共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract Carbon isotope fluctuations of sedimentary organic matter along the two geological traverses in the Yezo Group, Hokkaido, northern Japan, elucidate a detailed chemostratigraphy for the Cenomanian Stage on the northwestern Pacific margin. Visual characterization of the kerogen from mudstone samples shows that the major constituents of sedimentary organic matter originated as terrestrial higher plants. The atomic hydrogen/carbon ratios of the kerogen suggest that the original δ13C values of terrestrial organic matter (TOM) have not been affected significantly by thermal diagenesis. The patterns in two δ13CTOM curves are similar and independent of changes in lithology and total organic carbon contents, which suggests that TOM was mixed sufficiently before the deposition in the Yezo forearc basin for the δ13C composition having been homogenized. In addition, this implies that the Hokkaido δ13CTOM profiles represent the averaged temporal δ13C variations of terrestrial higher‐plant vegetation in the hinterlands of northeast Asia during Cenomanian time. Three shorter‐term (ca. 0.1 my duration) positive‐and‐negative δ13CTOM fluctuations of ∼1‰ are present in the Lower to Middle Cenomanian interval in the Yezo Group. On the basis of the age‐diagnostic taxa (ammonoids, inoceramids and planktic foraminifers), these discrete δ13CTOM events are interpreted to be correlated with those in the δ13C curves of pelagic carbonates from European basins. The correlation of δ13C events between the European and Yezo Group sections suggests that the shorter‐term δ13C fluctuations in Cenomanian ocean‐atmosphere carbon reservoirs are useful for global chemostratigraphic correlation of marine strata. In particular, the correlation of δ13C fluctuations of the so‐called ‘Mid‐Cenomanian event’ (MCE) implies: (i) the δ13C variations of global carbon reservoir during the MCE are precisely recorded in the δ13CTOM records; and (ii) the MCE δ13CTOM event is an efficient chronostratigraphic index for the Lower/Middle Cenomanian boundary of the Mid‐Cretaceous sequences. 相似文献
2.
The Yezo Group has a wide longitudinal distribution across Hokkaido, northern Japan. It represents a Cretaceous (Early Aptian–Late Maastrichtian) and Late Paleocene forearc basin‐fill along the eastern margin of the paleo‐Asian continent. In the Nakagawa area of northern Hokkaido, the uppermost part of the Yezo Group consists of the Hakobuchi Formation. Along the western margin of the Yezo basin, 24 sedimentary facies (F) represent 6 facies associations (FA), suggesting prevailing storm‐dominated inner shelf to shoreface environments, subordinately associated with shoreface sand ridges, outer shelf, estuary and fluvial environments. The stacking patterns, thickness and facies trends of these associations allow the discrimination of six depositional sequences (DS). Inoceramids Sphenoceramus schmidti and Inoceramus balticus, and the ammonite Metaplacenticeras subtilistriatum, provide late Early to Late Campanian age constraints to this approximately 370‐m thick final stage of deposition and uplift of the Yezo forearc basin. Six shallow‐marine to subordinately non‐marine sandstone‐dominated depositional sequences include four 10 to 110‐m thick upward‐coarsening regressive successions (FS1), occasionally associated with thin, less than 10‐m thick, upward‐fining transgressive successions (FS2). The lower DS1–3, middle DS4–5 and upper DS6 represent three depositional sequential sets (DSS1–3). These eastward prograding and westward retrograding recurring shallow‐marine depositional systems may reflect third‐ and fourth‐order relative sealevel changes, in terms of sequence stratigraphy. 相似文献
3.
Abstract This paper provides untilted paleomagnetic data obtained from the early Miocene strata around the Kanazawa‐Iozen area, in the eastern part of south‐west Japan. A thick pile of volcaniclastics and marine transgressive sediments underlie the area; they were deposited in the early stage of the Japan Sea opening event. Progressive thermal demagnetization tests isolated stable primary magnetic vectors from eight sites in the upper part of the Iozen Formation. Overall, the tilt‐corrected mean direction of this unit is D = 36.4°, I = 51.6° and α95 = 12.1. Together with a published paleomagnetic and chronological database, the present results suggest that clockwise rotation of south‐west Japan, linked to the back‐arc opening, commenced in the early Miocene and accelerated at the same time as rapid subsidence along the Japan Sea coast. Post‐opening, differential rotation within the eastern part of south‐west Japan is assumed, based on selected paleomagnetic data from the latest Early Miocene. 相似文献
4.
SHEN Zhongyue CHEN Hanlin FANG Dajun DING Jinghai ZHANG Shiben HUANG Zhibin & LI Meng . Department of Earth Sciences Zhejiang University Hangzhou China . Tarim Oil Field Company PetroChina Company Limited Korla China 《中国科学D辑(英文版)》2005,48(3):406-416
Southwest Tarim (hereafter SW Tarim) is one of afew areas that well developed Cretaceous marinesedimentary rocks in China [1]. The Cretaceous marinesediments are stretched in front area along the Tian-shan and Kunlun Mountains. Toward the center ofTarim Basin, the Cretaceous sediments are buried bygreat thickness of Tertiary and Quaternary sedimentswith little exposure. Compared with the Cretaceousterrestrial strata of north Tarim, the Cretaceous marinestrata of SW Tarim continue and d… 相似文献
5.
Abstract Neotectonic crustal deformation in central Japan near a triple-junction of plates is investigated on the basis of paleomagnetic data. The progressive thermal demagnetization test isolated characteristic remanent magnetization from 18 sites of the early Quaternary Eboshidake volcanic rocks erupted around the termination of active strike-slip faults. The site-mean directions show considerably large scatter in declinations, and easterly deflection in average (Dm = −161.7°). On the basis of inclination statistics, measured inclinations (Im = −48.9°, δI = 6.6°) are concordant with an expected value from latitude of the study area. Because the sampling was planned to cover a wide stratigraphic range and eliminate the effect of geomagnetic secular variation, an easterly deflection is attributed to clockwise rotation around vertical axis. Together with previous paleomagnetic data, the present study indicates that clockwise-rotated areas in central Japan are aligned on a northeast–southwest recent shear zone delineated through geodetic survey. Deflection and scatter of paleomagnetic declinations of the Eboshidake volcanic rocks are much greater than those extrapolated from a recent strain rate, and might be explained by complicated motion anticipated at fault terminations and/or enhanced crustal rotation under elevated temperatures around a Quaternary volcanic province. 相似文献
6.
Formation and deformation processes of the late Paleogene sedimentary basins related to a strike–slip fault system in southern central Hokkaido are described by a combination of paleomagnetic study and numerical analysis. After correction of the Miocene counter‐clockwise rotation associated with back‐arc opening of the Japan Sea, paleomagnetic declination data obtained from surface outcrops in the Umaoi and Yubari areas show significant easterly deflections. Although complicated differential rotation is anticipated as a result of recent thrust movements, clockwise rotation in the study areas is closely linked with development of the Paleogene Minami‐naganuma Basin as a pull‐apart depression along the north–south fault system. Numerical modeling suggests that 30 km of strike–slip is required to restore the distribution and volume of the Minami‐naganuma Basin. The relative slip rate on the long‐standing fault system is about 10 mm/yr, which corresponds to global‐scale plate motion. It has inevitably caused regional rearrangement of the eastern Eurasian margin. A rotation field simulated by simplified dextral motion using dislocation modeling basically accords with the paleomagnetic data around the pull‐apart basin. 相似文献
7.
Abstract An accretionary complex, which contains fragments of a remnant island arc, was newly recognized in the Cretaceous accretionary terranes in Hokkaido, Japan. It consists of volcanics, volcanic conglomerate, intermediate to ultramafic intrusive rocks with island-arc affinity including boninitic rocks, accompanied by chert and deformed terrigenous turbidites. Compared with the results of modern oceanic surveys, the preserved sequence from island-arc volcanics to chert, via reworked volcanics, is indicative of intraoceanic remnant arc, because the sequence suggests an inactive arc isolated within a pelagic environment before its accretion. The age of a subducting oceanic crust can be discontinuous before and after a remnant-arc subduction, resulting in abrupt changes in accretion style and metamorphism, as seen in Cretaceous Hokkaido. Subduction of such an intraoceanic remnant arc suggests that the subducted oceanic plate in the Cretaceous was not an extensive oceanic plate like the Izanagi and/or Kula Plates as previously believed by many authors, but a marginal basin plate having an arc–back-arc system like the present-day Philippine Sea Plate. 相似文献
8.
Plotosaurus is a highly aquatically adapted mosasaur, which is supposed to inhabit the deep ocean basin. The geographic occurrence of this genus has been limited only to the west coast of North America. In this study, two Plotosaurus-type mosasaur caudal vertebrae derived from the Upper Cretaceous Nakaminato Group in Ibaraki Prefecture, Japan, are described with discussion on the paleobiogeographic significance of the Late Cretaceous mosasaur fauna in the Northwestern Pacific region. The two specimens are an intermediate caudal vertebra found in a beach cobble, which presumably originated from the Hiraiso Formation (upper Campanian), and a terminal caudal vertebra found in situ in the lower Isoai Formation (lower Maastrichtian). Because their relative centrum lengths (ratio of centrum length/centrum height, ~0.7) are very close to that of Plotosaurus, the specimens are referred to cf. Plotosaurus sp. The two specimens provide the first evidence that highly specialized Plotosaurus-type mosasaurs inhabited the Northwestern Pacific Ocean, suggesting that such forms had a wider distribution than previously recognized and might have existed since the late Campanian in the Northwestern Pacific Ocean. 相似文献
9.
HUANG Baochun WANG Yongcheng &ZHU Rixiang Institute of Geology Geophysics Chinese Academy of Sciences Beijing China 《中国科学D辑(英文版)》2004,47(6):540-550
~~New paleomagnetic and magnetic fabric results for Early Cretaceous rocks from the Turpan intramontane basin,east Tianshan,northwest China~~ 相似文献
10.
Depositional environments and maturity evaluated by biomarker analyses of sediments deposited across the Cenomanian–Turonian boundary in the Yezo Group,Tomamae area,Hokkaido, Japan 下载免费PDF全文
Takuto Ando Ken Sawada Hideto Nakamura Keita Omatsu Reishi Takashima Hiroshi Nishi 《Island Arc》2017,26(1)
Biomarker analyses for evaluating maturity of organic matter and depositional environments such as redox conditions, were performed in sediments across the Cenomanian–Turonian boundary (CTB) in the Saku Formation of the Yezo Group distributed along the Shumarinai‐gawa River and the Omagari‐zawa River, both in the Tomamae area, Hokkaido, Japan. Maturity indicators using steranes and hopanes, show that organic matter in sediments from the Shumarinai‐gawa and Omagari‐zawa sections are of lower maturity than those from the Hakkin‐gawa section (Oyubari area). Moreover, the ββ hopane ratios clearly show that the maturity of the Shumarinai‐gawa samples is lower than that of the Omagari‐zawa samples. These variations in the maturity of organic matter presumably reflect the difference in their burial histories. The results for the pristane/phytane (Pr/Ph) ratios suggest that the Shumarinai‐gawa samples were deposited under dysoxic to anoxic environments across the CTB, while the depositional environments of the Omagari‐zawa samples were relatively oxic. By another paleoredox indicator using C35 homohopanoids including a homohopene index (HHenI), higher values are observed in the Shumarinai‐gawa section, particularly in the horizons of the preceding period and an early stage of the first negative shift phase and the latest oceanic anoxic event 2 (OAE2) interval. These results suggest that the Shumarinai‐gawa samples record dysoxic to anoxic environments across the CTB. In contrast, the signals for the C35 homohopanoid index values show a relatively oxic condition in the Omagari‐zawa section. The trends of stratigraphic variations in redox conditions are different from those in the OAE2 interval in the proto‐Atlantic and Tethys regions as reported previously. Hence, the redox variations in the Tomamae area were basically related to a local environmental setting rather than global anoxia. However, the prominent anoxic emphasis observed in the HHenI profile of the Shumarinai‐gawa section can be a distinctive, and possibly global, event in the North‐West Pacific just before the OAE2. 相似文献
11.
New Late Cretaceous paleomagnetic results from the Okhotsk-Chukotka Volcanic Belt in the Kolyma-Omolon Composite Terrane yield stable and consistent remanent directions. The Late Cretaceous (86–81 Ma) ignimbrites from the Kholchan and Ola suites were sampled at 19 sites in the Magadan area (60.4° N, 151.0° E). We isolated the characteristic paleomagnetic directions from 16 sampled sites using an alternating field demagnetization procedure. The primary nature of these directions is ascertained by dual polarities and positive fold tests. A tilt-corrected mean direction (D = 42.8°, I = 84.7°, k = 46.0, α95 = 10.0°) yields a paleomagnetic pole of 66.7° N, 168.5° E (A95 = 18.8°) which appears almost identical to the 90–67 Ma pole reported from the Lake El’gygytgyn area of the Okhotsk-Chukotka Volcanic Belt (Chukotka Terrane). This consistency suggests that the Kolyma-Omolon Composite Terrane and Chukotka Terrane has acted as a single tectonic unit since 80 Ma without any significant internal deformation. Accordingly, we calculate a combined 80 Ma characteristic paleomagnetic pole (Long. = 164.7° E, Lat. = 68.0°, A95 = 10.9°, N = 12) for the Kolyma-Omolon-Chukotka Block which falls 16.5–17.5° south of the same age poles from Europe and East Asia. We ascribe this discrepancy in pole positions to tectonic activity in the area and infer a southward displacement of 1640 ± 1380 km for the Kolyma-Omolon-Chukotka Block with respect to the North American and Eurasian blocks since 80 Ma; more than 260 km of it is attributed to tectonic displacement in the Arctic Ocean due to the opening of the Canadian Basin. 相似文献
12.
拉萨地块林周盆地白垩系红层的古地磁数据一直都有较大争议.过去认为磁倾角变浅可能是造成这些分歧的主要原因.我们在林周盆地设兴组背斜两翼进行了系统的古地磁采样,15个采样点的特征剩磁分量在倾斜校正和倾伏褶皱校正后平均方向为D=339.3°,I=22.9°(α_(95)=5.1°).特征剩磁分量在大约69%展开时获得最大集中,表明其为同褶皱重磁化;此时平均方向为D=339.1°,I=27.3°(α_(95)=4.1°),对应的古地磁极为65.4°N,327.5°E(A_(95)=3.5°),参考点29.3°N/88.5°E的古纬度为15.0°N±3.5°.薄片镜下分析显示赤铁矿为次生矿物,岩石磁组构(AMS)也表现为过渡型构造变形组构.样品的特征剩磁方向应为重磁化的结果,E/I(elongation vs inclination)校正法显示特征剩磁方向并没有发生倾角变浅.根据区域构造,重磁化时代约为72.4±1.8 Ma到64.4±0.6 Ma.综合考虑拉萨地块东西部的古地磁数据以及地震层析成像资料后我们认为,碰撞前拉萨地块大约呈NW-SE向准线性分布,并处于~10°N-15.0°N;自~70 Ma以来,拉萨地块与稳定欧亚大陆之间至少存在1200±400 km(11.1°±3.5°)的南北向构造缩短量;印度大陆与欧亚大陆的碰撞不应晚于55 Ma. 相似文献
13.
A Late Cretaceous mammalian dentary from the Ashizawa Formation (Futaba Group), Fukushima,northeastern Japan 下载免费PDF全文
A mammalian dentary discovered in the Coniacian Ashizawa Formation (Fukushima, northeastern Japan) is described. The specimen is a fragment of the horizontal ramus of a left edentulous dentary with five alveoli, the distal four of which are plugged with broken roots. Based on the morphologies of the dentary and the roots, it is considered to be of a therian mammal. This constitutes the first discovery of a Mesozoic mammal in northeastern Japan and highlights the potential for future mammal discoveries in the Cretaceous System in northeastern Japan, which will be significant for disclosure of the mammalian faunal evolution in East Asia during the Late Cretaceous. 相似文献
14.
Abstract The late Pleistocene Kamitakara Pyroclastic Flow Deposit (KPFD) and its correlative Kasamori (Ks22) Tephra in central Japan are found to preserve stable thermoremanent magnetization (TRM) and detrital remanent magnetization (DRM), respectively. Untilted site‐mean declinations of the KPFD are characterized by a fairly large scatter with easterly deflection, while those of the Ks22 show significantly smaller deflections. Because northerly paleomagnetic directions consistently characterize shallow marine sediments intercalating the Ks22 layer, the directional discordance is not attributed to different acquisition timing between TRM and DRM, but is probably due to a recent tectonic rotation in central Japan. Large scatter in TRM declinations of the KPFD implies that a number of right‐lateral active faults around the depositional area of the pyroclastic flow raised differential rotation of crustal blocks in central Japan, even during the late Pleistocene. 相似文献
15.
为进一步确定拉萨地块白垩纪-古近纪的古地理位置,我们对青藏高原拉萨地块措勤地区林子宗火山岩18个采点进行了古地磁研究.结果表明高温(高场)特征剩磁分量主要为亚铁磁性的磁铁矿所携带,特征剩磁分量在95%置信水平下通过了褶皱检验. 倾斜校正后采点平均的特征剩磁方向为D/I=16.2°/17.7°, α95=5.6°,对应古地磁极位置为63.1°N,224.6°E,A95=5.1°. 另一方面,Ar-Ar年代学结果表明采样剖面的林子宗火山岩形成年龄为~99-93 Ma, 与拉萨地块林周盆地的林子宗群火山岩的形成年龄存在较大差异.由此我们得到晚白垩世拉萨地块中部措勤地区的古纬度为8.5°±6.9°N,与林周盆地古近纪林子宗群典中组和年波组所揭示出的古纬度相当,进一步表明亚洲大陆最南缘的拉萨地块在晚白垩世-古近世期间位于北半球~10°N的低纬度地区.结合最新的特提斯海相地层古地磁结果,晚白垩世-古近世拉萨地块的古地理位置限定了印度与欧亚大陆的初始碰撞时间不晚于60.5 Ma;~93 Ma以来,拉萨地块和单一刚性欧亚大陆之间存在~1900 km的构造缩短. 相似文献
16.
17.
Early Miocene sediments of the Morozaki Group in central Japan contain deep-sea fossils that have been dated using biostratigraphic and radiometric data. In this study, we utilize magnetostratigraphy to provide a more precise age for mudstones from just below the layer containing the fossils. Rock magnetic experiments suggest that both magnetic iron sulfide and Ti-poor titanomagnetite carry the remanent magnetization of the mudstones. Two different stratigraphic sites have normal polarity directions with a northeastern declination, which can be correlated with Chronozone C5Dn. Given their magnetostratigraphic position near the C5Dn/C5Dr chronozone boundary (17.466 Ma) and a high sedimentation rate, the estimated age for both the sites and the deep-sea fossils is ~17.4 Ma. The northeasterly-directed site-mean directions suggest clockwise tectonic rotation, most likely due to the Early Miocene clockwise rotation of Southwest Japan associated with the back-arc opening of the Japan Sea. The deep-sea fossils, dated at ~17.4 Ma, represent organisms deposited within a submarine structural depression formed by crustal extension during the back-arc opening stage. 相似文献
18.
The Cretaceous accretionary complexes of the Idonnappu Zone in the Urakawa area are divided into five lithological units, four of which contain greenstone bodies. The Lower Cretaceous Naizawa Complex consists of two lithologic units. The Basaltic Unit (B‐Unit) is a large‐scale tectonic slab of greenstone, consisting of depleted tholeiite similar to that of the Lower Sorachi Ophiolite (basal forearc basin ophiolite) in the Sorachi‐Yezo Belt. The Mixed Unit of Naizawa Complex (MN‐Unit) contains oceanic island‐type alkaline greenstones which occur as slab‐like bodies and faulted blocks with tectonically dismembered trench‐fill sediments. Repeated alternations of the two units in the Naizawa Complex may have been formed by the collision of seamounts with forearc ophiolitic body (Lower Sorachi Ophiolite) in the trench. The Upper Cretaceous Horobetsugawa Complex structurally underlies the Naizawa Complex in its original configuration, and it also contains greenstone bodies. Greenstones in the MH‐Unit occur as blocks and sedimentary clasts in a clastic matrix, and exhibit depleted tholeiite and oceanic‐island alkaline basalt/tholeiite chemistry. This unit is interpreted as submarine slide and debris flow deposits. Greenstones in the PT‐Unit occur at the base of several chert‐clastic successions. Most of the greenstones are severely sheared and show normal‐type mid‐ocean ridge basalt composition. The PT‐Unit greenstones are considered to have been derived from abyssal basement peeled off during accretion. The different accretion mechanism of the greenstones in the Naizawa and Horobetsugawa complexes reflects temporal changes in subduction zone conditions. Seamount accretion and tectonic erosion were dominant in the Early Cretaceous, due to highly oblique subduction of the old oceanic crust and minimal sediment supply. Whereas, thick sediments with minor mid‐ocean ridge basalt and olistostrome accreted in the Late Cretaceous, due to near‐orthogonal subduction of young oceanic crust with voluminous sediment supply. 相似文献
19.
Hiroshi Yamamoto Natsumi Nakamori Masaru Terabayashi Hafiz Ur Rehman Masahiro Ishikawa Yoshiyuki Kaneko Takashi Matsui 《Island Arc》2010,19(3):458-469
Geological observations in the Horoman area, south‐central Hokkaido, show that the Horoman peridotite complex of the Hidaka metamorphic belt is a tectonic slice about 1200 m thick. The peridotite slab is intercalated into a gently east‐dipping structure. The underlying unit is a Cretaceous–Paleogene accretionary complex. Riedel shear planes in the sedimentary layers of the accretionary complex near the structural bottom of the peridotite slab indicate top‐to‐the‐west (thrust) displacement. The overlying unit is composed of felsic–pelitic gneisses and mafic–felsic intrusive rocks (the Hidaka metamorphic rocks). The boundary surface between the peridotite complex and metamorphic rocks forms a domal structure. Microstructures of sheared metamorphic rocks near the structural top of the peridotite slab indicate top‐to‐the‐east (normal) displacement. The results combined with previous studies suggest that the Horoman peridotite complex was emplaced onto the Asian margin (Northeast Japan) during the collision between the Asian margin and the Hidaka crustal block. 相似文献
20.
Large N-S convergence at the northern edge of the Tibetan plateau? New Early Cretaceous paleomagnetic data from Hexi Corridor, NW China 总被引:1,自引:0,他引:1
Yan Chen Hanning WuVincent Courtillot Stuart Gilder 《Earth and Planetary Science Letters》2002,201(2):293-307
Nine Early Cretaceous paleomagnetic sites have been collected in the Yumen area of the Hexi Corridor (NW China). Magnetic directions isolated at lower temperatures fail the fold test, and lie close to the geocentric axial dipole field direction before tilt correction. High temperature components are carried by magnetite and/or hematite, all with normal polarity, and pass the fold test. The average paleomagnetic pole from the nine sites is at λ=75.5°N, φ=169.9°E (A95=7.7°). These results are consistent with those from other areas of the North China block (NCB), but significantly different from those from the Qaidam Basin on the southern side of the Qilian Mountains. They suggest that: (1) the Yumen region behaved as a rigid part of the NCB since at least the Early Cretaceous; (2) 740±500 km of north-south directed convergence has taken place between the NCB and Qaidam, within the Qilian Mountains and (3) extrusion of Qaidam was accompanied by a 23±5° relative rotation with respect to North China. This is larger than implied by the maximum left lateral slip on the Altyn Tagh fault system. The same data imply some 1000±800 km of Cenozoic motion between the Tarim and NCB blocks, which were so far believed to have formed a rigid entity since at least the Jurassic. One interpretation could be that all Tarim and Qaidam Cretaceous paleomagnetic samples from red beds, but not those from Yumen and the NCB, suffered significant inclination shallowing, as observed in Cenozoic red beds from Central Asia. So far, we do not find support for this possibility. Possible tectonic interpretations include: (1) the existence of a large, as yet uncharted, tectonic discontinuity between Tarim and the NCB in the vicinity of the desert corridor near 95-100°E longitude; (2) the occurrence of significant deformation within southwestern Tarim, to the north of Yingjisha where paleomagnetic sites were obtained, or (3) persistent clockwise rotation of Tarim with respect to the NCB, for at least 20 Ma, at the rate found for current block kinematics. 相似文献