首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 74 毫秒
1.
神经网络作为一门快速发展起来的非线性科学,在处理一些背景不清楚而且极其复杂信息的时候,就会显示出其独特的优越性。本文通过Elman神经网络应用到滑坡变形监测中,建立预报模型,并以Matlab神经网络工具箱进行程序设计,最后运用到具体实例中,通过模型的预报精度,来验证Elman神经网络模型在滑坡监测预报中的可行性。  相似文献   

2.
大坝变形预报的模糊神经网络模型   总被引:5,自引:1,他引:5  
在介绍模糊推理神经网络FNNLM训练算法及网络参数的确定方法的基础上,以东江大坝12个测点的水平位移预报为例,说明了模糊神经网络模型具有训练时间短、预报精度高的优势。  相似文献   

3.
进行基于人工神经网络的大坝变形区间的分析与预报研究,运用Matlab工具箱建立BP神经网络模型,进行大坝变形区间的分析与预报,并与传统的逐步回归预报方法进行比较.结果表明,BP神经网络用于大坝变形区间的预报是可行的,在预报效果上优于逐步回归方法.  相似文献   

4.
模糊神经网络在变形分析与预报中的应用研究   总被引:1,自引:0,他引:1  
研究了模糊神经网络的网络建模,提出了单点建模、分组建模和整体建模3种建模方法,为变形分析和预报提供了新思路。结合滑坡变形实例,指出了模糊神经网在工程变形分析和预报中的可行性。  相似文献   

5.
目前常用的变形预报方法有BP人工神经网络和小波神经网络,但是都存在收敛速度慢且易受局部极值的影响.针对这两种算法的不足,本文利用遗传算法的全局寻优特性,将遗传算法与小波神经网络结合,形成遗传小波神经网,将其应用于变形预报,取得了良好的效果;并将算法的预报精度、稳定性、有效区间及运算时间作为评价算法优劣的4个标准,对BP神经网络、小波神经网络及遗传小波神经网络进行对比,结果表明遗传小波神经网络具有明显的优势.  相似文献   

6.
应用时间序列方法作大坝变形预报   总被引:1,自引:0,他引:1  
本文首先介绍时序分析的三个基本模型——ARMA模型、AR模型和MA模型,以及各模型的统计性质。然后以某大坝1715廊道的激光视准线观测位移值(已利用倒垂观测把相对位移化为绝对位移)为例,着重叙述大坝变形分析的建模过程,得到了一个AR(2)模型并对大坝变形作了预报,结果具有相当好的预报精度。从而说明,时序分析法将是大坝变形分析的一个有力工具。  相似文献   

7.
在对RBF神经网络模型进行了详尽分析基础上,将其应用于实际工程案例中,多角度综合分析,验证了RBF神经网络模型进行变形预报的可行性,同时得出对实际工程起指导性意义的结论。  相似文献   

8.
探讨了将人工神经网络专家系统用于大坝变形预测的方法,给出了系统功能结构框图,并对各模块的功能进行了分析。  相似文献   

9.
将模糊时间序列模型引入变形预报,并与灰色GM(1,1)、等维灰数、组合动态等模型进行了比较,计算结果表明,模糊时间序列模型各项精度评定指标优良,并且计算简单,非常实用。  相似文献   

10.
时间序列分析在变形监测数据处理中的应用   总被引:6,自引:0,他引:6  
梅红  岳东杰 《现代测绘》2005,28(6):14-16
从时间序列分析的基本原理及方法出发,详细论述了如何使用这种方法对变形监测数据进行识模、建模、与预报.并通过实例计算验证了此种方法具有较高的拟合和预报精度,较好地描述了变形监测点的变化规律.  相似文献   

11.
杨红  陈向阳  张飞  张付明 《地理空间信息》2012,10(6):131-132,138,1
经典BP神经网络的初始权值和阈值随机给定,使得训练速度慢、网络易于陷入局部极值。引入具有强大全局搜索能力的人工鱼群算法(AFSA)优化BP网络的权值和阈值,建立了基于AFSA-BP神经网络的预测模型,并对大坝的实测资料进行了实证分析。与经典BP神经网络预测模型的预测结果比较表明:AFSA-BP神经网络模型不仅训练速度快,而且预测精度明显提高,是一种较好的大坝变形预测模型。  相似文献   

12.
电离层总电子含量TEC(Total Electron Content)是电离层的一个重要特征参数。对TEC的预报也已经成为电离层研究的一个热点。根据JS CORS中心提供的GPS观测数据,建立了区域实时多站多项式模型;并分别以模型计算得到的南京地区的电离层电子含量数据和苏州地区的电离层电子含量数据为样本,采用时间序列和BP神经网络融合模型进行了预报。结果表明,采用融合模型在短期预报中能够取得较好的效果,精度比时间序列模型提高20%左右。  相似文献   

13.
对BP,RBF,Elman 3种神经网络模型进行了简要概括,将其应用于实际工程案例中,经过多角度综合分析,验证了3种模型进行变形预报的可行性,同时得出对实际工程具有指导性意义的结论。  相似文献   

14.
变形预测在预报工程险情方面起着关键性的作用,针对施工中需及时、准确地预测变形的问题,本文利用小波变换原理对监测数据进行降噪处理,并采用BP神经网络分析不同训练样本下的预测效果和精度水平。实验结果表明:基于小波消噪后的BP网络模型,以连续的近期观测数据作为训练样本,对下期变形预测精度高,效果好,相对误差很小。因此,小波变换和BP神经网络模型在沉降变形监测工程中能作为预测研究与应用的参考。  相似文献   

15.
针对BP神经网络预测方法的稳定性较差,提出运用增加动量项的小波神经网络方法,进行沉降预测,并选出最优的隐含层节点数目,结合某高铁路基沉降监测数据进行实验分析。实验表明,该方法实际可行,稳定性较好并且预测精度高。  相似文献   

16.
本文根据南京地铁某区间隧道结构变形监测数据,分别采用回归分析方法和时间序列分析方法建立模型,对地铁结构变形进行预测。计算结果表明在该工程实例中,回归分析模型的预测精度约为±0.20mm,时间序列模型的预测精度约为±0.08mm,较回归分析模型提高了60%,能够较好的对地铁结构变形进行预测。  相似文献   

17.
运用小波滤波的的优越性,消除数据噪声,使数据更加的接近真实的数据和更具规律性,有利于我们对数据发展趋势的预测。对消噪后的数据,利用BP神经网络强大的学习能力建立预测网络。在建立网络时,输入样本为监测k时段序列k和第k-1时段变形量与再k-2时段变形量之差组成的二维向量,目标样本为小波滤波后的变形量。并与GM(1,1)。模型和回归模型进行了对比。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号