首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
夏季不同天气条件下沙漠辐射和能量平衡的对比分析   总被引:4,自引:0,他引:4  
利用2009 年7 月24 日-9 月12 日“巴丹吉林沙漠陆-气相互作用观测试验”资料,对比分析了典型晴天和阴天下巴丹吉林沙漠地表辐射、能量平衡和土壤温度的日变化规律.结果表明:①巴丹吉林沙漠典型晴天条件下总辐射、地表反射辐射、地表长波辐射、有效辐射、净辐射的峰值和日积分值都比典型阴天条件下大,大气长波辐射比阴天条件下小.两种天气条件下净辐射日积分值占太阳总辐射的1/3.②沙漠地区典型晴天地表反射率呈U型,白天均值为0.32;阴天变化较平缓,均值为0.29.③两种天气条件下地表热量平衡都以感热输送为主,波文比分别为4.55 和1.16.晴天不平衡能量达到净辐射的20%,阴天为30%.④晴天条件下有效能量夜间为负值,白天为正值,阴天全天为正值;湍流能量全天均为正值.能量闭合度(EBR)晴天平均为0.68,阴天为0.76.⑤土壤温度5~10 cm日较差逐渐减小,20、40 cm日变化不明显;5 cm土壤热通量日变化较大,20 cm土壤热通量振幅较小.  相似文献   

2.
Solar radiation not only sustains the lives on the Earth, but also creates spatial and temporal variations of hydrological ingredients, such as vegetation, soil moisture, and snow. Precise quantification of spatial solar radiation incident on the Earth's surface which accounts for the topographic modulation, especially in complex terrain, underpins the study of many catchment hydro-meteorological and hydro-ecological processes. Topography is a key parameter that affects the spatial solar radiation pattern across different scales. This article addresses the issue of modelling spatial variability of actual solar radiation caused by topography from the hydrological perspective. Models with different algorithms and different complexities, from the simple empirical equations to process-based physical approach, have been developed to parameterize and calculate the potential radiation (under clear-sky condition) and the actual radiation (under overcast cloudy condition). Based on a review of the general steps of solar radiation modelling and the corresponding models for each step, two models with easily or globally available data for spatial solar radiation modelling in complex terrain, namely, the physically parameterized, remote-sensing-oriented Heliosat-2 model and the sunshine duration-based Angström–Prescott regression model are selected and implemented in a GIS framework. The capability of both models for simulation of cloudy-sky radiation on horizontal surfaces has been verified against observed station data showing an R 2 greater than 0.9. The validity of the models for modelling inclined surface is tested by comparing against each other, which has shown a satisfactory agreement and demonstrated that the simple Angström–Prescott method performed reasonably well compared with the more elaborate Heliosat-2 method. Scale sensitivity of the models and the shading effect are examined with different digital elevation model (DEM) resolutions from 30 to 500 m and reveal the existence of a threshold grid size to resolve the topography-induced spatial solar radiation variability. Spatial mapping of potential solar radiation and actual solar radiation has been demonstrated in a small catchment in Southern Germany, with a spatial difference up to 30% in winter and 5% in summer. This may lead to a significant difference for the energy-limited hydrological processes, such as snowmelt, and evapotranspiration.  相似文献   

3.
A comparison is made of the calculated values of solar radiation incident on the upper atmospheric boundary with the measured values of surface temperature on the territory of the Crimean Peninsula. It is shown that the long-term temperature regime on the territory of the Crimean Peninsula is characterized by a stability. It is determined that the stability of the long-term regime of mean annual surface air temperatures is associated with the characteristics of the latitudinal distribution of solar radiation incident on the upper atmospheric boundary. The incident solar radiation increases in the regions of heat sources and decreases in the regions of heat sink. Stability of long-term mean annual values of surface air temperature is associated with the location of the Crimea on the boundary of the regions of heat sources and sinks. The study revealed the chronological structure of long-term changes in surface air temperature. The anomaly in the long-term surface air temperature variability is characterized by short-duration variations. An analysis is made of the chronological structure of interannual variability in surface air temperature on the territory of the peninsula. The dominant interannual and 2–3-year periodicities in the temperature regime variations are correlated with variations in incident solar radiation. In 62.7% of cases, the sign of interannual variability in surface air temperature corresponds to the sign of interannual variability in incident solar radiation. Thus it is shown that a small tendency in the long-term surface air temperature variability on the territory of the Crimean Peninsula, and the characteristics of its variations are determined largely by the specific character of the input and distribution of solar radiation incident on the upper atmospheric boundary.  相似文献   

4.
坡地辐射场研究及其地理学应用*   总被引:1,自引:0,他引:1  
朱志辉 《地理研究》1989,8(2):91-100
简要评述坡地辐射场理论研究与模式研究进展.讨论了坡地能量输入的背景规律、典型坡地辐射平衡各分量的计算模式,以及复杂地形辐射场模拟等问题.指出上述研究的地理学意义及可能的发展前景.  相似文献   

5.
利用张掖试验基地2006年6月24日至7月17日的加密观测资料,系统分析了夏季典型晴天张掖绿洲荒漠过渡带地表辐射收支和地表能量平衡特征及小气候特征。结果表明:夏季晴天绿洲荒漠过渡带总辐射值还是比较大的,并且净辐射值也很大,这说明绿洲荒漠过渡带地表具有比较充足的可利用热能,为加热大气和土壤提供了必要的热能条件。在地表能量分配中,晴天绿洲荒漠过渡区主要用于大气运动引起的感热交换,其次是土壤交换,用于水蒸发相变的能量相对较小。近地层空气温度和湿度的变化刚好相反。气温白天随高度的增加而递增,夜晚随高度的增加而递减。近地层大气温度变化要比地表温度缓慢。白天土壤辐射增温,越接近地表增温越快,夜间辐射冷却,地表温度下降最为明显。近地层水平风速在白天较大,夜间逐渐减小。在绿洲荒漠过渡带全天以上升气流为主,水平风速随高度增加明显递增。  相似文献   

6.
本文根据1990年1~2月南极中山站的太阳辐射的首次观测数据,分析了该地区太阳分光辐射的变化特征,着重讨论了紫外辐射的变化特征和云对太阳辐射各分量的影响。结果表明,南极中山站地区晴天条件下可见光、近红外和紫外辐射占总辐射的42.2%、53.3%和4.5%;总云量的变化和云类的变化对太阳辐射各分量具有显著的影响。  相似文献   

7.
Understanding the energy balance on the Tibetan Plateau is important for better prediction of global climate change. To characterize the energy balance on the Plateau, we examined the radiation balance and the response of albedo to environmental factors above an alpine meadow and an alpine wetland surfaces in the eastern Tibetan Plateau, using 2014 data. Although our two sites belong to the same climatic background, and are close geographically, the annual incident solar radiation at the alpine meadow site(6,447 MJ/(m2·a)) was about 1.1 times that at the alpine wetland site(6,012 MJ/(m2·a)),due to differences in the cloudiness between our two sites. The alpine meadow and the alpine wetland emitted about 38%and 42%, respectively, of annual incident solar radiation back into atmosphere in the form of net longwave radiation; and they reflected about 22% and 18%, respectively, of the annual incident solar radiation back into atmosphere in the form of shortwave radiation. The annual net radiation was 2,648 and 2,544 MJ/(m2·a) for the alpine meadow site and the alpine wetland site, respectively, accounting for only about 40% of the annual incident solar radiation, significantly lower than the global mean. At 30-min scales, surface albedo exponentially decreases with the increase of the solar elevation angle; and it linearly decreases with the increase of soil-water content for our two sites. But those relationships are significantly influenced by cloudiness and are site-specific.  相似文献   

8.
An underlying wetland surface comprises soil, water and vegetation and is sensitive to local climate change. Analysis of the degree of coupling between wetlands and the atmosphere and a quantitative assessment of how environmental factors influence latent heat flux have considerable scientific significance. Using data from observational tests of the Maduo Observatory of Climate and Environment of the Northwest Institute of Eco-Environment and Resource, CAS, from June 1 to August 31, 2014, this study analysed the time-varying characteristics and causes of the degree of coupling(Ω factor)between alpine wetlands underlying surface and the atmosphere and quantitatively calculated the influences of different environmental factors(solar radiation and vapour pressure deficit) on latent heat flux. The results were as follows:(1) Due to diurnal variations of solar radiation and wind speed, a trend developed where diurnal variations of the Ω factor were small in the morning and large in the evening. Due to the vegetation growing cycle, seasonal variations of the Ω factor present a reverse "U" trend. These trends are similar to the diurnal and seasonal variations of the absolute control exercised by solar radiation over latent heat flux. This conforms to the Omega Theory.(2) The values for average absolute atmospheric factor(surface factor or total) control exercised by solar radiation and water vapour pressure are 0.20(0.02 or 0.22) and 0.005(-0.07 or-0.06) W/(m2·Pa), respectively. Generally speaking, solar radiation and water vapour pressure deficit exert opposite forces on latent heat flux.(3) At the underlying alpine wetland surface, solar radiation primarily influences latent heat flux through its direct effects(atmospheric factor controls). Water vapour pressure deficit primarily influences latent heat flux through its indirect effects(surface factor controls) on changing the surface resistance.(4) The average Ω factor in the underlying alpine wetland surface is high during the vegetation growing season, with a value of 0.38, and the degree of coupling between alpine wetland surface and atmosphere system is low. The actual measurements agree with the Omega Theory. The latent heat flux is mainly influenced by solar radiation.  相似文献   

9.
夏季不同天气背景条件下黑河中游不同下垫面的辐射特征   总被引:4,自引:1,他引:3  
 利用2005年“绿洲系统能量水分循环观测实验”(JTEX)获得的资料分析了夏季晴天和阴天西北干旱区金塔绿洲不同下垫面的辐射收支特征。结果表明:由于下垫面的水热特性不同,绿洲与沙漠、戈壁的辐射特征有很大差异,而沙漠和戈壁的差异则较小。相同天气背景条件下,不同下垫面的向下辐射基本一致,绿洲的向上辐射最小,净辐射最大。地表辐射特征会随天气状况有较大变化。  相似文献   

10.
塔克拉玛干沙漠腹地总辐射变化特征及影响因子分析   总被引:5,自引:4,他引:1  
利用塔克拉玛干沙漠大气环境观测站(塔中站)直接探测的总辐射资料,对流动沙漠区近地层总辐射的变化特征及影响因子进行了分析。结果表明:总辐射的连续日变化对天气现象有不同程度的反映,天气现象较少的1月逐日总辐射上下变动的离散度较小,4月最大;1月、4月、8月、10月总辐射的平均日变化曲线皆呈正态分布,与同纬度地区比较,其年变幅较小;总辐射瞬时最大值为1 182.6 W·m-2,未超过太阳常数。总辐射随总云量增多而降低,且其在碧空最大,高、中、低云时逐渐降低,阴天Ci、Ac、Sc和Cb的平均总辐射约比晴天时分别减少5%、27%、51%和59%;沙尘使总辐射降低较为显著,风沙季节总辐射日变化与地面风速日变化对应,且主要受控于湍流作用,最大值出现与热力湍流和地面风力有关。  相似文献   

11.
Approaches to Modelling the Surface Albedo of a High Arctic Glacier   总被引:1,自引:0,他引:1  
Broadband surface albedo measurements, made during the summer melt season at three weather stations on John Evans Glacier (79°40 ' N, 74°00 ' W), varied strongly with the solar zenith angle ( θ z ). Tests were carried out to assess the impact of diurnal variations in surface albedo on seasonal net shortwave radiation ( K * ) totals. Removing the diurnal signal from albedo measurements by daily averaging of hourly measurements, or by applying midday measurements to all hours of the day, changed K * by up to 16%. Ignoring measurements made at θ z & 75°, to account for measurement (cosine) error at high θ z , decreased K * by between 5 and 18%. Given the sensitivity of K * to diurnal patterns in surface albedo, experiments were carried out with two albedo models. One model accounted for albedo variations with θ z and one did not. The model driven by θ z , when implemented within a surface energy balance model for John Evans Glacier, produced better melt estimates. This suggests that diurnal variations in surface albedo should be accounted for in energy balance models of glacier melt.  相似文献   

12.
墙面太阳辐照的理论计算与模式估计——以上海为例   总被引:7,自引:0,他引:7  
倾斜面和墙面的太阳辐射和日照状况对于农林生态、建筑环境工程以及城市气候研究具有重要意义。为了充分利用水平面日照与日射的丰富资料以得到倾斜面和墙面相应变量的细致分布规律,本文将理论计算与模式估计相结合的方法具体应用到一个平原城市(上海)。在倾斜面直接辐射计算中,本文以倾斜面与水平面天文辐射月值的比值(R_b)取代各月代表日的(R_(bo))在倾斜面日照时间的估计中,本文提出利用水平面日照百分率的简单方法。在倾斜面辐射与日照的时空分布规律方面主要突出其随方位与随季节(月份)的变化。 作为例子,本文计算分析了上海市每月各方位墙面上的天文辐射与可能日照时间,对相应的实际日照时间进行了估计。并在计算给出的(R_b)值的基础上,利用散射辐射各向同性与非各向同性模式研究了上海各月墙面直接辐射与总辐射随方位的变化特征。  相似文献   

13.
The principles of radiation geometry and the Lambertian assumption are employed to construct a numerical model of the multiple reflection effects within an urban canyon of variable geometry and surface materials. The canyon model is used to estimate the reflection coefficients for the direct and diffuse short-wave and incoming longwave radiative fluxes and the longwave emissivity of an urban surface. The procedures described are applied to various land-use zones in Columbus, Ohio, for the solstices and equinoxes. The diurnal variation of shortwave reflection coefficients is illustrated; daily values generally increase from the CBD to the residential suburbs. Longwave radiative properties differ little between zones. Radiation budgets are synthesized for each land-use type, assuming negligible atmospheric pollution, and are compared with those for appropriate rural surfaces. Net longwave radiation varies little between zones but net shortwave and net radiation decrease from the CBD to the residential areas at the city periphery. Net radiation gradients in cities are shown to depend critically on the relative effects of urban atmospheric pollution on the incident fluxes of longwave and shortwave radiation.  相似文献   

14.
塔克拉玛干沙漠腹地辐射平衡和反照率变化特征   总被引:4,自引:4,他引:0  
辐射平衡直接影响地气系统物质和能量交换,辐射平衡研究极其重要。本研究使用了2006年8月至2011年12月位于塔克拉玛干沙漠腹地塔中的塔克拉玛干沙漠大气环境观测试验站地表辐射和反照率观测资料,分析了辐射平衡和地表反照率季节变化和年变化以及各种典型天气下日变化的特征,并与其他地区进行了对比。结果表明:沙漠腹地辐射平衡各分量最小值均出现在1月,各分量最大值出现时间不一致,其中短波辐射5月最大,长波辐射7月最大,而净辐射最大值在6月。各辐射分量夏季最大,冬季最小;总辐射四季平均日变化极值低于青藏高原,与黑河戈壁相差不大;反射辐射春季与夏季、秋季与冬季差值较小。短波辐射和净辐射各季日峰值出现在12:00,长波辐射各季日峰值出现时间比短波辐射滞后1~3 h。大气长波辐射各季日振幅较小,约为地面长波辐射的1/5~1/4,且地面长波辐射各季日变化为不对称分布;长波辐射各季日最小值都出现在日出前1 h。多云、浮尘和沙尘暴天气辐射平衡日变化不规则,云量和沙尘对辐射各分量影响明显;沙尘暴日,大气长波辐射峰值可增加18%,而总辐射、反射辐射、地面长波辐射和净辐射峰值分别衰减了57.8%、54.0%、55.8%和21.9%。地表反照率3月最大(0.30),7月最小(0.25),平均值为0.27;夏季小,冬季大;晴天早晨和傍晚大,沙尘暴日最大。  相似文献   

15.
In the near coastal regions of Dronning Maud Land, Antarctica, below-surface ice-melt in blue-ice areas has been observed. The low scattering coefficients of the large-grained blue-ice allow penetration of solar radiation, thus providing an energy source below the ice surface. The sub-surface meltwater is significant enough to show up on remote-sensing imagery in the form of ice-covered lakes. Adjacent snow-accumulation areas have much higher scattering coefficients and consequently limit solar radiation penetration in these regions. These snow and ice surfaces are generally below freezing, and little surface melting occurs. To assess the response of these melt features to changes in atmospheric forcings such as cloudiness, air temperature, and snow accumulation, a physically-based model of the coupled atmosphere, radiation, snow, and blue-ice system has been developed. The model consists of a heat transfer equation with a spectrally-dependent solar-radiation source term. The penetration of radiation into the snow and blue-ice depends on the surface albedo, and the snow and blue-ice grain size and density. Model simulations show that ice melt occurring in this area is sensitive to potential variations in atmospheric forcing. Under certain conditions more traditional surface melting occurs and, under other conditions, the existing melt processes can be shut down completely. In light of the sensitivity of this system to variations in atmospheric forcing, and the ability to view melt-related features using remote sensing, a tool exists to efficiently monitor variations in Antarctic coastal climate.  相似文献   

16.
Two grid-based diffuse solar radiation models, ESRI’s Solar Analyst (SA) and Kumar’s model (KM), were assessed using a data-independent approach where each model’s numerical results of clear sky diffuse radiation on V/U-shaped surfaces were compared with analytical results derived using each model’s assumptions. SA and KM consistently underestimate and overestimate, respectively, diffuse radiation at daily, seasonal, and annual scale relative to the analytical results based on each model’s parameterizations. Overall, SA performs better than KM in modeling diffuse radiation at most timescales. While SA and KM have similar error in calculating diffuse radiation on a horizontal surface, SA models sky view factor much better than KM, with mean absolute relative differences of 0.76% and 17.02%, respectively. KM has a large error in sky view factor as it does not consider the shading effect from surrounding terrain. Sky view factor error in SA is small and use of more zenith divisions can further reduce the error. Based on our previous study, model performance on clear sky global solar radiation was also evaluated. Overall, KM performs better than SA in global radiation as KM performs better than SA in modeling direct radiation which is the major component of global radiation.  相似文献   

17.
海南岛橡胶林辐射通量特征   总被引:2,自引:0,他引:2  
热带橡胶人工林作为我国热带地区最重要的生态系统,在森林辐射研究中扮演着重要角色。随着橡胶林在我国热带地区大面积地种植,对其生态效应的质疑也在增加,有必要对其辐射通量进行研究。基于海南岛橡胶林2010年1 a的辐射观测数据,分析了其时序变化和分配等规律。结果表明:研究区橡胶林的太阳总辐射(DR)、反射辐射(UR)和净辐射(NR)通量日变化呈典型的单峰曲线,大气逆辐射(DLR)、森林长波辐射(ULR)、长波有效辐射(Ln)呈波浪形;各辐射总量除Ln 外,均为雨季大于旱季;海南岛橡胶林DR年总量为5 356.99 MJ/m2,NR、UR和Ln占其比例分别为67%、15%和18%;NR通量分配率日变化呈倒“U”型曲线,Ln和UR通量分配率则呈“U”型曲线。另外,文章还研究了各辐射通量间的关系。2010年全年反射率均值为14.18%,全年DLR与ULR之比为92.89%,净辐射NR与太阳总辐射DR关系最为密切。  相似文献   

18.
本文介绍了“2007-2008国际极地年”期间在南极东部大陆边缘伊丽莎白公主地区进行的风场结构观测实验。自动气象站(Automatic Weather Station,AWS)观测数据的统计分析结果表明,夏季该地区冰盖上的近表面风场主要是由下降风控制,而沿海地区的风场则由于海陆热力学性质的差异呈现出冰盖下降风与局地海陆风交互作用的特点。个例研究表明在冰盖下降风占优时段内,伊丽莎白公主地区的近表面风场具有相当规律的日变化特征,太阳人射辐射规律的日变化是这一现象出现的根本原因。多普勒声雷达对风场垂直结构的观测表明,150 m以下的各高度水平风矢量的变化特征与近地面层风场近似一致,冰盖下降风和海陆风旺盛阶段,偏东风和偏西风的高度可达650 m之高。  相似文献   

19.
北冰洋浮冰区的气象要素特征   总被引:6,自引:3,他引:3       下载免费PDF全文
利用中国首次北极科学考察队观测的气象资料 ,初步分析研究了 1 999年 8月 1 9~ 2 4日北冰洋浮冰 ( 75°N,1 60°W)上的温、压、湿、风、云量、辐射、海表温度、冰面及冰中温度等气象要素变化特征 ,并结合 50 0 h Pa高度场分析了该期间的天气过程。结果表明 :在考察期间海面与冰面温度日变化差异明显。除晴天夜间出现逆温外 ,气温随高度增大而减小 ,冰面为热源 ,不断有向上的热量输送。海温则稳定少变。冰中热交换主要发生在冰下 0~ 40 cm深度。由于有海上湿平流等影响 ,存在“逆湿”现象。晴天反射率具有明显日变化 ,早晚大 ,中午小。海冰表面平均反射率约为 0 .76。辐射与云量特别是低云量的关系密切  相似文献   

20.
Chapman 等大气潮汐专家认为,地球表面的太阳潮汐全口波被抑制,而半口波被放大,这个结论一直延续数十年。然而,根据南极地区三个站的资料计算表明:在南极地区,地面太阳气压潮汐的全日波远强于半日波,这与高登义等(1986)应用我国205个台站资料计算结果是一致的。 上述结果表明,南极地区近地面太阳气压潮汐全日波并未被抑制,而半日波也未被放大。这与Chapman等人的结论是不一致的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号