首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 13 毫秒
1.
The western Barents Sea and the Svalbard archipelago share a common history of Caledonian basement formation and subsequent sedimentary deposition. Rock formations from the period are accessible to field study on Svalbard, but studies of the near offshore areas rely on seismic data and shallowdrilling. Offshore mapping is reliable down to the Permian sequence, but multichannel reflection seismic data do not give a coherent picture of older stratigraphy. A survey of 10 Ocean Bottom Seismometer profiles was collected around Svalbard in 1998. Results show a highly variable thickness of pre-Permian sedimentary strata, and a heterogeneous crystalline crust tied to candidates for continental sutures or major thrust zones. The data shown in this paper establish that the observed gravity in some parts of the platform can be directly related to velocity variations in the crystalline crust, but not necessarily to basement or Moho depth. The results from three new models are incorporated with a previously published profile, to produce depth-to-basement and -Moho maps south of Svalbard. There is a 14 km deep basement located approximately below the gently structured Upper Paleozoic Sørkapp Basin, bordered by a 7 km deep basement high to the west, and 7–9 km depths to the north. Continental Moho-depth range from 28 to 35 km, the thickest crust is found near the island of Hopen, and in a NNW trending narrow crustal root located between 19°E and 20°E, the latter is interpreted as a relic of westward dipping Caledonian continental collision or major thrusting. There is also a basement high on this trend. Across this zone, there is an eastward increase in the VP, VP/VS ratio, and density, indicating a change towards a more mafic average crustal composition. The northward basement/Moho trend projects onto the Billefjorden Fault Zone (BFZ) on Spitsbergen. The eastern side of the BFZ correlates closely with coincident linear positive gravity and magnetic anomalies on western Ny Friesland, apparently originating from an antiform with high-grade metamorphic Caledonian terrane. A double linear magnetic anomaly appears on the BFZ trend south of Spitsbergen, sub-parallel to and located 10–50 km west of the crustal root. Based on this correlation, it is proposed that the suture or major thrust zone seen south of Svalbard correlates to the BFZ. The preservation of the relationship between the crustal suture, the crustal root, and upper mantle reflectivity, challenges the large-offset, post-collision sinistral transcurrent movement on the BFZ and other trends proposed in the literature. In particular, neither the wide-angle seismic data, nor conventional deep seismic reflection data south of Svalbard show clear signs of major lateral offsets, as seen in similar data around the British Isles.  相似文献   

2.
The Barents Sea is located in the northwestern corner of the Eurasian continent, where the crustal terrain was assembled in the Caledonian orogeny during Late Ordovician and Silurian times. The western Barents Sea margin developed primarily as a transform margin during the early Tertiary. In the northwestern part south of Svalbard, multichannel reflection seismic lines have poor resolution below the Permian sequence, and the early post-orogenic development is not well known here. In 1998, an ocean bottom seismometer (OBS) survey was collected southwest to southeast of the Svalbard archipelago. One profile was shot across the continental transform margin south of Svalbard, which is presented here. P-wave modeling of the OBS profile indicates a Caledonian suture in the continental basement south of Svalbard, also proposed previously based on a deep seismic reflection line coincident with the OBS profile. The suture zone is associated with a small crustal root and westward dipping mantle reflectivity, and it marks a boundary between two different crystalline basement terrains. The western terrain has low (6.2–6.45 km s−1) P-wave velocities, while the eastern has higher (6.3–6.9 km s−1) velocities. Gravity modeling agrees with this, as an increased density is needed in the eastern block. The S-wave data predict a quartz-rich lithology compatible with felsic gneiss to granite within and west of the suture zone, and an intermediate lithological composition to the east. A geological model assuming westward dipping Caledonian subduction and collision can explain the missing lower crust in the western block by subduction erosion of the lower crust, as well as the observed structuring. Due to the transform margin setting, the tectonic thinning of the continental block during opening of the Norwegian-Greenland Sea is restricted to the outer 35 km of the continental block, and the continent–ocean boundary (COB) can be located to within 5 km in our data. Distinct from the outer high commonly observed on transform margins, the upper part of the continental crust at the margin is dominated by two large, rotated down-faulted blocks with throws of 2–3 km on each fault, apparently formed during the transform margin development. Analysis of the gravity field shows that these faults probably merge to one single fault to the south of our profile, and that the downfaulting dominates the whole margin segment from Spitsbergen to Bjørnøya. South of Bjørnøya, the faulting leaves the continental margin to terminate as a graben 75 km south of the island. Adjacent to the continental margin, there is no clear oceanic layer 2 seismic signature. However, the top basement velocity of 6.55 km s−1 is significantly lower than the high (7 km s−1) velocity reported earlier from expanding spread profiles (ESPs), and we interpret the velocity structure of the oceanic crust to be a result of a development induced by the 7–8-km-thick sedimentary overburden.  相似文献   

3.
Refraction data taken from ocean bottom seismograph recordings in the western Arafura Sea indicate a continental‐type structure for the region. This structure is characterised by a thin column (2 km) of sediments, with velocities ranging from about to 2 to 4 km s‐1, overlying an essentially two layer crust. The compressional wave velocities in the upper and lower crust are 5.97 and 6.52 km s‐1, respectively, with the boundary between the layers at a depth of 11 km. Very weak mantle‐refracted arrivals with a velocity of about 8.0 km s‐1 were recorded. Large‐amplitude, later arrivals, beginning at distances near 100 and 150 km, have been interpreted to be part of the retrograde branches from the 8.0 and 7.33 km s‐1 layers, respectively. Model studies indicate that a small positive velocity gradient is required between 17 and 30 km, and that the Moho is at a depth of 34 km. A third set of large amplitude, later arrivals starting at a distance near 250 km has been interpreted as most probably multiple refraction‐reflection arrivals from the 5.97 and 6.52 km s‐1 layers. Correlation of this structure with the stratigraphic logs from exploratory oil wells in the Arafura Sea using layer velocities indicates that rocks younger than Jurassic appear to thin towards the east.  相似文献   

4.
对1986—2001年间巴伦支海南部海洋磁力测量的数据处理结果进行了研究。南巴伦支海底的地磁测量揭示出其复杂多期的地质构造结构,其中以两期分离型的构造为主导:(1)具NW走向的里菲-文德期继承性裂谷构造;(2)NE向转换叠加断层正交系统。晚泥盆世碱性侵入体及其相关的金属矿化作用恰位于这些构造系统的交点上。  相似文献   

5.
Processing of data from regional geophysical surveys completed in the northern Barents Sea has provided updates to gravity and magnetic databases, structural maps of seismic interfaces, and positions of anomaly sources, which made a basis for 3D density and magnetic models of the crust. The new geological and geophysical results placed constraints on the boundaries between basement blocks formed in different settings and on the contours of deposition zones of different ages in the northeastern Barents Sea. The estimated thicknesses of sedimentary sequences that formed within certain time spans record the deposition history of the region. There is a 20-50 km wide deep suture between two basins of Mesozoic and Paleozoic ages in the eastern part of the region, where pre-Late Triassic reflectors have no clear correlation. The suture slopes eastward at a low angle and corresponds to a paleothrust according to seismic and modeling data. In the basement model, the suture is approximated by a zone of low magnetization and density, which is common to active fault systems. The discovery of the suture has important geological and exploration implications.  相似文献   

6.
A pockmark field extending over 35 km2 at 74°54N, 27°3E, described by Solheim and Elverhøi (1993), was re-surveyed and found to be covered with more than 30 steep-sided craters between 300 and 700 m in diameter and up to 28 m deep. The craters are thought to have been formed by an explosive gas eruption. Anomalously high concentrations of methane in the shelf waters around the craters suggest that a strong methane source near this area is still active today. Methane enrichment more than 10 km away from the crater field indicates the large dimensions of a plume and the amount of gas released from sources below the seafloor of the Barents Sea shelf. From the characteristic vertical decrease of methane towards the sea surface, it is concluded that biota are extensively using this energy pool and reducing the methane concentration within the water column by about 98% between 300 m depth and the sea surface. Degassing to the atmosphere is minimal based on the shape of the methane concentration gradient. Nevertheless, the net flux of methane from this area of the Barents Sea is about 2.9 × 104 g CH4 km–2 yr–1 and thus in the upper range of the presently estimated global marine methane release. This flux is a minimum estimate and is likely to increase seasonally when rough weather leads to more effective vertical mixing during autumn and winter. The amount of methane consumed in the water column, however, is about 50 times greater and hence should significantly contribute to the marine carbon inventory.  相似文献   

7.
The creation of the huge fans observed in the western Barents Sea margin can only be explained by assuming extremely high glacial erosion rates in the Barents Sea area. Glacial processes capable of producing such high erosion rates have been proposed, but require the largest part of the preglacial Barents Sea to be subaerial. To investigate the validity of these proposals we have attempted to reconstruct the western preglacial Barents Sea. Our approach was to combine erosion maps based on prepublished data into a single mean valued erosion map covering the whole western Barents Sea and consequently use it together with a simple Airy isostatic model to obtain a first rough estimate of the preglacial topography and bathymetry of the western Barents Sea margin. The mean valued erosion map presented herein is in good volumetric agreement with the sediments deposited in the western Barents Sea margin areas, and as a direct consequence of the averaging procedures employed in its construction we can safely assume that it is the most reliable erosion map based on the available information. By comparing the preglacial sequences with the glacial sequences in the fans we have concluded that 1/2 to 2/3 of the total Cenozoic erosion was glacial in origin and therefore a rough reconstruction of the preglacial relief of the western Barents Sea could be obtained. The results show a subaerial preglacial Barents Sea. Thus, during interglacials and interstadials the area may have been partly glaciated and intensively eroded up to 1 mm/y, while during relatively brief periods of peak glaciation with grounded ice extending to the shelf edge, sediments have been evacuated and deposited at the margins at high rates. The interplay between erosion and uplift represents a typical chicken and egg problem; initial uplift is followed by intensive glacial erosion, compensated by isostatic uplift, which in turn leads to the maintenance of an elevated, and glaciated, terrain. The information we have on the initial tectonic uplift suggests that the most likely mechanism to cause an uplift of the dimensions and magnitude of the one observed in the Barents Sea is a thermal mechanism.  相似文献   

8.
In order to better understand the tectonic framework of the Northern Molucca Sea area, we inverted satellite and sea-surface gravity data into an iterative scheme including a priori seismological and geological data. The resulting 3-D density model images the various tectonic units from the surface down to 40 km. We proceed to various tests to assess the stability and robustness of our inversion. In particular, we performed an offset and average smoothing method to properly refine our results. The resulting model shows a striking vertical regularity of the structures through the different layers, whereas the density contrasts appear strongly uneven in the horizontal direction.The density model emphasizes the complexity of the upper lithospheric structure in the northern Molucca Sea, which is clearly dominated by the interaction between ophiolitic ridges, sedimentary wedges and rigid blocks of the Philippine Sea Plate. It also provides new, hard information that can be used in discussion of the evolution of the region.Large density variations are concentrated in the central part of northern Molucca Sea and dominate the upper lithospheric. North–south trending density structures along the Central Ridge and west dipping thrust faults on the western side of the region are clearly imaged. In the eastern part of the region, we distinguish several blocks, especially the Snellius Plateau which seems to be split into two parts. We interpret this as an oceanic plateau associated with thicker crust that previously belonged to the Philippine Sea Plate. This crust is now trapped between the Molucca Sea complex collision zone and the Philippine Trench, due to the development of a new subduction zone in its eastern side.  相似文献   

9.
渤海海底地震仪探测试验及初步成果   总被引:4,自引:0,他引:4  
利用大容量气枪枪阵震源和海底地震仪在渤海首次开展人工地震深部地球物理探测试验。本次试验布设一条NWW-SEE向垂直构造走向的勘测线,共投放海底地震仪51台,回收成功50台。试验结果和数据分析表明,所使用的枪阵有足够的能量输出,海底地震仪记录震相丰富,可识别到Ps,Pg,PmP,Pn等多种震相。初至波层析成像结果表明,9 km以上地层速度结构存在明显的横向不均匀性,渤中地区新生代沉积基底埋深5~6 km,结晶基底埋深约9 km,郯庐断裂带内存在"U"型下凹的相对低速体并有向下切割的趋势。此次试验是我国在渤海深部探测中的成功示范,有效填补了渤海海域深地震测深数据的空白,为渤海深部地壳结构研究及含油气盆地形成演化研究提供了重要的基础资料。  相似文献   

10.
威德尔海是南极洲最大的边缘海。通过搜集威德尔海的重磁资料、历史文献以及总结前人的相关研究成果,介绍了威德尔海的重磁场基本特征以及指示的构造意义。威德尔海最显著的重力特征是在威德尔海的中北部分布着以鲱骨式结构展布的一系列NW-SE向重力异常,其上可见一系列弧形、上凹的以E-W为主要方向的磁力异常。沿南极半岛陆架边缘的重力高一直可延伸到南侧海域,高值区与陆架平行,但是在磁异常上反映不明显。威德尔海原始海盆的形成约在150 Ma,并伴随南北向张裂,随后在140 Ma发生东西向扩张,到约120 Ma异常形成现代南极洲、非洲和南美洲板块的分布格局,鲱骨式结构异常脊也形成于该时期。  相似文献   

11.
S.B. Lyngsie  H. Thybo  T.M. Rasmussen   《Tectonophysics》2006,413(3-4):147-170
The spatial distribution of large-scale crustal domains and their boundaries are investigated in the North Sea area by combining gravity, magnetic and seismic data. The North Sea is situated on the plates of three continents, Avalonia, Laurentia and Baltica, which collided during the Caledonian orogeny in the middle Palaeozoic. The location and continuation of the collisional sutures are debated. We apply filters and transformations to potential field data to focus on the crystalline crust and uppermost mantle on a regional scale in order to extract new information on continental sutures. The transformations reveal intrinsic features of crustal transitions between the Caledonian plates and their relation to later extensional structures. The transformations include the Hough Transform applied to the gravity field, calculation of fractional derivatives and integrals of the gravity and magnetic fields, the pseudogravity field and the horizontal gradient field as well as upward continuation. The results indicate a fundamental difference between the lithosphere of Avalonia, Laurentia and Baltica. The location of the Mesozoic rift system (the Central Graben and Viking Graben), may have been partly determined by the presence of the sutures between these three plate, indicative of extensional reactivation of compressional structures. A significant lineament across the entire North Sea between Scotland and North Germany indicates that the lower crust of Baltica provenance may extend as far south-westward as to this lineament. Comparison of the power spectra of the gravity field in five selected areas shows significant differences in the long wavelength components between the areas north and south of the lineament corresponding to differences in crustal properties. This lineament could represent the suture between lithosphere of Caledonian origin (Avalonia) versus lithosphere of Precambrian origin (Baltica) in the lower crust and upper mantle. If this is the case, the lineament is the missing link in the reconstruction of the triple plate collision.  相似文献   

12.
Shoreface sandstone deposits within the Early Carnian part of the Snadd Formation of the Norwegian Barents Sea can be traced for hundreds of kilometres in the depositional strike direction and for tens of kilometres in the depositional‐dip direction. This study uses three‐dimensional seismic attribute mapping and two‐dimensional regional seismic profiles to visualize the seismic facies of these shoreface deposits and to map their internal stratigraphic architecture at a regional scale. The shoreface deposits are generally elongate but show variable width from north‐east to south‐west, which corresponds to a sediment source in the northern part of the basin and a southward decrease in longshore sediment transport. The Snadd Formation presents an example of how large‐scale progradational shoreface deposits develop. The linear nature of its shoreface deposits contrasts with more irregular, cuspate wave‐dominated deltaic shorelines that contain river outlets, and instead implies longshore drift as the main sediment source. In map view, discrete sets of linear features bounded by truncation surfaces scale directly to beach ridge sets in modern counterparts. The shoreface deposits studied here are characteristic in terms of scale and basin‐wide continuity, and offer insight into the contrast between shallow marine deposition under stable Triassic Greenhouse and fluctuating Holocene Icehouse climates. Findings presented herein are also important for hydrocarbon exploration in the Barents Sea, because they describe a hitherto poorly understood reservoir play in the Triassic interval, wherein the most prominent reservoir plays have so far been considered to be found in channelized deposits in net‐progradational delta‐plain strata that form the topsets to shelf‐edge clinoforms. The documented presence of widespread wave‐dominated shoreface deposits also has implications for how the relative importance of different sedimentary processes is considered within the basin during this period.  相似文献   

13.
The Tsushima Basin is located in the southwestern Japan Sea, which is a back-arc basin in the northwestern Pacific. Although some geophysical surveys had been conducted to investigate the formation process of the Tsushima Basin, it remains unclear. In 2000, to clarify the formation process of the Tsushima Basin, the seismic velocity structure survey with ocean bottom seismometers and airguns was carried out at the southeastern Tsushima Basin and its margin, which are presumed to be the transition zone of the crustal structure of the southwestern Japan Island Arc. The crustal thickness under the southeastern Tsushima Basin is about 17 km including a 5 km thick sedimentary layer, and 20 km including a 1.5 km thick sedimentary layer under its margin. The whole crustal thickness and thickness of the upper part of the crust increase towards the southwestern Japan Island Arc. On the other hand, thickness of the lower part of the crust seems more uniform than that of the upper part. The crust in the southeastern Tsushima Basin has about 6 km/s layer with the large velocity gradient. Shallow structures of the continental bank show that the accumulation of the sediments started from lower Miocene in the southeastern Tsushima Basin. The crustal structure in southeastern Tsushima Basin is not the oceanic crust, which is formed ocean floor spreading or affected by mantle plume, but the rifted/extended island arc crust because magnitudes of the whole crustal and the upper part of the crustal thickening are larger than that of the lower part of the crustal thickening towards the southwestern Japan Island Arc. In the margin of the southeastern Tsushima Basin, high velocity material does not exist in the lowermost crust. For that reason, the margin is inferred to be a non-volcanic rifted margin. The asymmetric structure in the both margins of the southeastern and Korean Peninsula of the Tsushima Basin indicates that the formation process of the Tsushima Basin may be simple shear style rather than pure shear style.  相似文献   

14.
Opening of the Fram Strait gateway: A review of plate tectonic constraints   总被引:1,自引:0,他引:1  
We have revised the regional crustal structure, oceanic age distribution, and conjugate margin segmentation in and around the Lena Trough, the oceanic part of the Fram Strait between the Norwegian–Greenland Sea and the Eurasia Basin (Arctic Ocean). The Lena Trough started to open after Eurasia–Greenland relative plate motions changed from right-lateral shear to oblique divergence at Chron 13 times (33.3 Ma; earliest Oligocene). A new Bouguer gravity map, supported by existing seismic data and aeromagnetic profiles, has been applied to interpret the continent–ocean transition and the influence of Eocene shear structures on the timing of breakup and initial seafloor spreading. Assuming that the onset of deep-water exchange depended on the formation of a narrow, oceanic corridor, the gateway formed during early Miocene times (20–15 Ma). However, if the initial Lena Trough was blocked by terrigenous sediments or was insufficiently subsided to allow for deep-water circulation, the gateway probably formed with the first well developed magnetic seafloor spreading anomaly around Chron 5 times (9.8 Ma; Late Miocene). Paleoceanographic changes at ODP Site 909 (northern Hovgård Ridge) are consistent with both hypotheses of gateway formation. We cannot rule out that a minor gateway formed across stretched continental crust prior to the onset of seafloor spreading in the Lena Trough. The gravity, seismic and magnetic observations question the prevailing hypotheses on the Yermak Plateau and the Morris Jesup Rise as Eocene oceanic plateaus and the Hovgård Ridge as a microcontinent.  相似文献   

15.
Despite the various opening models of the southwestern part of the East Sea (Japan Sea) between the Korean Peninsula and the Japan Arc, the continental margin of the Korean Peninsula remains unknown in crustal structure. As a result, continental rifting and subsequent seafloor spreading processes to explain the opening of the East Sea have not been adequately addressed. We investigated crustal and sedimentary velocity structures across the Korean margin into the adjacent Ulleung Basin from multichannel seismic (MCS) reflection and ocean bottom seismometer (OBS) data. The Ulleung Basin shows crustal velocity structure typical of oceanic although its crustal thickness of about 10 km is greater than normal. The continental margin documents rapid transition from continental to oceanic crust, exhibiting a remarkable decrease in crustal thickness accompanied by shallowing of Moho over a distance of about 50 km. The crustal model of the margin is characterized by a high-velocity (up to 7.4 km/s) lower crustal (HVLC) layer that is thicker than 10 km under the slope base and pinches out seawards. The HVLC layer is interpreted as magmatic underplating emplaced during continental rifting in response to high upper mantle temperature. The acoustic basement of the slope base shows an igneous stratigraphy developed by massive volcanic eruption. These features suggest that the evolution of the Korean margin can be explained by the processes occurring at volcanic rifted margins. Global earthquake tomography supports our interpretation by defining the abnormally hot upper mantle across the Korean margin and in the Ulleung Basin.  相似文献   

16.
太阳辐射能是海冰融化的最主要能源,基于在2008年8月21~27日北极加拿大海盆中部为期8天的冰站考察中海冰光学观测数据,研究了北冰洋中央密集冰区海冰吸收的太阳辐射能.通过现场直接观测,确定了海冰透射率、反照率、吸收率及其随冰厚的变化,得出海冰对太阳短波辐射的吸收率大约为到达冰面太阳辐射的16%,大部分被冰雪表面反射.为期3天的对太阳辐射的观测表明,虽然到达北冰洋中央密集冰区的太阳辐射能并不少,但由于云和雾覆盖的时间所占的比例很大,有将近57%被大气削弱,其余的又有77%左右被冰雪表面反射回太空,海冰吸收的热量只有10.2W/m2,相当于每天融化2.6mm的冰,1m厚海冰全部融化需要380天,不足以为海冰融化提供足够的热量.因此北冰洋中央密集冰区终年被海冰覆盖,即使在北冰洋海冰面积骤减的现状下,那里的海冰密集度仍然接近100%.然而,文章的结果指出:大气中云和雾大幅度减少、积雪层融化、海冰厚度减小、融池的比例增加等因素都会大幅度增加海冰吸收的热量,未来这些过程的发生有可能导致北冰洋密集冰区的海冰快速融化.  相似文献   

17.
《China Geology》2021,4(4):541-552
The intersection of the Kyushu-Palau Ridge (KPR) and the Central Basin Rift (CBR) of the West Philippine Basin (WPB) is a relic of a trench-trench-rift (TTR) type triple-junction, which preserves some pivotal information on the cessation of the seafloor spreading of the WPB, the emplacement and disintegration of the proto-Izu-Bonin-Mariana (IBM) Arc, and the transition from initial rifting to steady-state spreading of the Parece Vela Basin (PVB). However, the structural characteristics of this triple-junction have not been thoroughly understood. In this paper, using the newly acquired multi-beam bathymetric, gravity, and magnetic data obtained by the Qingdao Institute of Marine Geology, China Geological Survey, the authors depict the topographic, gravity, and magnetic characteristics of the triple-junction and adjacent region. Calculations including the upward continuations and total horizontal derivatives of gravity anomaly are also performed to highlight the major structural features and discontinuities. Based on these works, the morphological and structural features and their formation mechanisms are analyzed. The results show that the last episode amagmatic extension along the CBR led to the formation of a deep rift valley, which extends eastward and incised the KPR. The morphological and structural fabrics of the KPR near and to the south of the triple-junction are consistent with those of the western PVB, manifesting as a series of NNE-SSW- and N-S-trending ridges and troughs, which were produced by the extensional faults associated with the initial rifting of the PVB. The superposition of the above two reasons induced the prominent discontinuity of the KPR in deep and shallow crustal structures between 15°N–15°30′N and 13°30′N–14°N. Combined with previous authors’ results, we propose that the stress produced by the early spreading of the PVB transmitted westward and promoted the final stage amagmatic extension of the CBR. The eastward propagation of the CBR destroyed the KPR, of which the magmatism had decayed or ceased at that time. The destruction mechanism of the KPR associated with the rifting of the PVB varies along strike the KPR. Adjacent to the triple-junction, the KPR was destroyed mainly due to the oblique intersection of the PVB rifting center. Whereas south of the triple-junction, the KPR was destroyed by the E-W-directional extensional faulting on its whole width.©2021 China Geology Editorial Office.  相似文献   

18.
We have carried out seismological observations within the Sea of Marmara (NW Turkey) in order to investigate the seismicity induced after Gölcük–İzmit (Kocaeli) earthquake (Mw 7.4) of August 17, 1999, using ocean bottom seismometers (OBSs). High-resolution hypocenters and focal mechanisms of microearthquakes have been investigated during this Marmara Sea OBS project involving deployment of 10 OBSs within the Çınarcık (eastern Marmara Sea) and Central-Tekirdağ (western Marmara Sea) basins during April–July 2000. Little was known about microearthquake activity and their source mechanisms in the Marmara Sea. We have detected numerous microearthquakes within the main basins of the Sea of Marmara along the imaged strands of the North Anatolian Fault (NAF). We obtained more than 350 well-constrained hypocenters and nine composite focal mechanisms during 70 days of observation. Microseismicity mainly occurred along the Main Marmara Fault (MMF) in the Marmara Sea. There are a few events along the Southern Shelf. Seismic activity along the Main Marmara Fault is quite high, and focal depth distribution was shallower than 20 km along the western part of this fault, and shallower than 15 km along its eastern part. From high-resolution relative relocation studies of some of the microearthquake clusters, we suggest that the western Main Marmara Fault is subvertical and the eastern Main Marmara Fault dips to south at 45°. Composite focal mechanisms show a strike-slip regime on the western Main Marmara Fault and complex faulting (strike-slip and normal faulting) on the eastern Main Marmara Fault.  相似文献   

19.
银坑示范区位于中国东南部南岭东段于都—赣县矿集区内的银坑镇,具有良好的找矿前景。该区花岗岩与成矿关系密切。因此,系统探查花岗岩体分布是深部找矿的关键问题之一。笔者主要利用重力、磁力平面资料,并结合物性、地质、电法、地震等资料,综合研究了该区花岗岩空间分布特征。首先研究推断了该区6个花岗岩体的平面分布,其中,江背岩体、长潭岩体、高山角岩体为部分隐伏岩体;柳木坑岩体、葛凹圩浅部岩体和葛凹圩深部岩体为完全隐伏岩体。6个岩体总体走向为NE和NNE向。然后利用研究区内4条剖面重(磁)资料反演了花岗岩的空间分布,进一步揭示了上述6个岩体的空间分布特征,其推断成果与利用平面重、磁资料推断成果一致,也与电法、地震剖面解释结果一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号