratics with slightly weathered surfaces have 10Be exposure ages of about 15 to 43 ka. Nuclide inheritance is present in many of these surfaces. Correction for inheritance indicates that the eastern Cairngorms were deglaciated at 15.6 ± 0.9 ka. Glacially modified tors with moderate to advanced weathering features have 10Be exposure ages of 19 to 92 ka. These surfaces were only slightly modified during the last glacial cycle and gained much of their exposure during the interstadial of marine Oxygen Isotope Stage 5 or earlier. Tors lacking evidence of glacial modification and exhibiting advanced weathering have 10Be exposure ages between 52 and 297 ka. Nuclide concentrations in these surfaces are probably controlled by bedrock erosion rates instead of discrete glacial events. Maximum erosion rates estimated from 10Be range from 2.8 to 12.0 mm/ka, with an error weighted mean of 4.1 ± 0.2 mm/ka. Three of these surfaces yield model exposure-plus-burial ages of 295− 71+ 84, 520− 141+ 178, and 626− 85+ 102 ka. A vertical cosmogenic nuclide profile across the oldest sampled tor indicates a long-term emergence rate of 31 ± 2 mm/ka. These findings show that dry-based ice caps are capable of substantially eroding tors by entraining blocks previously detached by weathering processes. Bedrock surfaces and erratic boulders in such settings are likely to have nuclide inheritance and may yield erroneous (too old) exposure ages. While many Cairngorm tors have survived multiple glacial cycles, rates of regolith stripping and bedrock erosion are too high to permit the widespread preservation of pre-Quaternary rock surfaces.  相似文献   

2.
Rates and processes of rock weathering, soil formation, and mountain erosion during the Quaternary were evaluated in an inland Antarctic cold desert. The fieldwork involved investigations of weathering features and soil profiles for different stages after deglaciation. Laboratory analyses addressed chemistry of rock coatings and soils, as well as 10Be and 26Al exposure ages of the bedrock. Less resistant gneiss bedrock exposed over 1 Ma shows stone pavements underlain by in situ produced silty soils thinner than 40 cm and rich in sulfates, which reflect the active layer thickness, the absence of cryoturbation, and the predominance of salt weathering. During the same exposure period, more resistant granite bedrock has undergone long-lasting cavernous weathering that produces rootless mushroom-like boulders with a strongly Fe-oxidized coating. The red coating protects the upper surface from weathering while very slow microcracking progresses by the growth of sulfates. Geomorphological evidence and cosmogenic exposure ages combine to provide contrasting average erosion rates. No erosion during the Quaternary is suggested by a striated roche moutonnée exposed more than 2 Ma ago. Differential erosion between granite and gneiss suggests a significant lowering rate of desert pavements in excess of 10 m Ma− 1. The landscape has been (on the whole) stable, but the erosion rate varies spatially according to microclimate, geology, and surface composition.  相似文献   

3.
中国第四纪冰川演化序列与MIS对比研究的新进展   总被引:11,自引:1,他引:11  
赵井东  施雅风  王杰 《地理学报》2011,66(7):867-884
近年来,随着多种可对冰川地形进行直接定年的测年技术的发展与应用,中国第四纪冰川研究取得了新进展,较为突出的是获得了大量与地貌地层关系相符的年代学资料、建立了冰川演化若干典型范例以及进一步确立了青藏高原构造隆升与冰川发育的耦合关系。中国第四纪冰川演化序列与海洋氧同位素阶段(Marine Oxygen Isotope Stage,MIS) 比较经历了2000 年、2002 年两次立案与改进。笔者基于近年来新测得的年代学数据、已建立的冰川演化序列以及青藏高原隆升与冰川发育的耦合关系等新的研究资料,提出了中国冰期与海洋氧同位素阶段比较的2011 年改进方案,包括近百万年冰川变化的15 个特征时段及其对应的时间与中国冰期名称等信息。  相似文献   

4.
《Geomorphology》2007,83(1-2):97-120
The quantification of geomorphic process rates on the outcrop- and the orogen-scale is important to describe accurately the interaction between the relative effects of erosion, tectonics and climate on landscape evolution. We report single and paired cosmogenic nuclide (10Be, 26Al and 21Ne) derived erosion rates and exposure ages on hillslope interfluves from the tectonically active western central Andes that show a distinct spatial variation. A positive correlation of erosion rates with elevation and present-day rainfall rates is observed. Erosion rates at lower altitudes–the hyperarid Coastal Cordillera and the Western Escarpment with the northern part of the Atacama Desert–are extremely low and of the order of 10–100 cm/My (nominal exposure ages 1–6 My). In contrast, erosion rates at higher altitudes–the semiarid Western Cordillera–range up to 4600 cm/My (nominal exposure ages 0.02–0.1 My). This latter average long-term bedrock erosion rate record, suggested to be coupled to an orographically controlled pattern of rainfall, is also reflected in the pattern of denudation rates derived from a short-term decadal record of limited sediment yield data. Specifically, denudation rates calculated from sediment flux data are of a similar order of magnitude as erosion rates deduced from long-lived cosmogenic nuclides from bedrock hillslope interfluves of the Western Cordillera. Nevertheless, the production and the supply of sediment from the western Andean slope are very limited.Analysis of multiple cosmogenic nuclides allows simultaneous determination of erosion rates and exposure ages but also reveals complex exposure histories of non-bedrock samples, such as boulders or amalgamated clast samples. Notably, this study shows that saturation of nuclides, usually assumed in studies where only a single nuclide is analyzed, is rather the exception than the rule, as revealed by erosion island plots. Constant erosion that started much later than the formation age of the rocks or episodic erosion by spalling can partially explain non-steady-state concentrations and more complicated exposure scenarios. Furthermore, the use of multiple nuclides with different half-lives allowed us to infer that no significant variations in long-term erosion rates have occurred and that at the Western Escarpment erosion rates have been low and constant for most of the late Neogene. Nevertheless, the time intervals necessary to reach steady-state concentrations for cosmogenic nuclides can be quite different from those needed for landscapes to reach steady state.  相似文献   

5.
Based on research from slopes on rhyolite domes of known age formed over a million‐year continuum in eastern California, a classic geomorphic debate is reconsidered and a general model of desert slope development proposed. This study examines steep (~25° to ~35°) boulder‐dominated slopes that include well, varnished, vertically oriented colluvial deposits. Such deposits are common throughout the arid southwestern United States. Basic field and isotopic dating methods are combined with two surface‐dating techniques, cosmogenic chlorine‐36 and rock varnish microlaminae, to produce a detailed slope development history with broad implications for geomorphic theory that includes the unresolved geomorphic debate between Walther Penck and William Morris Davis. Slopes in this study are dominated by the on‐going desert slope processes of debris flows and in‐situ grain disintegration as evidenced by active debris flow features, terminal Pleistocene ages of microlaminae, and chlorine‐36 ages progressively younger than potassium‐argon ages for slope genesis. Results also indicate that slopes retreat in a parallel fashion as postulated by Penck. Furthermore, the deposits do not exhibit significant changes in grain size, shape, or angularity from genesis to ~0.6 Ma but change markedly after that time possibly indicating a geomorphic threshold between ~0.6 and ~1 Ma, or episodic erosional events throughout the mid to late Pleistocene.  相似文献   

6.
Weathering pits 1–140 cm deep occur on granite surfaces in the Cairngorms associated with a range of landforms, including tors, glacially exposed slabs, large erratics and blockfields. Pit depth is positively correlated with cosmogenic exposure age, and both measures show consistent relationships on individual rock landforms. Rates of pit deepening are non‐linear and a best fit is provided by the sigmoidal function D = b1 + exp(b2+b3/t). The deepest pits occur on unmodified tor summits, where 10Be exposure ages indicate that surfaces have been exposed to weathering for a minimum of 52–297 ka. Glacially exposed surfaces with pits 10–46 cm deep have given 10Be exposure durations of 21–79 ka, indicating exposure by glacial erosion before the last glacial cycle. The combination of cosmogenic exposure ages with weathering pit depths greatly extends the area over which inferences can be made regarding the ages of granite surfaces in the Cairngorms. Well‐developed weathering pits on glacially exposed surfaces in other granite areas are potential indicators of glacial erosion before the Last Glacial Maximum.  相似文献   

7.
The endolithic lichen Lecidea auriculata is known to enhance rock surface weathering on the Little Ice Age moraines of the glacier Storbreen in Jotunheimen, central southern Norway. This study demonstrates the reduction in Schmidt hammer Rvalues that followed the rapid colonization by this lichen of pyroxene‐granulite boulders on terrain deglaciated over the last 88 years. In the absence of this lichen, the characteristic mean R‐value of boulder surfaces is 61.0 ± 0.3; where this lichen is present, R‐values are lower by at least 20 units on surfaces exposed for 30–40 years. A similar reduction in rock hardness on rock surfaces without a lichen cover requires about 10 ka. The rapid initial weakening of the rock surfaces is indicative of rates of biological weathering by endolithic lichens that may be two orders of magnitude (200–300 times) faster than rates of physico‐chemical weathering alone. If not avoided, the effects of this type of lichen are likely to negate the effectiveness of the Schmidt hammer and other methods for exposure‐age dating, including cosmogenic‐nuclide dating, in severe alpine and polar periglacial environments. The results also suggest a new method for dating rock surfaces exposed for <50 years.  相似文献   

8.
The Central Karakoram, which includes K2 in Pakistan, is one of the most rapidly rising areas on Earth and exhibits complex topography and extreme relief. Impressive valley fills and glacial landforms are present throughout the valleys. The dynamics of landscape evolution of the region are currently not well understood. Consequently, the landforms were mapped and assessed in the Skardu, Shigar, and Braldu valleys, to elucidate the spatio-temporal scale dependencies of surface processes active in the region. These valleys were examined using geomorphic field methods, remote sensing, geomorphometry, and terrestrial cosmogenic nuclides (TCNs) surface exposure dating. The glaciers in this region have oscillated considerably throughout the Late Quaternary, and four glacial stages have been recognized including at least six glacial advances. Surface processes readjusted after glacier retreat, and ubiquitous mass movements and catastrophic landsliding transported material from steep slopes to valley bottoms, while glaciofluvial meltwater and glacier outburst floods redistributed sediment down valley. Glacier geochronology and late Holocene ages of the outburst flood deposits indicate that landscape evolution has been dominated by glaciation and paraglaciation during the late Quaternary.  相似文献   

9.
利用原地生宇生核素测定暴露年代时,通常会假设地貌体侵蚀速率为0。研究表明,该假设会低估地貌体的真实暴露年代。搜集2009~2012年全球不同区域56个岩石样品的宇生核素10Be测年数据,探讨侵蚀速率为0对于侵蚀速率为0.5、1以及2 mm/ka的样品,在不同暴露尺度上对暴露年代计算的影响幅度。结果表明,对于1×104a尺度的样品暴露年代可能低估约0.5%,1%,2%;对于10×104a尺度的样品可能低估约5%,7%,20%;对于50×104a尺度的样品可能低估约40%,70%甚至100%以上。  相似文献   

10.
The Quaternary history of the Capitol Reef area, Utah, is closely linked to the basaltic-andesite boulder deposits that cover much of the landscape. Understanding the age and mode of emplacement of these deposits is crucial to deciphering the Quaternary evolution of this part of the Colorado Plateau. Using cosmogenic 3He exposure age dating, we obtained apparent exposure ages for several key deposits in the Capitol Reef area. Coarse boulder diamicts capping the Johnson Mesa and Carcass Creek Terraces are not associated with the Bull Lake glaciation as previously thought, but were deposited 180±15 to 205±17 ka (minimum age) and are the result of debris flow deposition. Desert pavements on the Johnson Mesa surface give exposure ranging from 97±8 to 159±14 ka and are 34–96 kyears younger than the boulder exposure ages. The offset between the boulder and pavement exposure ages appears to be related to a delay in pavement formation until the penultimate glacial/interglacial transition or periodic burial and exposure of pavement clasts since debris flow deposition. Incision rates for the Capitol Reef reach of the Fremont River calculated from the boulder exposure ages range from 0.40 to 0.43 m kyear−1 (maximum rates) and are some of the highest on the Colorado Plateau.  相似文献   

11.
A large landslide on the urban fringe of metropolitan Phoenix, Arizona   总被引:2,自引:1,他引:2  
A granitic rock avalanche, one of the largest Quaternary landslides in Arizona outside the Grand Canyon with a volume of approximately 5.25 M m3 and a width a little under 0.5 km, ran 1 km from the eastern McDowell Mountains. With lateral levees and pressure ridges, the rock avalanche deposit displays many features found on classic sturzstroms. Failure occurred along a major joint plane paralleling the slope with a dip of 44°, when a major base level lowering event in the Salt River system would have undermined the base of the failed slope, and probably during a period of more moisture than normally available in the present-day arid climate. Failure at the subsurface weathering front highlights the importance of the dramatic permeability change between grussified regolith and relatively fresh bedrock. Rock varnish microlaminations (VMLs) dating, in concert with other geomorphic evidence, suggests that the rock avalanche deposit is slightly older than 500 ka. The rock vanish results also have important implications for sampling strategies designed to use cosmogenic nuclide to date Quaternary landslide deposits. Discovery of a large landslide in close proximity to the extending urban fringe of metropolitan Phoenix argues for a more careful analysis of landslide hazards in the region, especially where rapid development excavates bedrock at the base of steep mountain slopes and where the subsurface weathering front is near the surface.  相似文献   

12.
盐湖沉积记录了区域气候和水文变化,是重要的古气候研究对象。年代学是盐湖古气候研究最重要的一项内容,是后续工作的基础。盐湖沉积最常用的定年方法有14C定年、铀系定年、光释光(OSL)定年、古地磁定年。受各种定年方法自身局限性以及盐湖沉积特殊性的制约,存在不同方法测出的年龄差异较大的现象。准确测定盐湖沉积的年代还较为困难,一定程度限制了盐湖古气候研究的发展。最新研究表明,由于盐湖沉积有机质含量低,易受现代碳的污染,14C测年中存在复杂的碳库效应,其14C年代老于30 cal ka BP时,测出的年龄可能被低估,需谨慎对待。未来需要加强铀系定年和光释光定年等方法在盐湖沉积中的基础研究,并开发新的更好的测年方法,提高盐湖沉积测年的准确度,为深入开展盐湖古气候变化及成盐成矿规律研究提供坚实基础。  相似文献   

13.
Alluvium in dry lands is considered difficult to date by radiocarbon methods because of the paucity of organic matter. Although organic materials of sufficient size for conventional 14C dating are rare, wet sieving of alluvium in the Sonoran Desert yields sufficient organics for 14C measurements by accelerator mass spectrometry (AMS). Detrital charcoal from two Quaternary fluvial fill terraces on the western side of the Ajo Mountains yielded 14C ages of 14,880 ± 70 yr B.P. (CAMS-12408) for the Qt 1 terrace and 2490 ± 60 yr B.P. (CAMS-12414) and 2510 ± 60 yr B.P. (CAMS-12415) for the smaller inset Qt 2 terrace. These 14C ages are consistent with what is known about rates of soil development in the region. The earlier aggradation event appears to be supported by regional and possibly global climate change at about 14,000 14C yr B.P. The more recent aggradation event does not appear to be synchronous with periods of frequent paleofloods in the southwest. The offset between 14C and 36Cl ages for the same terraces provides a general indication of the time taken for the clasts to be transported to their current positions on the terraces. [Key words: soils, organic matter, 14C, 36Cl, Quaternary dating methods, piedmont, geomorphology, Sonoran Desert.]  相似文献   

14.
Paul Muzikar 《Geomorphology》2008,97(3-4):407-413
The buildup of cosmogenic nuclides in an eroding surface can be used to infer erosion rates and exposure ages. This situation is often modelled by assuming that the erosion rate is constant in time. In many cases, however, the erosion is episodic: surface denudation occurs by the spalling off of slabs of rock at discrete times. We consider a stochastic model of such exfoliation processes, and compute the expected behavior of the cosmogenic nuclide concentration. We also consider a nonstochastic model, in which the exfoliation events occur at regularly spaced intervals. These two models represent extreme end members of the episodic spallation scenarios: in the first, the spallation events are uncorrelated in time, while in the second they are tightly correlated. Understanding how the nuclide concentration is related to the timing and the magnitude of these events is important in making geologic inferences.  相似文献   

15.
Tanzhuo Liu   《Geomorphology》2003,53(3-4):209-234
Rock varnish is a manganiferous dark coating ubiquitous in desert landscapes. To test the validity of varnish microstratigraphy as a chronometric indicator, varnish samples were collected from radiometrically dated and undated late Quaternary lava flows in Amboy, Cima, and Pisgah volcanic fields (AVF, CVF, PVF) in the Mojave Desert of California, western United States. Varnish microstratigraphies show a replicable layering sequence that appears to record regional climate changes that likely correspond in time to the Younger Dryas and Heinrich events in the North Atlantic region. Microstratigraphic patterns on these volcanic fields match patterns found in varnishes from other western US sites with available radiometric age constraints. Based on this regional chronology, varnishes from the A flow, H flow, and a stone pavement surface in the Cima volcanic field were estimated to be 16.5–24, 74–85, and 74–85 ka, respectively; these ages are consistent with previously published cosmogenic 3He ages of 18–20, 72–74, and 80–85 ka for these geomorphic surfaces. Varnishes from the I flow at Cima yielded a puzzling age estimate of 39 ka, which is consistent with an older 3He age of 37±6 ka reported for the I flow, but inconsistent with a younger 3He age of 31±7 ka and a cosmogenic 36Cl age of 27±1.3 ka for the same flow. Reinterpretation of the original varnish age data, with knowledge of then available field mapping results of the I flow, suggests that the I cone is polycyclic and different flow units were probably unintentionally sampled in the field. The revised varnish ages of 30 and 39 ka for the I flow thus may be in good agreement with their corresponding 3He and 36Cl ages. In a blind test of the method, varnishes from the Phase 1 flow at Pisgah, an unnamed flow (called here the I′ flow) at Cima, and the Amboy flow were estimated to be 24–30, 46–60, and 74–85 ka, respectively; these ages agree well with 36Cl ages of 22.5±1.3, 46±2, and 79±5 ka reported for the same flows by Phillips [Geomorphology (2002).]. These test results provide convincing evidence that varnish microstratigraphy, once radiometrically calibrated, can be used as a valid dating tool to estimate surface exposure ages of desert landforms in the western US drylands.  相似文献   

16.
The New River crosses three physiogeologic provinces of the ancient, tectonically quiescent Appalachian orogen and is ideally situated to record variability in fluvial erosion rates over the late Cenozoic. Active erosion features on resistant bedrock that floors the river at prominent knickpoints demonstrate that the river is currently incising toward base level. However, thick sequences of alluvial fill and fluvial terraces cut into this fill record an incision history for the river that includes several periods of stalled downcutting and aggradation. We used cosmogenic 10Be exposure dating, aided by mapping and sedimentological examination of terrace deposits, to constrain the timing of events in this history. 10Be concentration depth profiles were used to help account for variables such as cosmogenic inheritance and terrace bioturbation. Fill-cut and strath terraces at elevations 10, 20, and 50 m above the modern river yield model cosmogenic exposure ages of 130, 600, and 600–950 ka, respectively, but uncertainties on these ages are not well constrained. These results provide the first direct constraint on the history of alluvial aggradation and incision events recorded by New River terrace deposits. The exposure ages yield a long-term average incision rate of 43 m/my, which is comparable to rates measured elsewhere in the Appalachians. During specific intervals over the last 1 Ma, however, the New River's incision rate reached 100 m/my. Modern erosion rates on bedrock at a prominent knickpoint are between 28 and 87 m/my, in good agreement with rates calculated between terrace abandonment events and significantly faster than 2 m/my rates of surface erosion from ancient terrace remnants. Fluctuations between aggradation and rapid incision operate on timescales of 104− 105 year, similar to those of late Cenozoic climate variations, though uncertainties in model ages preclude direct correlation of these fluctuations to specific climate change events. These second-order fluctuations appear within a longer-term signal of dominant aggradation (until 2 Ma) followed by dominant incision. A similar signal is observed on other Appalachian rivers and may be the result of sediment supply fluctuations driven by the increased frequency of climate changes in the late Cenozoic.  相似文献   

17.
Since the 20th century, numerous Quaternary moraine dating methods have emerged, including lichenometric, moraine 14C, quartz sand thermoluminescence (TL), electron spin resonance (ESR), optically stimulated luminescence (OSL) and 10Be, 26A1, 36C1, 3H, 21Ne nuclide dating methods. These dating methods are widely applied to determine moraine ages and have provided a large dataset. Unfortunately each method has its defects. In this paper, we will review these various dating methods and provide some comments.  相似文献   

18.
The extent of Late Quaternary glaciation in the northwest Nelson region of New Zealand has traditionally been regarded as minor, with small‐scale valley glaciation in confined upland reaches. New geomorphological evidence, including moraines, kame terraces, till‐mantled bedrock and outwash terraces, indicate that greatly expanded valley glaciers flowed into the lowland valley system at the mouths of the Cobb‐Takaka and Anatoki drainages. The timing for this ice advance into lowland valleys is constrained by lowland landform characteristics and a single cosmogenic exposure age, suggesting Late and Middle Pleistocene ice expansion, respectively. Evidence for expanded upland ice on the Mount Arthur Tableland and adjacent areas includes trimlines, boulder trains and roche moutonées. Two cosmogenic exposure ages on upland bedrock surfaces suggest that major ice expansion occurred during MIS 3 and/or 4, while previously published exposure dating from Cobb Valley suggests large MIS 2 ice expansion as well. The inferred, markedly expanded ice left little or no clear geomorphic imprint on the Cobb–Takaka Gorge, and required temperature depression of 4–6°C with near‐modern precipitation levels.  相似文献   

19.
介绍了26Al/10Be等时线埋藏测年法的基本原理及其主要应用范围。将应被同时埋藏的一组石英矿物样的26Al-10Be浓度拟合成等时线,从其斜率解得样品的埋藏年代。在如下情况下该法可克服未知参数多于制约方程的困难:1)冰碛物-古土壤序列中古土壤形成年代的研究,以规避继承核素(inherited nu-clide)的干扰;2)因样品埋藏不够深引起的后期生成核素的干扰。此外,依据等时线拟合结果可判断样品是否符合简单恒态侵蚀模式。等时线法的引入,拓宽了埋藏测年的应用范围,并为埋藏测年数据可信度提供了一种有效的验证手段。  相似文献   

20.
Low-temperature apatite (U–Th)/He (AHe) thermochronology on vertical transects of leucogranite stocks and 10Be terrestrial cosmogenic nuclide (TCN) surface exposure dating on strath terraces in the Lahul Himalaya provide a first approximation of long-term (104–106 years) exhumation rates for the High Himalayan Crystalline Series (HHCS) for northern India. The AHe ages show that exhumation of the HHCS in Lahul from shallow crustal levels to the surface was ~ 1–2 mm/a and occurred during the past ~ 2.5 Ma. Bedrock exhumation in Lahul fits into a regional pattern in the HHCS of low-temperature thermochronometers yielding Plio-Pleistocene ages. Surface exposure ages of strath terraces along the Chandra River range from ~ 3.5 to 0.2 ka. Two sites along the Chandra River show a correlation between TCN age and height above the river level yielding maximum incision rates of 12 and 5.5 mm/a. Comparison of our AHe and surface exposure ages from Lahul with thermochronometry data from the fastest uplifting region at the western end of the Himalaya, the Nanga Parbat syntaxis, illustrates that there are contrasting regions in the High Himalaya where longer term (105–107 years) erosion and exhumation of bedrock substantially differ even though Holocene rates of fluvial incision are comparable. These data imply that the orogen's indenting corners are regions where focused denudation has been stable since the mid-Pliocene. However, away from these localized areas where there is a potent coupling of tectonic and surface processes that produce rapid uplift and denudation, Plio-Pleistocene erosion and exhumation can be characterized by disequilibrium, where longer term rates are relatively slower and shorter term fluvial erosion is highly variable over time and distance. The surface exposure age data reflect differential incision along the length of the Chandra River over millennial time frames, illustrate the variances that are possible in Himalayan river incision, and highlight the complexity of Himalayan environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号