首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
干旱强度及发生时间对华北平原五省冬小麦产量影响   总被引:1,自引:0,他引:1  
余慧倩  张强  孙鹏  宋长青 《地理学报》2019,74(1):87-102
本文利用2001-2016年时间分辨率为8 d的MOD09A1和MOD16A2的数据集,构建了基于NDVI和ET/PET的干旱指数(DSI),分析华北平原五省不同程度的干旱在时间和空间上的分布情况,探究不同程度的干旱作用于冬小麦不同生长阶段对农作物产量产生的影响。研究表明:①年际分布上,2001-2002年干旱最为严重,其余年份干旱显著减缓,年内分布上,干旱主要集中发生在春季和秋季,夏季次之,冬季最少;②空间分布上,河北北部、河南南部、安徽及江苏的中部和北部、山东东部是干旱多发区;③干旱对冬小麦产量的影响研究表明,越冬期发生初旱对产量起促进作用,而在乳熟成熟阶段发生初旱则会导致农作物减产;轻旱发生在乳熟期会对冬小麦产量产生显著影响,而中旱发生在开花、乳熟成熟期都会对产量产生显著影响,随干旱程度加重,干旱对作物产量产生显著负作用的生长期越长;此外,在播种时若出现水分短缺也会对冬小麦的产量产生影响,尤其是发生重旱和特旱。研究不同强度干旱发生在不同生长阶段对冬小麦产量的影响,对研究区的灌溉时间规划以及保墒增产具有重要理论与现实意义。  相似文献   

2.
Drought is one of the most complex natural hazards affecting agriculture, water resources, natural ecosystems, and society. The negative societal consequences of drought include severe economic losses, famine, epidemics, and land degradation. However, few studies have analyzed the complexity of drought characteristics, both at multiple time scales and with variations in evapotranspiration. In this study, drought occurrences were quantified using a new drought index, the Standardized Precipitation Evapotranspiration Index (SPEI), based on observed data of monthly mean temperature and precipitation from 1961 to 2013 in Henan province, central China. Based on the SPEI values of each weather station in the study, the frequency and severity of meteorological droughts were computed, and the monthly, seasonal, and annual drought frequency and intensity over a 53-year period were analyzed. The spatial and temporal evolution, intensity, and the primary causes of drought occurrence in Henan were revealed. The results showed that the SPEI values effectively reflected the spatial and temporal pattern of drought occurrence. As the time scale decreased, the amplitude of the SPEI increased and droughts became more frequent. Since 1961, drought has occurred at the annual, seasonal, and monthly scales, and the occurrence of drought has increased. However, regional distribution has been uneven. The highest drought frequency, 35%, was observed in the Zhoukou region, while the lowest value, ~26%, was measured in central and western Henan. The most severe droughts occurred in the spring and summer, followed by autumn. Annually, wide-ranging droughts occurred in 1966–1968, 1998–2000, and 2011–2013. The drought intensity showed higher values in north and west Henan, and lower values in its east and south. The maximum drought intensity value was recorded in Anyang, and the minimum occurred in Zhumadian, at 22.18% and 16.60%, respectively. The factors with the greatest influence on drought occurrence are increasing temperatures, the Eurasian atmospheric circulation patterns, and the El Niño effect.  相似文献   

3.
松花江区气象水文干旱演变特征   总被引:3,自引:0,他引:3  
吴燕锋  章光新 《地理科学》2018,38(10):1731-1739
采用标准化降水蒸散指数和径流干旱指数分析了1961~2010年研究区水文干旱和气象干旱时空演变特征,并探讨了水文干旱与气象干旱的关系。结果表明: 1961~2010年松花江区呈总体干旱化且又有明显时段性的特征,其中1967~1983年和1996~2010年气象干旱频发、覆盖范围广、持续时间长且强度大;其它时段气象干旱少有发生。其次,气象干旱空间分布差异明显,东部的平均干旱频次和强度都大于西部地区,中部(嫩江流域中下游)平均干旱持续时间最长;但在嫩江流域和黑龙江上游地区干旱略有减弱趋势。 松花江流域和挠力河流域水文干旱呈加剧的趋势,尤其是近15 a干旱化趋势明显;挠力河流域干旱频发、强度大且持续时间很长。松花江流域水文干旱程度弱于挠力河流域,但极端水文干旱事件频发。 松花江区气象干旱与水文干旱密切相关,嫩江流域水文干旱滞后于气象干旱2个月,而第二松花江流域和松花江流域水文干旱滞后于气象干旱3个月;挠力河流域水文干旱与气象干旱无明显的时滞相关性。  相似文献   

4.
This study examined meteorological and streamflow droughts for the period from 1951 to 2006 using the Milwaukee River basin in Wisconsin as the study area in an effort to improve the understanding of drought propagation. Specifically, this study aimed to answer the following research questions: (1) What are the temporal trends of meteorological and streamflow droughts identified by drought indicators? (2) How do the drought indicators manifest drought propagation? Meteorological droughts were identified using the Effective Drought Index (EDI), and streamflow droughts were identified using a threshold-level approach. The intensity and duration of both types of drought were found to have decreased over time, most likely due to increasing precipitation. Therefore, in the study area, and likely in the larger region, drought has become of less concern. The propagation of meteorological drought into streamflow drought was detected generally after moderate and severe sequences of negative EDI that eventually led to extreme meteorological drought events. The study finds that both EDI and the threshold-level approach are effective in diagnosing meteorological and streamflow drought events of all durations.  相似文献   

5.
China is distinguished by a prominent monsoonal climate in the east of the country, a continental arid climate in the northwest and a highland cold climate on the Qinghai-Tibet Plateau. Because of the long history of Chinese civilization, there are abundant and well-dated documentary records for climate variation over the whole of the country as well as many natural archives (e.g., tree-rings, ice cores, stalagmites, varved lake sediments and corals) that enable high-resolution paleoclimatic reconstruction. In this paper, we review recent advances in the reconstruction of climate and extreme events over the last 2000 years in China. In the last 10 years, many new reconstructions, based on multi-proxies with wide spatial coverage, have been published in China. These reconstructions enable us to understand the characteristics of climate change across the country as well as the uncertainties of regional reconstructions. Synthesized reconstructed temperature results show that warm intervals over the last 2000 years occurred in AD 1–200, AD 551–760, AD 951–1320, and after AD 1921, and also show that cold intervals were in AD 201–350, AD 441–530, AD 781–950, and AD 1321–1920. Extreme cold winters, seen between 1500 and 1900, were more frequent than those after 1950. The intensity of regional heat waves, in the context of recent global warming, may not in fact exceed natural climate variability seen over the last 2000 years. In the eastern monsoonal region of China, decadal, multi-decadal and centennial oscillations are seen in rainfall variability. While the ensemble mean for drought/flood spatial patterns across all cold periods shows a meridional distribution, there is a tri-pole pattern with respect to droughts south of 25°N, floods between 25° and 30°N, and droughts north of 30°N for all warm periods. Data show that extreme drought events were most frequent in the periods AD 301–400, AD 751–800, AD 1051–1150, AD 1501–1550, and AD 1601–1650, while extreme flood events were frequent in the periods AD 101–150, AD 251–300, AD 951–1000, AD 1701–1750, AD 1801–1850, and AD 1901–1950. Between AD 1551–1600, extreme droughts and flood events occurred frequently. In arid northwest China, climate was characterized by dry conditions in AD 1000–1350, wet conditions in AD 1500–1850, and has tended to be wet over recent decades. On the northeastern Qinghai-Tibet Plateau, centennial-scale oscillations in precipitation have occurred over the last 1000 years, interrupted by several multi-decadal-scale severe drought events. Of these, the most severe were in the 1480s and 1710s. In southwest China, extreme droughts as severe as those seen in Sichuan and Chongqing in 2006 are known to have occurred during historical times.  相似文献   

6.
The temporal variability and severity of pre-instrument record summer droughts in the Ohio River Valley (Illinois, Indiana, and Ohio, USA) are not well understood. This study attempts to help fill this gap in Ohio Valley drought knowledge by using tree-ring chronologies from Illinois, Indiana, and Ohio to reconstruct summer (June through August) PDSI. We found that recent meteorological droughts of 1988 and 2012 are not unusual in the context of those reconstructed for the interval of 1680–2012. Droughts prior to 1895 (when the instrument-based record began) were more severe and lasted, on average, 1.5 times longer than those after 1895. The North American Drought Atlas represents droughts well for this region, but we found that drought severity was not homogeneous across the three sites. This indicates drought in the Ohio River Valley should be examined at a sub-regional level and suggests a need for a finer spatial representation of tree-ring chronologies in the Ohio Valley. Given the context of historical drought variability, the reconstructions suggest this region should be prepared for droughts that may be more severe and longer lasting than those recently observed.  相似文献   

7.
Droughts affect human well-being and the economy of countries across the world. Understanding the long-term evolution of droughts within a particular region will help in drought mitigation and adaptation plans, thereby reducing drought impact on the environment. This study examined the multidecadal trends in hydrological droughts at two stations along River Niger using 3-month, 6-month, and annual time scales. Hydrological drought events were identified using the streamflow drought index (SDI) between 1915 and 1990 based on the Theil-Sen slope and Mann-Kendall approaches. Across the timescales, extreme and severe droughts occurred in 1982/84 and 1983/84 with -2 ≤ Sd < -1.5. On an annual scale, the results from the annual SDI further showed that the 7th and 8th decades (1971−1990) recorded more drought events of varying degrees ranging from mild to extreme drought in both stations than in other decades. The last two decades (7th and 8th) further revealed the most extended hydrological drought duration from 1974/75 to 1988/89 for Baro and from 1979/80 to 1988/89 for Lokoja. The highest severity recorded at Baro was -15.56 and -14.26 at Lokoja. The prolonged duration of drought events across the stations and their associated yearly intensities suggests that more proactive measures are needed to ameliorate the hydrological drought impact in the study area.  相似文献   

8.
基于SPEI指数的近53年河南省干旱时空变化特征   总被引:4,自引:1,他引:3  
干旱在中国发生较为频繁,对农作物的影响较大。基于1961-2013年实测气象资料,利用标准化降水蒸散指数(SPEI)定量分析了河南省不同时间尺度干旱发生频率和发生强度,揭示了该地区干旱发生的时空演变特征及干旱发生的原因。结果表明:SPEI值能较好地反映河南省干旱的变化特征;随着时间尺度的减小,SPEI值波动幅度增加,干旱发生频率增加。近53年河南省干旱发生频率总体呈上升趋势,且各地区之间分布不均匀。周口地区发生频率最高,达35%以上;豫中和豫西地区最低,为26%左右。四季中以春、夏两季干旱发生最为严重,其次为秋季,冬季最弱。在年际变化方面,1966-1968年、1998-2000年和2011-2013年发生了大范围的持续干旱。干旱发生强度呈现豫北和豫西偏东地区高,豫东和豫南北部地区低特点;干旱发生强度最强的地区为安阳,为22.18%,最弱的地区为驻马店,为16.60%。  相似文献   

9.
气候变率影响下博茨瓦纳河流流量的时空变化   总被引:1,自引:1,他引:0  
The fourth assessment report of the IPCC highlights that the global average surface temperature is projected to increase by 1.8 to 4.0℃ by the year 2100 compared to current climate. Given that climate is the most important driver of the hydrological cycle, the rise in temperature could cause changes in occurrence patterns of extreme hydrologic events like streamflow droughts. An increase in frequency and severity of these events could pose seri-ous challenges for sustainable management of water resources particular in arid regions. However, the understanding of water resources dynamics and the possible impacts of climate change on these dynamics is hindered by uncertainties in climate change models and com-plex hydrological responses of streams and catchments to climatic changes. Therefore ob-servational evidence of streamflow dynamics at the local scale could play a crucial role in addressing these uncertainties and achieving a fuller reconciliation between model-based scenarios and ground truth. This paper determines spatial and temporal changes in stream-flow volumes and their association with climatic factors based on the non-parametric Mann-Kendall test and ANOVA to determine possible changes in streamflow over the years and their relation to climatic factors. Streamflow is generally stochastic highlighting the im-portance of factoring in temporal flow variability in water resources planning. There is no clear evidence that changes in climatic variables are related to streamflow behaviour.  相似文献   

10.

The increasing demand for water in developing countries, like India, requires efficient water management and resource allocation. This is crucial to accurately assess and predict hydrological processes such as streamflow, drought, and flood. However, simulations of these hydrologic processes from various hydrological models differ in their accuracy. By analyzing different characteristics of hydrological models, selection scores can be used to select the best model for the intended purpose based on their inherit strengths (i.e., some models are better for streamflow prediction). In this study, 13 different criteria were used for the model selection scores including temporal and spatial resolutions, and processes involved. Thereafter, based on different scores, we selected two different hydrological models for streamflow prediction in the Kangsabati River Basin (KRB) in eastern India, namely (1) Génie Rural à 4 paramètres Journalier (GR4J), a conceptual model, and (2) Variable Infiltration Capacity (VIC), a semi-distributed model. The models were calibrated against the daily observed streamflow at upper KRB (Reservoir) and lower KRB (Mohanpur) from 2000 to 2006 and validated during the period from 2008 to 2010. Despite the differences in model structure and data used, both models simulated streamflow at a daily time scale with Nash–Sutcliffe coefficient of 0.71–0.82 for the VIC model and 0.63–0.71 for the GR4J. Due to the simpler structure, parsimonious nature, fewer parameters, and reasonable accuracy, the results suggest that a conceptual rainfall—runoff model like GR4J can be used in data-deficient conditions.

  相似文献   

11.
The objective of this paper is to evaluate trends and spatial patterns of drought incidence across the Omo‐Ghibe River Basin using monthly rainfall data from eight stations for the period 1972–2007. It also aims to estimate the probability of drought episodes for a 100‐year period. Drought indices were generated using the Standard Precipitation Index (SPI) computed at 3‐, 6‐, 12‐ and 24‐month time‐steps for three intensity classes: moderate, severe and extreme drought events. The Mann–Kendall's trend test and Sen's slope estimator were employed to detect temporal changes. The results show complex spatial patterns on the frequency and magnitude of drought events across the study area for all timescales and intensity classes. However, the total number of drought events for the three intensity classes for all timescales were larger in the southern lowlands, where there exists a serious water scarcity for the rain‐fed pastoral system, than in the northeastern part (around Wolaita Sodo area). In contrast to this, the longest and most extreme (SPI < ?4.0) drought events for all timescales were observed at Wolaita Sodo station. In a 100‐year period one could expect 57–69 drought events with 3 months' duration, 19–34 events with 6 months' duration, 9–16 events with 12 months' duration and 5–9 events with 24 months' duration. The SPI values show negative rainfall anomalies in the 1980s while positive anomalies have occurred in the 1990s and 2000s, which implies tendency towards decreasing drought events. The Mann–Kendall's trend test for the 12‐ and 24‐month timescales and for seasonal events also confirms this general trend.  相似文献   

12.
Analysis of data collected between 1950 and 1995 in the state of Indiana indicates that the state experiences an average of nearly 19 tornadoes each year, which occur on approximately 8 or 9 days during an average year. Analysis of storm dimensions indicates that the annual probability of a point location in Indiana being impacted by a tornado is 1.4 × 10-4 per year. The largest number of the more intense tornadoes (F2 and higher) typically occur from March to June, during the afternoon and evening, although tornadoes have been observed in each month of the year and each hour of the day. Inter-annual variability of tornadic events in Indiana is large and may reflect both physical causes (e.g., the variability of cyclone passages or jet stream location) and recording bias (e.g., increased public awareness during the 1950s). Using the data set from Indiana, statistical analyses of the temporal and spatial variability of tornadoes are undertaken. Analyses of tornado reports by county indicate that, in addition to area and population, surface roughness is a significant determinant of event frequency. Analyses presented herein also indicate that in contrast to previous studies, (1) no statistically significant hebdomadal cycle of tornado reporting is evident in the data and (2) the diurnal cycle of tornado records is evident for all F-scale classes and is not confined largely to the weak tornado categories. Analyses of the physical dimensions and F-scale ratings of tornadoes in Indiana indicate that there has been a decline in reported tornado intensity, width, and length between 1950 and 1995. These changes are in accord with evidence of a decreasing number of reports of strong and violent tornadoes across the United States over this period and appears to be principally a result of reporting biases at the beginning of the record. [Key words: tornado climatology, temporal and spatial variability, reporting bias.]  相似文献   

13.
14.
基于马尔科夫模型的新疆水文气象干旱研究   总被引:2,自引:0,他引:2  
在气象干旱SPI和水文干旱SRI的二维变量干旱状态的研究基础上,通过一阶马尔科夫链模型对二维变量干旱状态进行频率、重现期和历时分析,并预测未来非水文干旱到水文干旱的概率,研究结果表明:(1)开都河、和田河在干旱形成中危害大,阿克苏河在干旱演变中危害大,开都河和叶尔羌河在干旱持续中危害大。开都河和叶尔羌河主要以气象水文干旱为主,和田河和阿克苏河以水文干旱为主。(2)开都河连续湿润或者干旱的概率最大,状态2与状态4、状态5的相互转移概率低,和田河和开都河状态4不能一步转移到状态2。(3)在长期干旱预测中,塔河流域从状态2达到状态4或者状态5的概率最低,开都河(或和田河)从非水文干旱状态到状态4的概率最大(或最小),从非水文干旱状态到状态5的概率最小(或最大)。  相似文献   

15.
1960-2009年西南地区极端干旱气候变化(英文)   总被引:9,自引:1,他引:8  
Based on the daily data of temperature and precipitation of 108 meteorological stations in Southwest China from 1960 to 2009, we calculate the monthly and yearly surface humid indexes, as well as the extreme drought frequency. According to the data, the temporal and spatial characteristics of the extreme drought frequency in inter-annual, inter-decadal, summer monsoon period and winter monsoon period are analyzed. The results are indicated as follows. (1) In general, the southwestern Sichuan Basin, southern Hengduan Mountains, southern coast of Guangxi and northern Guizhou are the areas where the extreme drought frequency has significantly increased in the past 50 years. As for the decadal change, from the 1960s to the 1980s the extreme drought frequency has presented a decreasing trend, while the 1990s is the wettest decade and the whole area is turning wet. In the 2000s, the extreme drought frequency rises quickly, but the regional differences reduce. (2) During summer monsoon period, the extreme drought frequency is growing, which generally occurs in the high mountains around the Sichuan Basin, most parts of Guangxi and "the broom-shaped mountains" in Yunnan. It is distinct that the altitude has impacts on the ex-treme drought frequency; during winter monsoon period, the area is relatively wet and the extreme drought frequency is decreasing. (3) During summer monsoon period, the abrupt change is observed in 2003, whereas the abrupt change during winter monsoon period is in 1989. The annual extreme drought frequency variation is a superposition of abrupt changes during summer monsoon and winter monsoon periods. The departure sequence vibration of annual extreme drought frequency is quasi-5 years and quasi-12 years.  相似文献   

16.
While speculation exists on global and regional climate change for temperature and precipitation, relatively little research is available on snowfall and its changes. Twenty-six sites were selected to describe and analyze various characteristics of snowfall in Pennsylvania from 1950–1951 through 1989–1990. Overall, the state experienced a significant stepwise change in seasonal snowfall total during this period. Abnormally high seasonal totals prevailed from 1957–1958 through 1971–1972. This rise in snowfall was accompanied by colder-than-normal temperatures and a dramatic increase in large daily snow events. Principal components analysis (PCA) revealed that the seasonal temporal patterns were not uniform across the state. The PCA revealed four distinct seasonal regions. These regions exhibited everything from nearly linear increases and decreases over time to cyclical formations. PCA performed on the months of November through April each unveiled between three and five separate temporal regions. PCA analyses generally identified an eastern region, a north-central region, and a western region across Pennsylvania. [Key words: regionalization, principal components, variability, snowfall, climate change, Pennsylvania.]  相似文献   

17.
基于SPEI法的陇东地区近50 a干旱化时空特征分析   总被引:4,自引:0,他引:4  
选取陇东地区近50 a平均逐月降水和气温数据,采用Mann-Kendall方法、反距离加权插值(IDW)、功率谱分析、标准化降水蒸散发指数(SPEI)等方法分析了陇东地区近50 a来干旱变化的时空特征。研究显示:近50 a来陇东地区干旱化趋势非常明显,特别是20世纪90年代以来干旱趋势显著。持续干旱事件次数增多,持续干旱累积时间增长,以春夏连旱、伏秋连旱的次数增多为显著特征。发生干旱的周期在不同的时间尺度上表现不一致,随着时间尺度的增长,干旱出现的周期也在变长。干旱发生频率不断加快,尤其是在20世纪90年代以来,极端干旱事件的频率显著上升。近50 a来干旱频率较高的区域在环县西北部和六盘山以西静宁等地,干旱高频区逐步向中南部和东部转移。通过与其他方法对比分析和历史资料比对,证明SPEI在陇东地区有较好的适用性。  相似文献   

18.
气候变化和人类活动对中国地表水文过程影响定量研究   总被引:2,自引:0,他引:2  
刘剑宇  张强  陈喜  顾西辉 《地理学报》2016,71(11):1875-1885
利用中国372个水文站月径流数据(1960-2000年)及41个水文站年径流数据(2001-2014年),采用基于Budyko假设的水热耦合平衡方程,构建气候变化和人类活动对径流变化影响定量评估模型,在Penman-Monteith潜在蒸发分析基础上,进一步分析气象因子对径流变化的弹性系数,量化气候变化和人类活动对径流变化的影响。结果表明:① 中国北方地区流域径流变化对各气象因子弹性系数明显大于中国南方地区。就全国而言,径流变化对各因子的弹性系数为:降水>土地利用/土地覆盖变化(LUCC)>相对湿度>太阳辐射>最高气温>风速>最低气温;② 1980-2000年,气候变化总体上有利于增加中国年径流量,而降水对年径流量增加的贡献最为显著;③ 1980-2000年,中国南方流域中,气候变化对年径流变化的影响以增加作用为主,而北方流域,以减少年径流作用为主。对中国大多数流域径流变化而言,人类活动的影响主要以减少年径流量为主。2001-2014年,气候变化以减少径流量为主,人类活动对径流变化的影响程度明显增强,气候变化与人类活动对径流变化的贡献率分别为53.5%、46.5%。该研究对气候变化与人类活动影响下,中国水资源规划管理、防灾减灾及保障水资源安全具有重要理论与现实意义。  相似文献   

19.
Freshwater resources are particularly limited in the Southeastern United States. In recent years, severe summer droughts have placed substantial strain on municipal and industrial water resources, emphasizing the need for further research on the causes of long-term moisture deficits. Previous research has identified a Southeast drought region and specific low-frequency ocean-atmosphere influences on drought. In this article, we identify three distinct subregions of low-frequency summer drought variability in the Southeastern United States using principal components analysis. Multidecadal drought variability is most pronounced in the Southeastern Atlantic Coastal States (SEACS) subregion. The SEACS drought variability is significantly associated with ocean-atmosphere variability in the Atlantic and Pacific basins. The significance of ocean-atmosphere influences on drought in the Southeast is spatially confined within only the SEACS subregion. The Eastern Gulf States (EGS) subregion exhibits a long-term increase in summer moisture that is significantly associated with Northern Hemisphere surface temperature increases during the last century. The peninsular Florida subregion is characterized by high-frequency drought variability that is not associated with any of the climate indexes included in this study.  相似文献   

20.
We investigated how both droughts and dzuds (severe winter weather) control livestock mortality in a non-equilibrium steppe ecosystem of Mongolia, Gobi Three Beauty National Park. These steppe ecosystems have developed under high interannual variability of rainfall and nomadic grazing systems. Interannual precipitation variation was 39%, with 128 mm mean annual precipitation. The effect of climate variability and extreme events on livestock mortality is a critical aspect for the Mongolian economy. Analysis of drought and precipitation variability on livestock mortality rate was not significantly influenced by the index of mean annual precipitation and annual winter temperature. Overall, unlike hot dry regions, pastoral livestock mortality in the cold dry regions was affected more by dzuds and annual growing seasonal rain than by droughts. Dzuds can be frequent events, occurring as often as once every 2 and 3 years within a decade. The average annual livestock mortality for the combined drought and dzuds years (18%) was 4.8% greater than the years with dzuds alone, and 7% greater than in years with only drought. Thus livestock mortality appears to be more sensitive to dzuds than to droughts, and that dzuds contributes more to livestock mortality even years where combined drought and winter storms occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号