首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Korosten complex is a Paleoproterozoic gabbro–anorthosite–rapakivi granite intrusion which was emplaced over a protracted time interval — 1800–1737 Ma. The complex occupies an area of about 12 000 km2 in the north-western region of the Ukrainian shield. About 18% of this area is occupied by various mafic rocks (gabbro, leucogabbro, anorthosite) that comprise five rock suites: early anorthositic A1 (1800–1780 Ma), main anorthositic A2 (1760 Ma), early gabbroic G3 (between 1760 and 1758 Ma), late gabbroic G4 (1758 Ma), and a suite of dykes D5 (before 1737 Ma). In order to examine the relationships between the various intrusions and to assess possible magmatic sources, Nd and Sr isotopic composition in mafic whole-rock samples were measured. New Sr and Nd isotope measurements combined with literature data for the mafic rocks of the Korosten complex are consistent and enable construction of Rb–Sr and Sm–Nd isochronous regressions that yield the following ages: 1870 ± 310 Ma (Rb–Sr) and 1721 ± 90 Ma (Sm–Nd). These ages are in agreement with those obtained by the U–Pb method on zircons and indicate that both Rb–Sr and Sm–Nd systems have remained closed since the time of crystallisation. In detail, however, measurable differences in isotopic composition of the Korosten mafic rock depending on their suite affiliation were revealed. The oldest, A1 rocks have lower Sr (87Sr/86Sr(1760) = 0.70233–0.70288) and higher Nd (εNd(1760) = 1.6–0.9) isotopic composition. The most widespread A2 anorthosite and leucogabbro display higher Sr and lower Nd isotopic composition: 87Sr/86Sr(1760) = 0.70362, εNd(1760) varies from 0.2 to − 0.7. The G3 gabbro–norite has slightly lower εNd(1760) varying from − 0.7 to − 0.9. Finally, G4 gabbroic rocks show relatively high initial 87Sr/86Sr (0.70334–0.70336) and the lowest Nd isotopic composition (εNd(1760) varies from − 0.8 to − 1.4) of any of the mafic rocks of the Korosten complex studied to date. On the basis of Sr and Nd isotopic composition we conclude that Korosten initial melts may have inherited their Nd and Sr isotopic characteristics from the lower crust created during the 2.05–1.95 Ga Osnitsk orogeny and 2.0 Ga continental flood basalt event. Indeed, εNd(1760) values in Osnitsk rocks vary from 0.0 to − 1.9 and from 0.2 to 3.4 in flood basalts. We suggest that these rocks being drawn into the upper mantle might melt and give rise to the Korosten initial melts. 87Sr/86Sr(1760) values also support this interpretation. We suggest that the Sr and Nd isotopic data currently available on mafic rocks of the Korosten complex are consistent with an origin of its primary melts by partial melting of lower crustal material due to downthrusting of the lower crust into upper mantle forced by Paleoproterozoic amalgamation of Sarmatia and Fennoscandia.  相似文献   

2.
Ar/Ar analyses of phengites and paragonites from the ultrahigh-pressure metamorphic rocks (zoisite–clinozoisite schist, garnet–phengite schist and piemontite schist) in the Lago di Cignana area, Western Alps were carried out with a laser probe step-heating method using single crystals and a spot dating method on thin sections. Eight phengite and two paragonite crystals give the plateau ages of 37–42 Ma with 96–100% of 39Ar released. Each rock type also contains mica crystals showing discordant age spectra with age fractions (20–35 Ma) significantly younger than the plateau ages. Phengite inclusions in garnet give ages of 43.2 ± 1.1 Ma and 44.4 ± 1.5 Ma, which are significantly older than the spot age (36.4 ± 1.4 Ma) from the matrix phengites, and the plateau ages from the step-heating analyses. Inclusion ages (43 and 44 Ma) are consistent with a zircon SHRIMP age (44 ± 1 Ma) in this area. These results suggest that the oceanic materials that underwent a simple subduction related UHPM, form excess 40Ar-free phengite and that the peak metamorphism is ca. 44 Ma or little older. We suggest that matrix phengites experienced a retrogression reaction changing their chemistry contemporaneously with deformation related to the exhumation of rocks releasing significant radiogenic 40Ar from the crystals. This has lead to the apparent ages of the matrix phengites that are significantly younger than the inclusion age.  相似文献   

3.
T. Andersen  W.L. Griffin  A.G. Sylvester   《Lithos》2007,93(3-4):273-287
Laser ablation ICPMS U–Pb and Lu–Hf isotope data on granitic-granodioritic gneisses of the Precambrian Vråvatn complex in central Telemark, southern Norway, indicate that the magmatic protoliths crystallized at 1201 ± 9 Ma to 1219 ± 8 Ma, from magmas with juvenile or near-juvenile Hf isotopic composition (176Hf/177Hf = 0.2823 ± 11, epsilon-Hf > + 6). These data provide supporting evidence for the depleted mantle Hf-isotope evolution curve in a time period where juvenile igneous rocks are scarce on a global scale. They also identify a hitherto unknown event of mafic underplating in the region, and provide new and important limits on the crustal evolution of the SW part of the Fennoscandian Shield. This juvenile geochemical component in the deep crust may have contributed to the 1.0–0.92 Ga anorogenic magmatism in the region, which includes both A-type granite and a large anorthosite–mangerite–charnockite–granite intrusive complex. The gneisses of the Vråvatn complex were intruded by a granitic pluton with mafic enclaves and hybrid facies (the Vrådal granite) in that period. LAM-ICPMS U–Pb data from zircons from granitic and hybrid facies of the pluton indicates an intrusive age of 966 ± 4 Ma, and give a hint of ca. 1.46 Ga inheritance. The initial Hf isotopic composition of this granite (176Hf/177Hf = 0.28219 ± 13, epsilon-Hf = − 5 to + 6) overlaps with mixtures of pre-1.7 Ga crustal rocks and juvenile Sveconorwegian crust, lithospheric mantle and/or global depleted mantle. Contributions from ca. 1.2 Ga crustal underplate must be considered when modelling the petrogenesis of late Sveconorwegian anorogenic magmatism in the region.  相似文献   

4.
The Variscan Hauzenberg pluton consists of granite and granodiorite that intruded late- to postkinematically into HT-metamorphic rocks of the Moldanubian unit at the southwestern margin of the Bohemian Massif (Passauer Wald). U–Pb dating of zircon single-grains and monazite fractions, separated from medium- to coarse-grained biotite-muscovite granite (Hauzenberg granite II), yielded concordant ages of 320 ± 3 and 329 ± 7 Ma, interpreted as emplacement age. Zircons extracted from the younger Hauzenberg granodiorite yielded a 207Pb–206Pb mean age of 318.6 ± 4.1 Ma. The Hauzenberg granite I has not been dated. The pressure during solidification of the Hauzenberg granite II was estimated at 4.6 ± 0.6 kbar using phengite barometry on magmatic muscovite, corresponding to an emplacement depth of 16-18 km. The new data are compatible with pre-existing cooling ages of biotite and muscovite which indicate the Hauzenberg pluton to have cooled below T = 250–400 °C in Upper Carboniferous times. A compilation of age data from magmatic and metamorphic rocks of the western margin of the Bohemian Massif suggests a west- to northwestward shift of magmatism and HT/LP metamorphism with time. Both processes started at > 325 Ma within the South Bohemian Pluton and magmatism ceased at ca. 310 Ma in the Bavarian Oberpfalz. The slight different timing of HT metamorphism in northern Austria and the Bavarian Forest is interpreted as being the result of partial delamination of mantle lithosphere or removal of the thermal boundary layer.  相似文献   

5.
The Anarak, Jandaq and Posht-e-Badam metamorphic complexes occupy the NW part of the Central-East Iranian Microcontinent and are juxtaposed with the Great Kavir block and Sanandaj-Sirjan zone. Our recent findings redefine the origin of these complexes, so far attributed to the Precambrian–Early Paleozoic orogenic episodes, and now directly related to the tectonic evolution of the Paleo-Tethys Ocean. This tectonic evolution was initiated by Late Ordovician–Early Devonian rifting events and terminated in the Triassic by the Eocimmerian collision event due to the docking of the Cimmerian blocks with the Asiatic Turan block.

The “Variscan accretionary complex” is a new name we proposed for the most widely distributed metamorphic rocks connected to the Anarak and Jandaq complexes. This accretionary complex exposed from SW of Jandaq to the Anarak and Kabudan areas is a thick and fine grain siliciclastic sequence accompanied by marginal-sea ophiolitic remnants, including gabbro-basalts with a supra-subduction-geochemical signature. New 40Ar/39Ar ages are obtained as 333–320 Ma for the metamorphism of this sequence under greenschist to amphibolite facies. Moreover, the limy intercalations in the volcano-sedimentary part of this complex in Godar-e-Siah yielded Upper Devonian–Tournaisian conodonts. The northeastern part of this complex in the Jandaq area was intruded by 215 ± 15 Ma arc to collisional granite and pegmatites dated by ID-TIMS and its metamorphic rocks are characterized by some 40Ar/39Ar radiometric ages of 163–156 Ma.

The “Variscan” accretionary complex was northwardly accreted to the Airekan granitic terrane dated at 549 ± 15 Ma. Later, from the Late Carboniferous to Triassic, huge amounts of oceanic material were accreted to its southern side and penetrated by several seamounts such as the Anarak and Kabudan. This new period of accretion is supported by the 280–230 Ma 40Ar/39Ar ages for the Anarak mild high-pressure metamorphic rocks and a 262 Ma U–Pb age for the trondhjemite–rhyolite association of that area. The Triassic Bayazeh flysch filled the foreland basin during the final closure of the Paleo-Tethys Ocean and was partly deposited and/or thrusted onto the Cimmerian Yazd block.

The Paleo-Tethys magmatic arc products have been well-preserved in the Late Devonian–Carboniferous Godar-e-Siah intra-arc deposits and the Triassic Nakhlak fore-arc succession. On the passive margin of the Cimmerian block, in the Yazd region, the nearly continuous Upper Paleozoic platform-type deposition was totally interrupted during the Middle to Late Triassic. Local erosion, down to Lower Paleozoic levels, may be related to flexural bulge erosion. The platform was finally unconformably covered by Liassic continental molassic deposits of the Shemshak.

One of the extensional periods related to Neo-Tethyan back-arc rifting in Late Cretaceous time finally separated parts of the Eocimmerian collisional domain from the Eurasian Turan domain. The opening and closing of this new ocean, characterized by the Nain and Sabzevar ophiolitic mélanges, finally transported the Anarak–Jandaq composite terrane to Central Iran, accompanied by large scale rotation of the Central-East Iranian Microcontinent (CEIM). Due to many similarities between the Posht-e-Badam metamorphic complex and the Anarak–Jandaq composite terrane, the former could be part of the latter, if it was transported further south during Tertiary time.  相似文献   


6.
The major and trace elements and Sr–Nd–Pb isotopes of the host rocks and the mafic microgranular enclaves (MME) gathered from the Dölek and Sariçiçek plutons, Eastern Turkey, were studied to understand the underlying petrogenesis and geodynamic setting. The plutons were emplaced at  43 Ma at shallow depths ( 5 to 9 km) as estimated from Al-in hornblende geobarometry. The host rocks consist of a variety of rock types ranging from diorite to granite (SiO2 = 56.98–72.67 wt.%; Mg# = 36.8–50.0) populated by MMEs of gabbroic diorite to monzodiorite in composition (SiO2 = 53.21–60.94 wt.%; Mg# = 44.4–53.5). All the rocks show a high-K calc-alkaline differentiation trend. Chondrite-normalized REE patterns are moderately fractionated and relatively flat [(La/Yb)N = 5.11 to 8.51]. They display small negative Eu anomalies (Eu/Eu = 0.62 to 0.88), with enrichment of LILE and depletion of HFSE. Initial Nd–Sr isotopic compositions for the host rocks are εNd(43 Ma) = − 0.6 to 0.8 and mostly ISr = 0.70482–0.70548. The Nd model ages (TDM) vary from 0.84 to 0.99 Ga. The Pb isotopic ratios are (206Pb/204Pb) = 18.60–18.65, (207Pb/204Pb) = 15.61–15.66 and (208Pb/204Pb) = 38.69–38.85. Compared with the host rocks, the MMEs are relatively homogeneous in isotopic composition, with ISr ranging from 0.70485 to 0.70517, εNd(43 Ma) − 0.1 to 0.8 and with Pb isotopic ratios of (206Pb/204Pb) = 18.58–18.64, (207Pb/204Pb) = 15.60–15.66 and (208Pb/204Pb) = 38.64–38.77. The MMEs have TDM ranging from 0.86 to 1.36 Ga. The geochemical and isotopic similarities between the MMEs and their host rocks indicate that the enclaves are of mixed origin and are most probably formed by the interaction between the lower crust- and mantle-derived magmas. All the geochemical data, in conjunction with the geodynamic evidence, suggest that a basic magma derived from an enriched subcontinental lithospheric mantle, probably triggered by the upwelling of the asthenophere, and interacted with a crustal melt that originated from the dehydration melting of the mafic lower crust at deep crustal levels. Modeling based on the Sr–Nd isotope data indicates that  77–83% of the subcontinental lithospheric mantle involved in the genesis. Consequently, the interaction process played an important role in the genesis of the hybrid granitoid bodies, which subsequently underwent a fractional crystallization process along with minor amounts of crustal assimilation, en route to the upper crustal levels generating a wide variety of rock types ranging from diorite to granite in an extensional regime.  相似文献   

7.
The Linzizong volcanic succession (~ 65–45 Ma) and the coeval batholiths (~ 60−40 Ma) of andesitic to rhyolitic composition represent a magmatic response to the India–Asia continental collision that began at ~ 70–65 Ma and ended at ~ 45–40 Ma with convergence continuing to present. These syncollisional felsic magmatic rocks are widely distributed along much of the > 1500 km long Gangdese Belt immediately north of the India–Asia suture (Yarlung–Zangbo) in southern Tibet. Our study of the Linzizong volcanic rocks from the Linzhou Basin (near Lhasa) suggests that syncollisional felsic magmatism may in fact account for much of the net contribution to continental crust growth. These volcanic rocks show a first-order temporal change from the andesitic lower Dianzhong Formation (64.4–60.6 Ma), to the dacitic middle Nianbo Formation (~ 54 Ma), and to the rhyolitic upper Pana Formation (48.7–43.9 Ma). The three formations show no systematic but overlapping Nd–Sr isotope variations. The isotopically depleted samples with εNd(t) > 0 indicate that their primary sources are of mantle origin. The best source candidate in the broad context of Tethyan ocean closing and India–Asia collision is the remaining part of the Tethyan ocean crust. This ocean crust melts when reaching its hydrous solidus during and soon after the collision in the amphibolite facies, producing andesitic melts parental to the Linzizong volcanic succession (and the coeval batholiths) with inherited mantle isotopic signatures. Ilmenite as a residual phase (plus the effect of residual amphibole) of amphibolite melting accounts for the depletion of Nb, Ta and Ti in the melt. The effect of ocean crust alteration plus involvement of mature crustal materials (e.g., recycled terrigeneous sediments) enhances the abundances of Ba, Rb, Th, U, K and Pb in the melt, thus giving the rocks an “arc-like” geochemical signature. Residual amphibole that possesses super-chondritic Nb/Ta ratio explains the sub-chondritic Nb/Ta ratio in the melt; residual plagioclase explains the slightly depleted, not enriched, Sr (and Eu) in the melt, typical of continental crust. These observations and reasoning plus the remarkable compositional similarity between the andesitic lower Dianzhong Formation and the model bulk continental crust corroborates our proposal that continental collision zones may be sites of net crustal growth (juvenile crust) through process of syncollisional felsic magmatism. While these interpretations are reasonable in terms of straightforward petrology, geochemistry and tectonics, they require further testing.  相似文献   

8.
Zircons from an eclogite and a diamond-bearing metapelite near the Kimi village (north-eastern Rhodope Metamorphic Complex, Greece) have been investigated by Micro Raman Spectroscopy, SEM, SHRIMP and LA-ICPMS to define their inclusion mineralogy, ages and trace element contents. In addition, the host rocks metamorphic evolution was reconstructed and linked to the zircon growth domains.

The eclogite contains relicts of a high pressure stage (ca. 700 °C and > 17.5 kbar) characterised by matrix omphacite with Jd40–35. This assemblage was overprinted by a lower pressure, higher temperature metamorphic event (ca. 820 °C and 15.5–17.5 kbar), as indicated by the presence of clinopyroxene (Jd35–20) and plagioclase. Biotite and pargasitic amphibole represent a later stage, probably related to an influx of fluids. Zircons separated from the eclogite contain magmatic relicts indicating Permian crystallization of a quartz-bearing gabbroic protolith. Inclusions diagnostic of the high temperature, post-eclogitic overprint are found in metamorphic zircon domain Z2 which ages spread over a long period (160 – 95 Ma). Based on zircon textures, zoning and chemistry, we suggest that the high-temperature peak occurred at or before ca. 160 Ma and the zircons were disturbed by a later event possibly at around 115 Ma. Small metamorphic zircon overgrowths with a different composition yield an age of 79 ± 3 Ma, which is related to a distinct amphibolite-facies metamorphic event.

The metapelitic host rock consists of a mesosome with garnet, mica and kyanite, and a quartz- and plagioclase-bearing leucosome, which formed at granulite-facies conditions. Based on previously reported micro-diamond inclusions in garnet, the mesosome is assumed to have experienced UHP conditions. Nevertheless, (U)HP mineral inclusions were not found in the zircons separated from the diamond-bearing metapelite. Inclusions of melt, kyanite and high-Ti biotite in a first metamorphic zircon domain suggest that zircon formation occurred during pervasive granulite-facies metamorphism. An age of 171 ± 1 Ma measured on this zircon domain constrains the high-temperature metamorphic event. A second, inclusion-free metamorphic domain yielded an age of 160 ± 1 Ma that is related to decompression and melt crystallization.

The similar age data obtained from the samples indicate that both rock types recorded a high-T metamorphic overprint at granulite-facies conditions at ca. 170 – 160 Ma. This age implies that any high pressure or even ultra-high pressure metamorphism in the Kimi Complex occurred before that time. Our findings define new constraints for the geodynamic evolution for the Alpine orogenic cycle within the northernmost Greek part of the Rhodope Metamorphic Complex. It is proposed that the rocks of the Kimi Complex belong to a suture zone squeezed between two continental blocks and result from a Paleo-ocean basin, which should be located further north of the Jurassic Vardar Ocean.  相似文献   


9.
This paper presents new zircon U–Pb data and interpretations for the gneissic rocks in the Yunkai massif in order to constrain the timing and evolution of the Caledonian tectonothermal event in the South China Block (SCB). Magmatic and inherited zircons from the orthogneiss in the region, previously thought to be of Precambrian origin, yielded 206Pb/238U apparent ages of 421–441 Ma and 513–1343 Ma, respectively. Also a weighted mean 206Pb/238U age of 236.0 ± 3.1 Ma was obtained, interpreted as the metamorphic resetting age during the Indosinian tectonic event. Our analyses show that the paragneiss in the region, previously regarded as Proterozoic sedimentary rocks, contains detrital zircons of the Archaean to Paleozoic origin, of which the youngest zircons yielded the U–Pb age of  423 Ma. These data indicate that (1) the Proterozoic and Archaean components may exist beneath the Yunkai massif; (2) most of the metaigneous rocks are actually the Caledonian anatectic granites possibly overprinted by Indosinian ( 236 Ma) reactivation; (3) some paragneiss might have originally deposited during the Devonian time; and (4) a subsequently rapid uplifting took place after the emplacement of the Caledonian granites, revealed by the observation that the Devonian clastic strata uncomfortably overlie the Caledonian granites. In combination with other geochronological data and geological observations throughout the SCB, we propose that the Caledonian tectonothermal event around Silurian ( 450–400 Ma) might be a result from an intracontinental collision between the Yangtze and Cathaysian blocks in response to the subduction/collision between the North China block and SCB.  相似文献   

10.
Ron   《Gondwana Research》2006,10(3-4):207-231
New age, petrochemical and structural data indicate that the Banda Terrane is a remnant of a Jurassic to Eocene arc–trench system that formed the eastern part of the Great Indonesian arc. The arc system rifted apart during Eocene to Miocene supra-subduction zone sea floor spreading, which dispersed ridges of Banda Terrane embedded in young oceanic crust as far south as Sumba and Timor. In Timor the Banda Terrane is well exposed as high-level thrust sheets that were detached from the edge of the Banda Sea upper plate and uplifted by collision with the passive margin of NW Australia. The thrust sheets contain a distinctive assemblage of medium grade metamorphic rocks overlain by Cretaceous to Miocene forearc basin deposits. New U/Pb age data presented here indicate igneous zircons are less than 162 Ma with a cluster of ages at 83 Ma and 35 Ma. 40Ar/39Ar plateau ages of various mineral phases from metamorphic units all cluster at between 32–38 Ma. These data yield a cooling curve that shows exhumation from around 550 °C to the surface between 36–28 Ma. After this time there is no evidence of metamorphism of the Banda Terrane, including its accretion to the edge of the Australian continental margin during the Pliocene. These data link the Banda Terrane to similar rocks and events documented throughout the eastern edge of the Sunda Shelf and the Banda Sea floor.  相似文献   

11.
Zircon U–Pb ages and trace elements were determined for granulites and gneiss at Huangtuling, which are hosted by ultrahigh-pressure metamorphic rocks in the Dabie Orogen, east-central China. CL images reveal core–rim structure for most zircons in the granulites. The cores show oscillatory zoning, relatively high Th/U ratios, and HREE enriched patterns, consistent with a magmatic origin. They gave a weighted mean 207Pb/206Pb age of 2766 ± 9 Ma, interpreted as dating magma emplacement of the protolith. The rims are characterized by sector or planar zoning, low Th/U ratios, negative Eu anomalies and flat HREE patterns, consistent with their formation under granulite-facies metamorphic conditions. Zircon U–Pb dating yields a weighted mean 207Pb/206Pb age of 2029 ± 13 Ma, which is interpreted to record a metamorphic event, possibly during assembly of the supercontinent Columbia. The gneiss has a protolith age of 1982 ± 14 Ma, which is younger than the zircon age of the granulite-facies metamorphism, suggesting a generally delay between HT metamorphism and the intrusion of post-collisional granites. A few inherited cores with igneous characteristics have 207Pb/206Pb ages of 2.90, 3.28 and 3.53 Ga, suggesting the presence of Mesoarchean to Paleoarchean crustal remnants in the Yangtze Craton. A few Cretaceous metamorphic ages were also obtained, suggesting the influence of post-collisional collapse in response to Cretaceous extension of the Dabie Orogen. It is inferred that the recently discovered Archean basement of the Yangtze Craton occurs as far north as the Dabie Orogen.  相似文献   

12.
Several Paleozoic sutures in Southwestern China provide a record of the history of the Paleo-Tethys Ocean, whose birth and final closure are associated with the breakup and assembly of Gondwanaland. Recent studies indicate that there are widespread OIB-type mafic volcanic rocks within these suture zones and intervening terranes. This paper examines the geology and geochemistry of volcanic rocks in the Xiaruo-Tuoding area, a remnant passive margin succession of the Jinshajiang Paleo-Tethyan Ocean. The sedimentary and volcanic stratigraphy of this area is interpreted as a seaward dipping margin with a few continentward dipping normal faults. The available geochemistry of these volcanic rocks suggest that they are OIB-like basalts, characterised by SiO2 = 42.78–50.46 wt.%, high TiO2 contents (TiO2 = 2.2–3.55 wt.%), moderate MgO = 4.15–6.49 wt.%, Mg# = 0.37–0.50, high Ti/Y ratios (mostly > 450), large ion lithosphere elements enrichment, high strength field elements and rare earth elements, with La/Nb = 1.04–1.39, Ce/Yb = 18.38–30, Sm/Yb = 2.16–3.52, (87Sr/86Sr)i = 0.705350–0.707867, and Nd(t) = − 1.43–1.90. These geochemical and isotopic signatures are generally similar to those of the Emeishan flood basalts, which together with stratigraphic constraints, demonstrate that these volcanics were formed in a volcanic rifted margin, probably associated with a mantle plume. A new model is proposed to interpret the evolution of the Jinshajiang Paleo-Tethyan Ocean and its possible relationship to the Emeishan mantle plume. In this model, we argue that the opening of the Jinshajiang Paleo-Tethyan Ocean in the Carboniferous was caused by a mantle plume. The mantle plume was active to the east along the western margin of the Yangtze Craton between 300 and 260 Ma, from which the voluminous Emeishan flood basalts were erupted at 260 Ma. The closure of the Jinshajiang Ocean occurred since the Middle Permian. Continuous westward subduction generated the Jiangda-Weixi magmatic arc to the west of the Jinshajiang suture. This subduction also partly destroyed and/or tectonically sliced the volcanic rifted margin. Some seaward dipping volcanic-sedimentary sequences on the east flank of the Jinshajiang Ocean were preserved, but are strongly deformed.  相似文献   

13.
Amy L. Weislogel 《Tectonophysics》2008,451(1-4):331-345
The Middle to Late Triassic deep-water deposits that form the Songpan-Ganzi complex (SGC) of central China comprise an estimated ~ 2.0 × 106 km3 of detrital material that accumulated in the northeasternmost branch of the Paleotethys. A review of existing data demonstrates significant spatial and temporal variations in the stratigraphic and petrologic character of these turbidites. These variations are used to divide the complex into different depocenters: a northeastern depocenter (SGC-NE), a eastern–central depocenter (SGC-EC) and a northwestern depocenter (SGC-NW). Turbidite strata of the SGC-NE and SGC-EC zones of the Songpan-Ganzi complex are linked to the collision of the North China and South China blocks, whereas turbidite strata of the SGC-NW area are likely to be more closely affiliated with evolution of the Kunlun deformation belt. To test the validity of the Songpan-Ganzi stratigraphic framework and interpretations of its tectonostratigraphic evolution, sixty-eight U–Pb zircon ages were determined from five samples of felsic intrusive igneous rock, two samples from felsic plutonic rock of the adjacent Yidun arc complex, and one sample of volcanic rock interbedded with Middle Triassic turbidites of the SGC using the Sensitive High Resolution Ion Microprobe-Reverse Geometry (SHRIMP-RG). Together these data indicate primarily Late Triassic (~ 214–211 Ma) felsic magmatism in the SGC, with some indication of magmatic activity beginning as early as Middle Triassic (220 Ma). Zircon ages from the Yidun arc complex support Middle–Late Triassic magmatism from 225–215 Ma, prior to deformation of the SGC, suggesting deformation of the SGC was not related to subduction of the SGC substrate southwestward beneath the Yidun arc. Inherited Neoproterozoic (880–740 Ma) zircon ages found in two samples from the SGC-EC indicate either inheritance of zircon crystals from the surrounding SGC turbidite strata or possibly involvement of South China basement during crustal thickening and magma genesis.  相似文献   

14.
Mafic gneisses and associated paragneisses from the Cabo Frio Tectonic Domain in the southeastern part of the Ribeira Belt, along the coast of Rio de Janeiro State in southeast Brazil, were subjected to a geochemical and Sm–Nd isotope study. Four lithotypes are distinguished: aluminous paragneisses (mainly sillimanite–kyanite–garnet–biotite gneiss), calcsilicate lenses, quartzo–feldspathic metasedimentary gneisses and mafic–ultramafic lenses. The whole-rock major and trace, including rare earth element distributions in the mafic–ultramafic intercalations indicate that derivation from subalkaline basalt/gabbro of tholeiitic affinity with E-MORB signature from a non-subduction environment. These mafic rocks have positive εNd(t) and TDM of 1.1 Ga. The metasedimentary rocks have negative εNd(t) and TDM of 1.7 Ga. A Sm–Nd whole rock isochron of mafic rocks yielded an age of 604 ± 38 Ma for the crystallization. This matches with the age of some detrital zircon grains from the paragneisses. The depositional basin, named Buzios–Palmital, was active at least until 620 Ma (age of the youngest detrital zircon) and was subsequently deformed and metamorphosed at ca. 525 Ma (age of metamorphic zircons) during the Buzios Orogeny. It is interpreted as a back arc basin with relation to the 630 Ma magmatic arc of the Oriental Terrane in the Ribeira Belt to the NW. However, after 600 Ma, the Buzios–Palmital basin changed to an active margin setting because the arc collided with the continental margin and the subduction shifted to the back arc environment. By 610 Ma, most of the Brasiliano belts registered collisional events related to multiple convergent blocks. The stress fields and paleocontinent shapes would have allowed the occurrence of extensional areas with not only sedimentary deposition but also ocean floor spreading. Its remnants are preserved in this Brazilian coastal region as an ancient suture, reworked intensively during the Mesozoic rifting events. The reconnaissance of Late Neoproterozoic basins in the Brasiliano–Pan-African belts is of major importance to partially unravel the final amalgamation events of SW Gondwana. Considering that the Buzios–Palmital basin rock units are mostly covered by the marginal Atlantic basins, it is possible that other evidence could be preserved in the coastal regions of SW-Africa and SE-South America.  相似文献   

15.
We estimated metamorphic conditions for the  6 Ma Taitao ophiolite, associated with the Chile triple junction. The metamorphic grade of the ophiolite, estimated from secondary matrix minerals, changes stratigraphically downwards from the zeolite facies, through the prehnite–actinolite facies, greenschist facies and the greenschist–amphibolite transition, to the amphibolite facies. The metamorphic facies series corresponds to the low-pressure type. The metamorphic zone boundaries are subparallel to the internal lithological boundaries of the ophiolite, indicating that the metamorphism was due to axial hydrothermal alteration at a mid-ocean ridge.

Mineral assemblages and the compositions of veins systematically change from quartz-dominated, through epidote-dominated, to prehnite-dominated with increasing depth. Temperatures estimated from the vein assemblages range from  230 °C in the volcanic unit to  380 °C at the bottom of the gabbro unit, systematically  200 °C lower than estimates from the adjoining matrix minerals. The late development of veins and the systematically lower temperatures suggest that the vein-forming alteration was due to off-axis hydrothermal alteration.

Comparison between the Taitao ophiolite with its mid-ocean ridge (MOR) affinity, and other ophiolites and MOR crusts, suggests that the Taitao ophiolite has many hydrothermal alteration features similar to those of MOR crusts. This is consistent with the tectonic history that the Taitao ophiolite was formed at the South Chile ridge system near the South American continent (Anma, R., Armstrong, R., Danhara, T., Orihashi, Y. and Iwano, H., 2006. Zircon sensitive high mass-resolution ion microprobe U–Pb and fission-track ages for gabbros and sheeted dykes of the Taitao ophiolite, Southern Chile, and their tectonic implications. The Island Arc, 15(1): 130–142).  相似文献   


16.
We report trace element and Sr–Nd isotopic compositions of Early Miocene (22–18 Ma) basaltic rocks distributed along the back-arc margin of the NE Japan arc over 500 km. These rocks are divided into higher TiO2 (> 1.5 wt.%; referred to as HT) and lower TiO2 (< 1.5 wt.%; LT) basalts. HT basalt has higher Na2O + K2O, HFSE and LREE, Zr/Y, and La/Yb compared to LT basalt. Both suite rocks show a wide range in Sr and Nd isotopic compositions (initial 87Sr/86Sr (SrI) = 0.70389 to 0.70631, initial 143Nd/144Nd(NdI) = 0.51248 to 0.51285). There is no any systematic variation amongst the studied Early Miocene basaltic rocks in terms of Sr–Nd isotope or Na2O + K2O and K2O abundances, across three volcanic zones from the eastern through transitional to western volcanic zone, but we can identify gradual increases in SrI and decreases in NdI from north to south along the back-arc margin of the NE Japan arc. Based on high field strength element, REE, and Sr–Nd isotope data, Early Miocene basaltic rocks of the NE Japan back-arc margin represent mixing of the asthenospheric mantle-derived basalt magma with two types of basaltic magmas, HT and LT basaltic magmas, derived by different degrees of partial melting of the subcontinental lithospheric mantle composed of garnet-absent lherzolite, with a gradual decrease in the proportion of asthenospheric mantle-derived magma from north to south. These mantle events might have occurred in association with rifting of the Eurasian continental arc during the pre-opening stage of the Japan Sea.  相似文献   

17.
Recent mineral separate ages obtained on the Karoo large igneous province (southern Africa) suggest that the province was built by several distinct magmatic pulses over a rather long period on the order of 5–6 Ma concerning the main erupted volume [Jourdan, F., Féraud, G., Bertrand, H., Kampunzu, A.B., Tshoso, G., Watkeys, M.K., Le Gall., B., 2005. The Karoo large igneous province: Brevity, origin, and relation with mass extinction questioned by new 40Ar/39Ar age data, Geology 33, 745–748]. Although this apparently atypical province is dated in more detail compared to many other large igneous provinces, volumetrically important areas still lack sufficient high-quality data. The timing of the Karoo province is crucial as this event is correlated with the breakup activity of the Gondwana supercontinent. The Lesotho basalts represent a major lava sequence of the province, but have not yet been precisely dated by systematic analysis of mineral separates. We analyzed plagioclase separates from five lava flows encompassing the complete 1.4-km-thick Lesotho sequence from top to bottom using the 40Ar/39Ar method. We obtained five plateau and mini-plateau ages statistically indistinguishable and ranging from 182.3 ± 1.6 to 181.0 ± 2.0 Ma (2σ). We derived an apparent maximum duration for this event of  0.8 Ma by neglecting correlated errors embedded in the age uncertainties.

A critical review of previous ages obtained on the Lesotho sequence [Duncan R.A., Hooper, P.R., Rehacek, J., Marsh, J.S., Duncan, A.R., 1997. The timing and duration of the Karoo igneous event, southern Gondwana. Journal of Geophysical Research 102, 18127–18138] shows that groundmass analyses are unreliable for high-resolution geochronology, due to alteration and 39Ar recoil effects. Discrepancy between our ages and a previous plagioclase age at  184 Ma obtained by the later workers is tentatively attributed to the heterogeneity of the monitor used and/or cryptic excess 40Ar. The current age database suggests that at least three temporally and spatially distinct brief major events (the Lesotho and southern Botswana lava piles and the Okavango dyke swarm) are so far recognized in the Karoo province. Identification of brief and volumetrically important Karoo magmatic events allows detecting the migration of the Karoo magmatism and potentially the stress regime that affected the southern African lithosphere at this time. A filtered compilation of 60 ages obtained with homogeneous intercalibrated standards suggests a shorter duration for the main pulses of the magmatism between 3 and 4.5 Ma, compared to a whole province duration of  10 Ma, between  182 and  172 Ma.  相似文献   


18.
The age of pseudotachylite formation in the crustal-scale Cauvery Shear Zone system of the Precambrian Southern Granulite Terrain (South India) has been analyzed by laser-probe 40Ar–39Ar dating. Laser spot analyses from a pseudotachylite from the Salem–Attur shear zone have yielded ages ranging from 1214 to 904 Ma. Some evidence for the presence of excess Ar is indicated by the scatter of ages from this locality. The host gneiss preserves Palaeoproterozoic Rb–Sr whole rock–biotite ages (2350 ± 11 to 2241 ± 11 Ma). A mylonite in the Koorg shear, ca. 200 km to the north, yielded an age of 895 ± 17 Ma the consistency of the age distribution from spot analyses precludes the presence of significant excess Ar. Despite published evidence for the growth of high-grade minerals within some components of the Cauvery Shear Zone during the Pan-African event (700–550 Ma), the pseudotachylites in this study provide no evidence for Pan-African formation. Instead they document the first evidence for Mesoproterozoic tectonism in the Cauvery Shear Zone system, thus prompting a review of the correlation between the Cauvery Shear Zone system and the large-scale shear zones located elsewhere in eastern Gondwana.  相似文献   

19.
The Mesoarchean (ca. 3075 Ma) Ivisaartoq greenstone belt contains well-preserved primary magmatic structures, such as pillow lavas, volcanic breccias, and clinopyroxene cumulate layers (picrites), despite the isoclinal folding and amphibolite facies metamorphism. The belt also includes variably deformed gabbroic to dioritic dykes and sills, actinolite schists, and serpentinites. The Ivisaartoq rocks underwent at least two stages of post-magmatic metamorphic alteration, including seafloor hydrothermal alteration and syn- to post-tectonic calc-silicate metasomatism, between 3075 and 2961 Ma. These alteration processes resulted in the mobilization of many major and trace elements. The trace element characteristics of the least altered rocks are consistent with a supra-subduction zone geodynamic setting and shallow mantle sources. On the basis of geological similarities between the Ivisaartoq greenstone belt and Phanerozoic forearc ophiolites, and intra-oceanic island arcs, we suggest that the Ivisaartoq greenstone belt represents a relic of dismembered Mesoarchean supra-subduction zone oceanic crust. This crust might originally have been composed of a lower layer of leucogabbros and anorthosites, and an upper layer of pillow lavas, picritic flows, gabbroic to dioritic dykes and sills, and dunitic to wehrlitic sills.

The Sm–Nd and U–Pb isotope systems have been disturbed in strongly altered actinolite schists. In addition, the U–Pb isotope system in pillow basalts appears to have been partially open during seafloor hydrothermal alteration. Gabbros and diorites have the least disturbed Pb isotopic compositions. In contrast, the Sm–Nd isotope system appears to have remained relatively undisturbed in picrites, pillow lavas, gabbros, and diorites. As a group, picrites have more depleted initial Nd isotopic signatures (εNd = + 4.23 to + 4.97) than pillow lavas, gabbros, and diorites (εNd = + 0.30 to + 3.04), consistent with a variably depleted, heterogeneous mantle source.

In some areas gabbros include up to 15 cm long white inclusions (xenoliths). These inclusions are composed primarily (> 90%) of Ca-rich plagioclase and are interpreted as anorthositic cumulates brought to the surface by upwelling gabbroic magmas. The anorthositic cumulates have significantly higher initial εNd (+ 4.8 to + 6.0) values than the surrounding gabbroic matrix (+ 2.3 to + 2.8), consistent with different mantle sources for the two rock types.  相似文献   


20.
The relationship between the breakup of eastern Gondwanaland and the Kerguelen plume activity is a subject of debate. The Cona mafic rocks are widely exposed in the Cona area of the eastern Himalaya of south Tibet, and are studied in order to evaluate this relationship. Cona mafic rocks consist predominantly of massive basaltic flows and diabase sills or dikes, and are divided into three groups. Group 1 is composed of basaltic flows and diabase sills or dikes and is characterized by higher TiO2 and P2O5 content and OIB-like trace element patterns with a relatively large range of Nd(T) values (+ 1.84 to + 4.67). A Group 1 diabase sill has been dated at 144.7 ± 2.4 Ma. Group 2 consists of gabbroic sills or crosscutting gabbroic intrusions characterized by lower TiO2 and P2O5 content and “depleted” N-MORB-like trace element patterns with relatively higher, homogeneous Nd(T) values (+ 5.68 to + 6.37). A Group 2 gabbroic diabase dike has been dated at 131.1 ± 6.1 Ma. Group 3 basaltic lavas are interbedded with the Late Jurassic–Early Cretaceous pelitic sediments; they have compositions transitional between Groups 1 and 2 and flat to slightly enriched trace element patterns. Sr–Nd isotopic data and REE modeling indicate that variable degrees of partial melting of distinct mantle source compositions (enriched garnet–clinopyroxene peridotite for Group 1 and spinel-lherzolite for Group 2, respectively) could account for the chemical diversity of the Cona mafic rocks. Geochemical similarities between the Cona mafic rocks and the basalts probably created by the Kerguelen plume based on spatial–temporal constraints seem to indicate that an incubating Kerguelen plume model is more plausible than a model of normal rifting (nonplume) for the generation of the Cona mafic rocks. Group 1 is interpreted as being related to the incubating Kerguelen plume–lithosphere interaction; Group 2 is likely related to an interaction between anhydrous lithosphere and rising depleted asthenosphere enriched by a “droplet” originating from the Kerguelen plume, while Group 3 may be attributed to thermal erosion resulting in the partial melting of lithosphere during the long-term incubation of a magma chamber/pond at a shallow crustal level. The Cona mafic rocks are probably related to a progressively lithospheric thinning beneath eastern Gondwanaland from 150–145 Ma to 130 Ma. Our new observations seem to indicate that the Kerguelen plume may have started its incubation as early as the latest Jurassic or earliest Cretaceous period and that the incubating Kerguelen plume may play an active role in the breakup of Greater India, eastern India, and northwestern Australia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号