首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The problem of electromagnetic radiation from electric and magnetic line sources interacting with a moving magnetoplasma slab backed by a finitely conducting medium is treated. The local magnetostatic field is aligned parallel with the line source and is perpendicular to the direction of slab motion. For the configuration, theE andH modes are excited independently by a magnetic and an electric line source respectively. Expressions for the far zone radiation fields and the radiation pattern have been obtained for both the line sources. It is found that the radiation due to an electric line source is not affected by the presence of a static magnetic field and the motion of the slab medium. Numerical results for the radiation pattern referring to both the line sources have been presented for a wide range of parameters characterizing the finite magnetostatic field, the conductivity of the medium backing the plasma, the thickness of the slab and the location of the line source.  相似文献   

2.
The term 'dynamo' means different things to the laboratory fusion plasma and astrophysical plasma communities. To alleviate the resulting confusion and to facilitate interdisciplinary progress, we pinpoint conceptual differences and similarities between laboratory plasma dynamos and astrophysical dynamos. We can divide dynamos into three types: 1. magnetically dominated helical dynamos which sustain a large-scale magnetic field against resistive decay and drive the magnetic geometry towards the lowest energy state, 2. flow-driven helical dynamos which amplify or sustain large-scale magnetic fields in an otherwise turbulent flow and 3. flow-driven non-helical dynamos which amplify fields on scales at or below the driving turbulence. We discuss how all three types occur in astrophysics whereas plasma confinement device dynamos are of the first type. Type 3 dynamos require no magnetic or kinetic helicity of any kind. Focusing on Types 1 and 2 dynamos, we show how different limits of a unified set of equations for magnetic helicity evolution reveal both types. We explicitly describe a steady-state example of a Type 1 dynamo, and three examples of Type 2 dynamos: (i) closed volume and time dependent; (ii) steady state with open boundaries; (iii) time dependent with open boundaries.  相似文献   

3.
Plasma siphon flow with velocities up to 100 km/s have been observed in coronal magnetic loops. We discuss the stability of this siphon flow using slab and cylinder models. We calculate numerically the dispersion relation and obtain the rate of growth of instability and the frequency of perturbing waves. Our main conclusions are that magnetic field is a stabilizing factor and that flow velocity is a de-stabilizing factor. We discuss the question whether stationary, high-velocity siphon flow can exist in coronal magnetic loops.  相似文献   

4.
Analytical models of solar atmospheric magnetic structures have been crucial for our understanding of magnetohydrodynamic (MHD) wave behaviour and in the development of the field of solar magneto-seismology. Here, an analytical approach is used to derive the dispersion relation for MHD waves in a magnetic slab of homogeneous plasma enclosed on its two sides by non-magnetic, semi-infinite plasma with different densities and temperatures. This generalises the classic magnetic slab model, which is symmetric about the slab. The dispersion relation, unlike that governing a symmetric slab, cannot be decoupled into the well-known sausage and kink modes, i.e. the modes have mixed properties. The eigenmodes of an asymmetric magnetic slab are better labelled as quasi-sausage and quasi-kink modes. Given that the solar atmosphere is highly inhomogeneous, this has implications for MHD mode identification in a range of solar structures. A parametric analysis of how the mode properties (in particular the phase speed, eigenfrequencies, and amplitudes) vary in terms of the introduced asymmetry is conducted. In particular, avoided crossings occur between quasi-sausage and quasi-kink surface modes, allowing modes to adopt different properties for different parameters in the external region.  相似文献   

5.
Prominences and filaments are thought to arise as a consequence of a magnetized plasma undergoing thermal instability. Therefore, the thermal stability of a magnetized plasma is investigated under coronal conditions. The equilibrium structure of the plasma is approximated by a 1-D slab configuration. This is investigated in thermal instability taking into account optically thin plasma radiation and anisotropic thermal conduction. The thermal conduction perpendicular to the magnetic field is taken to be small but non-zero.The classic rigid wall boundary conditions which are often applied in the literature, either directly on the plasma or indirectly through some other medium, are replaced by a more physical situation in which the plasma column is placed in a low-density background stretching towards infinity. Results for a uniform equilibrium structure indicate the major effect of this change is on the eigenfunctions rather than on the growth rate. Essentially, perpendicular thermal conduction introduces field-aligned fine structure. It is also shown that in the presence of perpendicular thermal conduction, thermal instability in a slab model is only possible if the inner plasma has the shortest thermal instability time scale.Research Assistant of the National Fund for Scientific Research (Belgium).  相似文献   

6.
This paper is concerned with the Kelvin-Helmholtz instability in the indissipative plasma with an external magnetic field. A detailed analysis is made of the results known from the approximation of a tangential discontinuity. The finiteness of the interface thickness effect is considered numerically at the arbitrary distribution of the density, velocity and magnetic field vectors inside this shear layer. The influence of plasma compressibility with an arbitrarily varying magnetic field is investigated. The main role of oblique disturbances with respect to the flow rate direction is shown under conditions of a large plasma compressibility. As such perturbations move away from the interface, their amplitude is damped much more slowly than in the case of weak compressibility. However, their wavelength remains, approximately, the same as that of longitudinal waves in the case of incompressibility. The linear approximation suggests the importance of oblique waves in the energetics of the interaction between the shear layer and the outward medium. A comparison is made of the instability period on discontinuities in the solar wind, and at magnetospheric and plasmaspheric boundaries, with the range of geomagnetic pulsations.  相似文献   

7.
Theoretical model, explaining a phenomenon of formation of Intensive Magnetic Flux Tube (IMFT) in a converging flow of partially ionized solar photospheric plasma is considered. Special attention is paid to the fact of weak ionization (n/n n ∼ 10-4) of plasma in the photosphere. The cases of 2D magnetic slab and cylindric magnetic tube are considered. It was shown that in a converging flow of photospheric plasma thin magnetic tubes, or slabs with the characteristic scale L 0 ∼ (1 ÷ 5) ċ 107 cm and magnetic field 1000 ÷ 2000 G can be generated. By this 2D magnetic slabs could be unstable with respect to an exchange instability and appear as an intermediate step during IMFT formation on the boundary of two supergranulation cells. Formation of compact strong magnetic field structures, and their energy balance are discussed. Stationary Joule energy dissipation taking place on the photospheric levels in the models of magnetic slab or IMFT under consideration increases towards the periphery of these objects and can exceed radiation looses. This can cause the occurrence of magnetic tubes with hot external envelopes, and modification of plasma temperature and density distribution, with respect to ones in a quiet atmosphere. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Examination of thermal plasma data obtained by low-altitude satellite measurements indicates that the intersection of the cusp in the dayside magnetosphere with the topside ionosphere creates a distinct plasma geometry at low altitudes. This region consists of one or two plasma discontinuities with steep boundaries. As a result of the plasma structuring in the cusp which commonly takes place in the winter hemisphere, the propagation of compressional surface MHD waves is supported. This point is illustrated by an analysis of the polarization state of compressional surface MHD waves propagating along a plasma layer with thickness a and ambient magnetic field B0 parallel to the interfaces. The results obtained are applicable to the case of a single interface, which is derived in the limit a → ∞. In the general case the polarization of the compressional surface MHD waves in the plane transverse to the magnetic field B0 is elliptical. This feature of the polarization state of the compressional surface modes does not follow from the former analysis by Edwin and Roberts (1982, Solar Phys. 76, 239) for a magnetic slab, because the disturbance components parallel to the interfaces and perpendicular to the magnetic field B0 have not been examined. Although the absence of these components does not prove to be essential for deriving the exact dispersion equation for arbitrary wave directions of the surface modes, they must be included when considering polarization states. The surface mode polarization in the plasma layer changes its sense three times: at interfaces X = 0 and X = a and in the middle plane X = a/2. For the symmetrical (sausage) mode the wave disturbance component bn transverse (normal) to the interfaces becomes zero in the middle plane; for the asymmetrical (kink) mode, the component bt parallel to the interfaces and transverse to the ambient magnetic field is zeroed in the same plane. For a moving observer such as a satellite the polarization patterns which might be recorded change, depending on the velocity of the observer and the angles at which the layered cusp is traversed. An essential feature in the polarization of the compressional surface MHD modes is the presence of jumps in the magnetic disturbance component bt at the interfaces. These jumps disappear only for propagation along the ambient magnetic field. In this particular case the component bt vanishes and then the surface modes are undistinguishable from the body modes.  相似文献   

9.
The solar corona, modeled by a low-, resistive plasma slab, sustains MHD wave propagations due to footpoint motions in the photosphere. Simple test cases are undertaken to verify the code. Uniform, smooth and steep density, magnetic profile and driver are considered. The numerical simulations presented here focus on the evolution and properties of the Alfvén, fast and slow waves in coronal loops. The plasma responds to the footpoint motion by kink or sausage waves depending on the amount of shear in the magnetic field. The larger twist in the magnetic field of the loop introduces more fast-wave trapping and destroys initially developed sausage-like wave modes. The transition from sausage to kink waves does not depend much on the steep or smooth profile. The slow waves develop more complex fine structures, thus accounting for several local extrema in the perturbed velocity profiles in the loop. Appearance of the remnants of the ideal singularities characteristic of ideal plasma is the prominent feature of this study. The Alfvén wave which produces remnants of the ideal x –1 singularity, reminiscent of Alfvén resonance at the loop edges, becomes less pronounced for larger twist. Larger shear in the magnetic field makes the development of pseudo-singularity less prominent in case of a steep profile than that in case of a smooth profile. The twist also causes heating at the edges, associated with the resonance and the phase mixing of the Alfvén and slow waves, to slowly shift to layers inside the slab corresponding to peaks in the magnetic field strength. In addition, increasing the twist leads to a higher heating rate of the loop. Remnants of the ideal log ¦x¦ singularity are observed for fast waves for larger twist. For slow waves they are absent when the plasma experiences large twist in a short time. The steep profiles do not favour the creation of pseudo-singularities as easily as in the smooth case.  相似文献   

10.
Propagation of a quasi-neutral narrow ion beam across a magnetised cold plasma is investigated in slab geometry. This problem is of interest in connection with artificial beam injection experiments and with naturally appearing plasma injections into magnetic fields as astrophysical jets. Several different cases are discussed briefly where the beam is assumed either slow or fast. For fast beams it is shown that they propagate due to generation of a polarisation electric field even in the case of presence of a background plasma. Slow beams can depolarise by currents flowing into the beam along the field lines and providing the required electrons for charge neutralisation. Some implications of the model are discussed in the context of recent active beam injection experiments into space plasma.  相似文献   

11.
The problem of wave-propagation in a magnetically structured compressible slab configuration is investigated, allowing for different magnetic field strengths inside and outside the slab and also a general orientation of the field vectors relative to each other and to the propagation vector. Several magnetic field geometries such as equal parallel, and equal orthogonal fields are considered. Properties of body and surface waves both for symmetric and asymmetric modes of perturbation propagating along and normal to the slab field are investigated idealising the slab to be incompressible, or considering the limiting case of wide and slender compressible slab. Numerical results are also obtained for a compressible slab of finite thickness for a specific choice of sound and Alfvén speeds involved.  相似文献   

12.
A. Khlystova 《Solar physics》2013,284(2):329-341
A statistical study has been carried out of the relationship between plasma flow Doppler velocities and magnetic field parameters during the emergence of active regions at the solar photospheric level with data acquired by the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO). We have investigated 224 emerging active regions with different spatial scales and positions on the solar disc. The following relationships for the first hours of the emergence of active regions have been analysed: i) of peak negative Doppler velocities with the position of the emerging active regions on the solar disc; ii) of peak plasma upflow and downflow Doppler velocities with the magnetic flux growth rate and magnetic field strength for the active regions emerging near the solar disc centre (the vertical component of plasma flows); iii) of peak positive and negative Doppler velocities with the magnetic flux growth rate and magnetic field strength for the active regions emerging near the limb (the horizontal component of plasma flows); iv) of the magnetic flux growth rate with the density of emerging magnetic flux; v) of the Doppler velocities and magnetic field parameters for the first hours of the appearance of active regions with the total unsigned magnetic flux at the maximum of their development.  相似文献   

13.
This paper provides an analysis of magneto-sonic eigenwaves travelling in magnetic plasma structures based on the Chew-Goldberger-Low approximation, for which the plasma kinetic pressure is different along and across the magnetic field. The anisotropy does not lead to the emergence of new modes. The dependence of phase velocities of the waves, trapped by a single magnetic surface, on the pressure anisotropy is investigated. For a magnetic slab with field-free surroundings, the dispersion relations for the eigenwaves are obtained. The pressure anisotropy may change dispersion relations of such modes significantly. In particular, backward waves are possible in the case of strong anisotropy. The dependences of the thresholds for the mirror and hose instabilities on the system parameters are obtained. In particular, hose and mirror instabilities of such waves are absent for some wave number regions. The results are used to obtain the eigenwave characteristics in coronal loops and chromospheric flux tubes.  相似文献   

14.
等离子体弧是日冕中的一种基本结构,其高温观测特性意味着它有较高的等离子体压力。本文在二维近似下,讨论了等离子体拱被两个强磁场区域所约束时的平衡。对于较大的等离子体标高,等离子体具有近似圆弧形的结构。通过求出强磁场区域中的磁场位形,可以得到孤立的等离子体拱的平衡状态。由于总压守恒的边界条件是高度非线性的,整个问题是一类非线性的自由边界问题。在近圆弧形近似下,其基态是一维的非线性问题,而相对于基态的偏离是二维的线性问题。这样,整个问题可以给出分析解。  相似文献   

15.
Magnetic clouds (MCs) belong to an important subset of interplanetary coronal mass ejections. The identification of their boundaries is always a problem in the studies of MCs. This paper discusses a method to identify the boundaries of MCs by coordinate transformation. Instead of the conventional GSE (Geocentric Solar Ecliptic) coordinate system, the interplanetary magnetic field data are converted into a cloud natural coordinate system, in which the profile of the MC as a magnetic flux tube is clearly displayed. Then, combining with the plasma properties of the MC, the boundary of the cloud can be identified easily. Six observed MCs are analyzed using this method, and the results show that this method is feasible and can reduce the uncertainty in the identification of MC boundaries.  相似文献   

16.
H. Wang  H. Zirin 《Solar physics》1988,115(2):205-219
We have measured the proper motion of magnetic elements on the quiet Sun by means of local correlation tracking. The existence of a pattern in the intranetwork (IN) flow is confirmed. This velocity field is consistent with the direct Doppler measurement of the horizontal component of the supergranular velocity field. The IN elements generally move toward the network boundaries. By tracking test points we confirm that the magnetic elements converge in areas corresponding to the magnetic network. But because the IN elements are of random polarity, they cannot contribute to the growth or maintenance of the magnetic network.By calculating the cross correlation between the magnetogram and Dopplergram, we confirm that the supergranule boundaries and the magnetic network are roughly correlated.  相似文献   

17.
We study the dispersion characteristics of fast MHD surface waves travelling on a plasma slab immersed in a complex magnetic field consisting of a large longitudinal B 0z component and a small sheared B 0y component. The analysis shows that for typical coronal conditions both the sausage and kink waves are generally pseudo-surface waves. The tangential magnetic field, B 0y , modifies the dispersion curves, and for sufficiently large sheared fields there is a transition from pseudo-surface to pure-surface fast kink waves.On leave from Faculty of Physics, Sofia University, BG-1126 Sofia, Bulgaria.  相似文献   

18.
The structure of the solar corona is dominated by the magnetic field because the magnetic pressure is about four orders of magnitude higher than the plasma pressure. Due to the high conductivity the emitting coronal plasma (visible, e.g., in SOHO/EIT) outlines the magnetic field lines. The gradient of the emitting plasma structures is significantly lower parallel to the magnetic field lines than in the perpendicular direction. Consequently information regarding the coronal magnetic field can be used for the interpretation of coronal plasma structures. We extrapolate the coronal magnetic field from photospheric magnetic field measurements into the corona. The extrapolation method depends on assumptions regarding coronal currents, e.g., potential fields (current-free) or force-free fields (current parallel to magnetic field). As a next step we project the reconstructed 3D magnetic field lines on an EIT-image and compare with the emitting plasma structures. Coronal loops are identified as closed magnetic field lines with a high emissivity in EIT and a small gradient of the emissivity along the magnetic field.  相似文献   

19.
The evolution of the background magnetic field with the solar cycle has been studied using the dipole-quadrupole magnetic energy behaviour in a cycle. The combined energy of the axisymmetric dipole, non-axisymmetric quadrupole, and equatorial dipole is relatively lowly variable over the solar cycle. The dipole field changed sign when the quadrupole field was near a maximum, andvice versa. A conceptual picture involving four meridional magnetic polarity sectors proposed to explain these features may be in agreement with equatorial coronal hole observations. The rate of sector rotation is estimated to be 8 heliographic degrees per year faster than the Carrington rotation (P = 27.23d synodic). Polarity boundaries of sectors located 180° apart show meridional migrations in one direction, while the boundaries of the other two sectors move in the opposite direction. A simple model of how the magnetic field energy varies, subject to specifying reasonable initial photospheric magnetic and velocity field patterns, follows the observed evolution of the dipole and quadrupole field energies quite nicely.  相似文献   

20.
Observations show that small-amplitude prominence oscillations are usually damped after a few periods. This phenomenon has been theoretically investigated in terms of non-ideal magnetoacoustic waves, non-adiabatic effects being the best candidates to explain the damping in the case of slow modes. We study the attenuation of non-adiabatic magnetoacoustic waves in a slab prominence embedded in the coronal medium. We assume an equilibrium configuration with a transverse magnetic field to the slab axis and investigate wave damping by thermal conduction and radiative losses. The magnetohydrodynamic equations are considered in their linearised form and terms representing thermal conduction, radiation and heating are included in the energy equation. The differential equations that govern linear slow and fast modes are numerically solved to obtain the complex oscillatory frequency and the corresponding eigenfunctions. We find that coronal thermal conduction and radiative losses from the prominence plasma reveal as the most relevant damping mechanisms. Both mechanisms govern together the attenuation of hybrid modes, whereas prominence radiation is responsible for the damping of internal modes and coronal conduction essentially dominates the attenuation of external modes. In addition, the energy transfer between the prominence and the corona caused by thermal conduction has a noticeable effect on the wave stability, radiative losses from the prominence plasma being of paramount importance for the thermal stability of fast modes. We conclude that slow modes are efficiently damped, with damping times compatible with observations. On the contrary, fast modes are less attenuated by non-adiabatic effects and their damping times are several orders of magnitude larger than those observed. The presence of the corona causes a decrease of the damping times with respect to those of an isolated prominence slab, but its effect is still insufficient to obtain damping times of the order of the period in the case of fast modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号