首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
长江上游干支流悬移质含沙量的变化及其原因   总被引:3,自引:2,他引:1  
许炯心  孙季 《地理研究》2008,27(2):332-342
河流含沙量的变化是流域自然与人文因子变化的反映。以长江上游干支流1956~2000年的水沙和降水资料为基础,运用时间系列分析和统计分析方法进行研究。研究发现,干流宜昌站和4条主要支流含沙量的变化不是同步的,4条主要支流含沙量的变化呈现出复杂变化图形。流域面平均年降水量的变化,仅能解释含沙量变化的15.86%~37.21%,说明气候因素的变化不是长江干支流含沙量变化的主要原因。运用双累积曲线分析方法,研究了人类活动 (如水库修建,交通、矿山和城市建设,水土保持,植被破坏和恢复等 )对含沙量变化的影响。人类活动影响在不同的流域有较大差异。与4条主要支流相比,长江干流宜昌站含沙量的变化较小,反映了尺度效应的影响。多元回归分析表明,屏山 、高场、北碚、武隆4站的年均含沙量变化对宜昌站年均含沙量变化的贡献率分别为28.5%、12.6%、44.2%和14.7%。  相似文献   

2.
长江上游重点产沙区产沙量对人类活动的响应   总被引:13,自引:2,他引:11  
许炯心  孙季 《地理科学》2007,27(2):211-218
对金沙江屏山站、嘉陵江北碚站、宜昌站20世纪50年代以来的输沙量和含沙量进行分析。结果表明,在年径流量相同的情况下,由于大规模矿山、钢铁工业、交通建设增加水土流失,屏山站1976~1996年年产沙量要高于1954~1976年。与此相反,由于修筑水库、塘坝拦沙,修建梯田、恢复植被减少侵蚀,北碚站1983~1996年年产沙量要大大低于1954~1982年;宜昌站1985~1996年年产沙量也低于1954~1984年。北碚、宜昌两站都存在一个使水利、水土保持减沙量为0的年径流量临界值,北碚站和宜昌站这一临界值分别为1142×108m3和4800×108m3。  相似文献   

3.
黄河中游悬移质泥沙粒径与流域环境的关系   总被引:4,自引:0,他引:4  
刘爱霞  卢金发 《地理学报》2002,57(2):232-237
以黄河中游多沙粗沙区为研究区,在流域泥沙粒径、降雨、地面物质组成、地面形态、植被和高含沙水流等资料采集的基础上,采用“环境要素法”和多元回归分析来阐明泥沙粒径空间分异的机理。研究表明,随降雨不均匀系数的减小,断面最大含沙量的减小,流域内黄土覆盖面积的增大,以及植被盖度的增大和沟谷密度的减小,悬移质泥沙粒径趋于变细,反之,趋于变粗。其中,流域地面物质对泥沙粒径组成起最重要的控制作用,其次是植被,高含沙水流、沟谷密度和降雨影响作用相对较小。  相似文献   

4.
电站建设对澜沧江-湄公河泥沙年内分配的影响   总被引:2,自引:0,他引:2  
采用澜沧江漫湾电站上游旧州站和下游允景洪、清盛站1987~2003 年逐月悬移质泥沙含量实测资料, 分析对比了三站年内泥沙分配不均匀系数、集中度和集中期、变化幅度等特性。将上述参数与澜沧江上游干流漫湾与大朝山电站建设的响应进行关联研究, 分析电站建设进程对河道输沙变化的驱动作用。结果表明: (1) 旧州水文站泥沙年内分配与区域气候变化 (降水) 趋势一致, 研究时段内不均匀性系数呈上升趋势, 维持天然河道输沙特性; 允景洪和 清盛水文站的泥沙年内分配不均匀性系数对电站建设等人类活动的响应程度不一致, 允景洪站泥沙含量不均匀系数先减小后急剧增加, 而清盛站呈微弱减小态势。(2) 旧州水文站泥沙年 内分配集中度及集中期基本无变化; 允景洪与清盛水文站的泥沙年内分配集中度变化较大, 泥沙集中期在在电站施工的高峰期(1987~1992 年、1997~2003 年) 后延, 且不同步, 允景洪在漫湾施工期后延5~6 天, 而清盛则后延将近半个月,而在大朝山施工期, 允景洪的后延响应 却明显于清盛。(3) 旧州站相对、绝对泥沙变幅逐时段递增, 允景洪站年内最大与最小月泥沙含量的相对、绝对变化幅度均减小, 清盛站泥沙含量的相对变化幅度却先增后减, 绝对变化 幅度则一直减小。三站泥沙年内极值变幅以及电站建设前后的响应差异, 说明三站泥沙变化的驱动因子有明显不同。这些关于泥沙含量年内分配特征规律的发现, 为研究澜沧江干流电站建设对上下游泥沙变化以及跨境影响的科学评价提供了新的佐证。  相似文献   

5.
黄河中游流域地貌形态对流域产沙量的影响   总被引:13,自引:7,他引:13  
卢金发 《地理研究》2002,21(2):171-178
在黄河中游地区 ,选择了 5 0多个面积约 5 0 0~ 2 5 0 0平方公里的水文测站流域 ,分别代表 6种不同自然地理类型 ,在流域沟壑密度、沟间地坡度小于 15°面积百分比等地貌形态指标量计的基础上 ,进行了流域产沙量与地貌形态指标相关分析。结果表明 ,对于不同类型流域 ,流域产沙量随流域地貌的变化遵循不同的响应规律 ,而且视流域其它下垫面环境条件的均一程度 ,其相关程度和响应速率各不相同。受地面物质、植被、地貌发育阶段等流域其它下垫面环境条件的制约 ,除沟壑密度外 ,流域产沙量与流域地貌形态的关系都没有人们以前所预期的好。  相似文献   

6.
怒江流域悬移质输沙时空分布特征及变化趋势   总被引:1,自引:0,他引:1  
刘新有  何大明 《地理学报》2013,68(3):365-371
利用怒江-萨尔温江上游地区怒江流域5 个水文站长序列日悬移质输沙与径流观测记录,运用Mann-Kendall 检验和R/S 分析等方法,分析了50 多年来(1956-2011) 怒江干流和支流南汀河输沙时空格局和变化特征及其与径流的关系.结果表明:(1) 怒江干流平均含沙量和输沙模数远小于支流南汀河,流域悬移质输沙率年际变异系数随控制面积增大而减小;(2) 怒江干流木城站悬移质输沙率小于其上游道街坝站,部分泥沙淤积在区间河床可能是其原因之一;(3) 怒江流域悬移质输沙年内分配极不均匀,干流悬移质输沙集中程度在月以上时间尺度高于支流南汀河,而在日时间尺度则低于支流南汀河;(4) 怒江干流和支流南汀河悬移质输沙率均呈明显上升趋势,且未来仍将延续上升趋势,二者的突变分别始于1987 年和1980 年;(5) 怒江干流中上游悬移质输沙与径流的相关性不显著,中下游、下游以及支流南汀河悬移质输沙与径流的相关性均显著.  相似文献   

7.
红水河流域输沙量变化及其影响因素   总被引:2,自引:2,他引:0  
红水河是珠江流域的主要泥沙来源,为了确定1955-2016年红水河流域输沙量变化特征及其影响因素,论文尝试采用有序聚类分析确定了流域输沙量变化的3个时期,并利用泥沙归因诊断分析计算了含沙量、径流系数和降雨因子在不同时期对输沙量变化的贡献程度,在此基础上进一步对影响输沙量变化的主要因素进行了分析。研究表明:1955-2016年间红水河流域输沙量存在1963和1991年2个突变点,在突变点前后输沙量存在明显变化,且这一变化主要受含沙量因子控制,人类活动是造成流域输沙量变化的根本原因。其中在1955-1991年间,红水河输沙量的上升主要由毁林开荒引起的流域水土流失面积增加所导致;而在1964-2016年间,水库修建使红水河流域输沙量减少了83.49%,而同时期植被覆盖度的增长贡献了输沙量减少的12.03%。将Wa TEM/SEDEM模型模拟结果与实测结果进行对比,同样发现1964-2016年输沙量变化的绝大部分(81.03%)由修建水库所贡献,而土地利用变化对输沙量减少的贡献相对较小(18.97%)。  相似文献   

8.
Measurements of discharge and suspended sediment and organic matter yield from nine different drainage basins on the island Disko in central West Greenland were carried out in the period 19–30 July 1997. A series of landscape properties (glacier cover, altitude, slope, aspect and vegetation cover) were measured for each drainage basin from a digital elevation model and a satellite image. Principal Component Analysis and regression statistics have been used to examine which landscape parameters dominate the measured discharges and yields. It is concluded that differences in suspended sediment and organic matter yield between the drainage basins can be explained by the measured morphometric properties while differences in water run-off can not. Glacier cover percentage and percent area above 800 m a.s.l. were the most important parameters influencing suspended sediment and organic matter yield in the drainage basins on Disko during the study period.  相似文献   

9.
This study explores the effects of hillslope mass failure on the sediment flux in the Waldemme drainage basin, Central Swiss Alps, over decadal time scales. This area is characterized by abundant landslides affecting principally flysch units and is therefore an important sediment source. The analysis concentrates on the Schimbrig landslide that potentially contributes up to 15% to the sediment budget of the Waldemme drainage basin. Volumetric changes are quantified using high-resolution elevation models that were extracted using digital photogrammetric techniques. Sediment discharge data were used to constrain the significance of the landslide for sediment flux in the channel network. The temporal extent of the photogrammetric analysis ranges from 1962 to 1998, including an earth slide event in 1994. The analyses reveal that during periods of low slip rates of the landslide, nearly all of the displaced sediments were eroded and supplied to the channel network. In contrast, during active periods, only a fraction of the displaced landslide mass was exported to the trunk stream. Interestingly, the 1994 earth slide event did not disturb the long-term sediment discharge pattern of the channel network, nor did it influence the sediment flux at a weekly scale. However, suspended sediment pulses correlate with higher-than-average precipitation events. This was especially the case in August 2005 when a storm event (> 100 years return period) triggered several debris flows and earth flows in the whole drainage basin and in the Schimbrig area. This storm did not result in a significant increase in the slip rates of the entire landslide's main body. It is therefore proposed that debris flows and earth flows perform the connectivity between hillslope processes (e.g. landsliding) and the trunk stream during and between phases of landslide activity in this particular setting.  相似文献   

10.
We study the interplay of various factors causing vertical grain-size changes in alluvial basins using a simple coupled model for sediment transport and downstream partitioning of grain sizes. The sediment-transport model is based on the linear diffusion equation; by deriving this from first principles we show that the main controls on the diffusivity are water discharge and stream type (braided or single-thread). The grain-size partitioning model is based on the assumption that the deposit is dominated by gravel until all gravel in transport has been exhausted, at which point deposition of the finer fractions begins. We then examine the response of an alluvial basin to sinusoidal variation in each of four basic governing variables: input sediment flux, subsidence rate, supplied gravel fraction, and diffusivity (controlled mainly by water flux). We find that, except in the case of variable gravel fraction, the form of the basin response depends strongly on the time-scale over which the variation occurs. There is a natural time-scale for any basin, which we call the ‘equilibrium time’, defined as the square of basin length divided by the diffusivity. We define ‘slow’ variations in imposed independent variables as those whose period is long compared with the equilibrium time. We find that slow variation in subsidence produces smoothly cyclic gravel-front migration, with progradation during times of low sedimentation rate, while slow variation in sediment flux produces gravel progradation during times of high sedimentation rate. Slow variation in diffusivity produces no effect. Conversely, we define ‘rapid’ variations as those whose period is short compared with the equilibrium time. Our model results suggest that basins respond strongly to rapid variation in either sediment flux or diffusivity; in both cases, deep proximal unconformities are associated with abrupt gravel progradation. This progradation occurs during times of either low sediment flux or high diffusivity. On the other hand, basin response to variation in subsidence rate gradually diminishes as the time scale becomes short relative to the equilibrium time. Each of the four variables we have considered - input sediment flux, subsidence, gravel fraction, and diffusivity - is associated with a characteristic response pattern. In addition, the time scale of imposed variations relative to the equilibrium time acts in its own right as a fundamental control on the form of the basin response.  相似文献   

11.
The Rio Negro has responded significantly in the Late Pleistocene and Holocene to lagged environmental changes largely associated with activity during the last glacial in the Amazon basin. On the basis of geological structure, the Rio Negro can be divided into six distinct reaches that each reflects very marked differential processes and geomorphological styles. No deposits of the Upper Pleniglacial were recognized in the field. The oldest recognizable Late Pleistocene alluvial unit is the Upper Terrace of Middle Pleniglacial age (ca. 65–25 ka) (reach I), tentatively correlated with the oldest terrace identified on the left bank of reach III. At that time, the river was mainly an aggradational bed load system carrying abundant quartz sand, a product of more seasonal conditions in the upper catchment. The late glacial (14–10 ka) is represented by a lower finer-grained terrace along the upper basin (reach I), which was recognized in the Tiquié, Curicuriarí, and Vaupes rivers. At that time, the river carried abundant suspended load as a response to climatic changes associated with deglaciation.Since about 14 ka, the river has behaved as a progradational system, infilling in downstream series a sequence of structurally controlled sedimentary basins or ‘compartments,’ creating alluvial floodplains and associated anabranching channel systems. Reach II was the first to be filled, then reach III, both accumulating mainly sand. Fine deposits increase downstream in reach III and become predominant in some anabranch islands of the distal reach. The lowermost reaches of the Negro (V and VI) have been greatly affected by a rising base level and associated backwater effect from aggradation of the Amazon during late glacial and recent times. Reach V has acted almost entirely as a fine sediment trap. The remarkable Anavilhanas archipelago is the product of Holocene deposition in the upper part of this sedimentary basin; however, suspended sediment load declined about 1.5 ka, prior to the lower part of this basin becoming infilled.The progradational behavior of the Rio Negro, filling tectonic basins as successive sediment traps with sand in the upper basins and fines in the downstream ones, illustrates how a large river system responses to profound changes in Late Quaternary base level and sediment supply. The most stable equilibrium conditions have been achieved in the Holocene in reaches IIb and IIIa, where an anabranching channel and erosional–relictual island system relatively efficiently convey water and sediment downstream. Reaches IIIb and V never achieved equilibrium conditions during the Holocene, characterised as they are today with incomplete floodplains and open water.  相似文献   

12.
无定河流域产沙量变化的淤地坝效应分析   总被引:2,自引:0,他引:2  
王随继  冉立山 《地理研究》2008,27(4):811-818
无定河流域1971~1989年的年均流量、悬移质含沙量及输沙率比1954~1970年的明显变小,而月均水沙过程曲线也发生了明显变化。上述水沙过程的变化受到1970年以来人类活动的强烈影响,而淤地坝建设是主因。为探讨淤地坝的减沙效应,提出淤地坝有效减沙面积这一概念,并拟合了动态变化的淤地坝有效减沙面积与年份之间的关系,发现该关系曲线与无定河流域各年代产沙量的变化情况相符。自1990年以来无定河流域淤地坝有效减沙面积呈明显递减趋势,导致了自上世纪90年代以来该流域的产沙量出现增大现象。为了抑制该流域的产沙量,势必需要加大淤地坝建设的力度。如果想使该流域的产沙量逐渐减少,则至少要使流域内年淤地坝有效减沙面积逐年增加。  相似文献   

13.
This paper analyses the factors which influence the presence or absence of tributary-junction fans in the Iberian Range, northern Spain. Two valleys were selected, both characterised by wide variations in lithology, altitude, land use and plant cover. Two groups of factors were studied: those related to the internal characteristics of the drainage basins, which particularly control sediment generation; and those related to the characteristics of the depositional area which control accommodation space and main river power. Among the internal factors, the development of alluvial fans was related to: (i) the capacity of the basin to yield large volumes of sediment, (ii) the occurrence of intense human pressure until recent times, a good indicator of sediment yield, and (iii) the capacity of the basin to quickly increase discharge during rainstorms (discharge density and torrentiality). It is suggested that the areas that were intensively cultivated in the past, and have therefore been affected by intense erosion, have played a decisive role on the development of alluvial fans. This would imply that many of these alluvial fans have a relatively recent origin, perhaps related to the beginning of a widespread deforestation. The basins without alluvial fans are characterised by relatively steep hillslope gradients (that is, slopes that never were subjected to historical cultivation), low drainage densities and dense forest and shrub cover, mostly coinciding with high altitude basins composed of quartzite and shale bedrocks. Regarding the external factors, the shape, size and longitudinal gradient of the main river to which the fans are tributary are the most relevant conditioning factors determining the development of alluvial fans.  相似文献   

14.
A sharp decrease in total suspended solids (TSS) concentration has occurred in the Mekong River after the closure of the Manwan Dam in China in 1993, the first of a planned cascade of eight dams. This paper describes the upstream developments on the Mekong River, concentrating on the effects of hydropower dams and reservoirs. The reservoir-related changes in total suspended solids, suspended sediment concentration (SSC), and hydrology have been analyzed, and the impacts of such possible changes on the Lower Mekong Basin discussed. The theoretical trapping efficiency of the proposed dams has been computed and the amount of sediment to be trapped in the reservoirs estimated. The reservoir trapping of sediments and the changing of natural flow patterns will impact the countries downstream in this international river basin. Both positive and negative possible effects of such impacts have been reviewed, based on the available data from the Mekong and studies on other basins.  相似文献   

15.
黄河中游降雨特性对泥沙粒径的影响   总被引:6,自引:3,他引:6  
卢金发  刘爱霞 《地理科学》2002,22(5):552-556
以黄河中游36个有泥沙粒径资料的水文测站流域为样本,在不同自然地理类型流域划分的基础上,建立了流域泥沙粒径特片与降雨特性的关系。结果表明,在不同类型流域,流域泥沙的粗细与降雨季节性变率和年际变率之间存在着相当好的线性正相关关系;而与年降雨量和降雨不均匀系数之间呈明显的非线性关系。流域地面物质、植被和地貌发育程序等下垫面环境因素对泥沙粒径特性与降雨特性之间关系起着十分重要的控制作用。不同类型流域曲线的斜率各不相同,在图中所处的位置也不相同。  相似文献   

16.
The Triassic Moenkopi Formation in the Salt Anticline Region, SE Utah, represents the preserved record of a low‐relief ephemeral fluvial system that accumulated in a series of actively subsiding salt‐walled mini‐basins. Development and evolution of the fluvial system and its resultant preserved architecture was controlled by the following: (1) the inherited state of the basin geometry at the time of commencement of sedimentation; (2) the rate of sediment delivery to the developing basins; (3) the orientation of fluvial pathways relative to the salt walls that bounded the basins; (4) spatially and temporally variable rates and styles of mini‐basin subsidence and associated salt‐wall uplift; and (5) temporal changes in regional climate. Detailed outcrop‐based tectono‐stratigraphic analyses demonstrate how three coevally developing mini‐basins and their intervening salt walls evolved in response to progressive sediment loading of a succession of Pennsylvanian salt (the Paradox Formation) by the younger Moenkopi Formation, deposits of which record a dryland fluvial system in which flow was primarily directed parallel to a series of elongate salt walls. In some mini‐basins, fluvial channel elements are stacked vertically within and along the central basin axes, in response to preferential salt withdrawal and resulting subsidence. In other basins, rim synclines have developed adjacent to bounding salt walls and these served as loci for accumulation of stacked fluvial channel complexes. Neighbouring mini‐basins exhibit different styles of infill at equivalent stratigraphic levels: sand‐poor basins dominated by fine‐grained, sheet‐like sandstone fluvial elements, which are representative of nonchannelised flow processes, apparently developed synchronously with neighbouring sand‐prone basins dominated by major fluvial channel‐belts, demonstrating effective partitioning of sediment route‐ways by surface topography generated by uplifting salt walls. Reworked gypsum clasts present in parts of the stratigraphy demonstrate the subaerial exposure of some salt walls, and their partial erosion and reworking into the fill of adjoining mini‐basins during accumulation of the Moenkopi Formation. Complex spatial changes in preserved stratigraphic thickness of four members in the Moenkopi Formation, both within and between mini‐basins, demonstrates a complex relationship between the location and timing of subsidence and the infill of the generated accommodation by fluvial processes.  相似文献   

17.
无定河流域不同地貌区水沙过程对比   总被引:8,自引:5,他引:3  
王随继 《地理研究》2007,26(3):508-517
为了查明人为影响程度较低时期无定河流域内不同地貌区的水沙过程及其变化规律,选取1970年以前一段时期该流域内风沙区和黄土丘陵沟壑区河流的有关水文站的水文泥沙实测数据进行对比分析。结果表明,风沙区河流的流量变率较黄土丘陵沟壑区的小;风沙区河流的含沙量远小于黄土丘陵沟壑区河流的含沙量。黄土丘陵沟壑区河流具有极高的输沙率,而风沙区河流的输沙率微不足道。风沙区和黄土丘陵沟壑区河流的产流模数基本相近,但产沙模数非常悬殊,前者的产沙模数很小,为118.58~725.38t /km2 · a,而后者的达到1879.36~25112.15t /km2 · a。显然,无定河流域黄土丘陵沟壑区的河流是侵蚀产沙的主要来源区,因而是水土保持工作的重点区域。  相似文献   

18.
Based on the analysis of suspended sediment elements at estuaries, influence of human activities and estuarine regulation projects on the turbidity maximum zone was studied according to the measurement data between 1959 and 2011. It was found that human activities had little effect on the seaward water while the sharp decrease of sediment volume and concentration in runoff led to the sharp decrease of turbidity maximum zone in the estuary. The concentration at outside sea and Hangzhou Bay did not change, and that along the Subei coast also decreased a little, which had no influence on the turbidity maximum zone. Compared with the concentration between 1959 and 1999, the peak of concentration moved upstream in the estuary, and the concentration in 2000-2009 decreased by about 24.73% with a narrower variation range along the river to the sea. The suspended sediment concentration in North Passage was low in upstream and downstream because of the decrease of seaward sediment and coarsening of bed material, while it was relatively high in the middle due to the influence of sediment cross the north jetty.  相似文献   

19.
Based on the analysis of suspended sediment elements at estuaries, influence of human activities and estuarine regulation projects on the turbidity maximum zone was studied according to the measurement data between 1959 and 2011. It was found that human activi- ties had little effect on the seaward water while the sharp decrease of sediment volume and concentration in runoff led to the sharp decrease of turbidity maximum zone in the estuary. The concentration at outside sea and Hangzhou Bay did not change, and that along the Subei coast also decreased a little, which had no influence on the turbidity maximum zone. Com- pared with the concentration between 1959 and 1999, the peak of concentration moved up- stream in the estuary, and the concentration in 2000-2009 decreased by about 24.73% with a narrower variation range along the river to the sea. The suspended sediment concentration in North Passage was low in upstream and downstream because of the decrease of seaward sediment and coarsening of bed material, while it was relatively high in the middle due to the influence of sediment cross the north jetty.  相似文献   

20.
The Nanga Parbat Himalaya presents some of the greatest relief on Earth, yet sediment production and denudation rates have only been sporadically addressed. We utilized field measurements and computer models to estimate bank full discharge, sediment transport, and denudation rates for the Raikot and Buldar drainage basins (north slope of Nanga Parbat) and the upper reach of the Rupal drainage basin (south slope).The overall tasks of determining stream flow conditions in such a dynamic geomorphic setting is challenging. No gage data exist for these drainage basins, and the overall character of the drainage basins (high relief, steep flow gradients, and turbulent flow conditions) does not lend itself to either ready access or complete profiling.Cross-sectional profiles were surveyed through selected reaches of these drainage basins. These data were then incorporated into software (WinXSPRO) that aids in the characterization (stage, discharge, velocity, and shear stress) of high altitude, steep mountain stream conditions.Complete field measurements of channel depths were rarely possible (except at several bridges where the middle of the channel could actually be straddled and probed) and, when coupled with velocity measurements, provided discrete points of field-measured discharge calculations. These points were then used to calibrate WinXSPRO results for the same reach and provided a confidence level for computer-generated results.Flow calculations suggest that under near bank full conditions, the upper Raikot drainage basin produces discharges of 61 cm and moves about 11,000 tons day−1 (9980 tons day−1) of sediment through its channel. Bank full conditions on the upper portion of the Rupal drainage basin generate discharges of 84 cm and moves only about 3800 tons day−1 (3450 tons day−1) of sediment. Although the upper Rupal drainage basin moves more water, the lower slope of the drainage basin (0.03) generates a much smaller shear stress (461 Pa) than does the higher slope (0.12) of the upper Raikot drainage basin (1925 Pa).Dissolved and suspended sediment loads were measured from water/sediment samples collected throughout the day and night over a period of 10 days at the height of the summer melt season but proved to be a minor variable in transport flux. Channel bed loads were measured using a pebble count method of bank material and then used to generate ratings curves of bed loads relative to discharge volumes. When coupled with discharge data and basin area, mean annual sediment yield and denudation rates for Nanga Parbat are produced. Denudation rates calculated in this fashion range from 0.2 mm year−1 in the slower, more sluggish Rupal drainage basin to almost 6 mm year−1 in the steeper, faster flowing Raikot and Buldar drainage basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号