首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
朱沉静  李俊霞  谢先军 《地球科学》2021,46(12):4480-4491
为深入探究地下水系统中影响碘迁移转化的主控水文生物地球化学过程,对大同盆地典型高碘地下水区完成样品采集,分析地下水样品基础理化性质及碳硫同位素组成特征.结果表明,大同盆地地下水碘含量变化范围为14.40~1 030.00 μg/L,高碘地下水(I>100 μg/L)主要分布在盆地中心排泄区.地下水中溶解性无机碳的δ13CDIC值变化范围为-12.11‰~-9.79‰,硫酸盐δ34SSO4值介于4.04‰~16.63‰.δ13CDIC和DOC之间存在较明显的正相关关系,表明有机质的微生物降解过程是区域地下水无机碳的重要来源之一.同时,δ13CDIC与δ34SSO4一定的负相关关系表明硫酸盐是有机质微生物降解过程中潜在电子受体之一,且地下水水环境以偏还原环境为主.高碘地下水表现出低δ13CDIC、高δ34SSO4的同位素特征,表明有机质的微生物降解过程是控制地下水中碘迁移释放的主要过程之一,与该过程相伴而生的碘形态转化进一步促使碘以碘离子的形式在偏还原的地下水环境中发生富集.   相似文献   

2.
由于地表水资源稀缺,地下水是塔里木盆地南缘绿洲带重要用水水源,因此,系统查明该区地下水砷氟碘的分布及成因至关重要。基于塔里木盆地南缘绿洲带233组地下水水样检测结果,分析不同含水层中高砷、高氟和高碘地下水的空间分布及水化学特征,结合研究区地质、水文地质条件和地下水赋存环境进一步揭示影响地下水砷氟碘的来源、迁移与富集的水文地球化学过程。结果表明:地下水砷、氟、碘浓度变化范围分别为1.091.2 μg/L、0.0128.31 mg/L、10.02 637.0 μg/L。地下水高砷、高氟和高碘水样分别占总水样的7.3%、47.2%和11.6%,砷氟碘共富集占比为3.0%。砷氟碘共富集地下水主要分布于研究区中部的民丰县,水化学类型主要为Cl·SO4-Na型。自补给区至过渡区再至蒸发区,地下水氟、碘浓度明显增大,砷浓度在过渡区和蒸发区均较大;砷氟碘共富集地下水取样点主要分布于36.060.0 m深度的浅层承压含水层中。浅层地下水受蒸发作用和矿物溶解沉淀作用的影响,随砷氟碘富集项的增多而增大。第四纪成因类型中风积物对氟浓度的影响较大,洪积-湖积物对砷和碘浓度的影响较大。细粒岩性、平缓的地形、地下水浅埋条件、偏碱性的地下水环境、微生物降解作用下有机质介导的矿物溶解是利于砷氟碘共富集的主要机制。  相似文献   

3.
高碘地下水是继高砷、高氟地下水之后的又一全球性饮水安全问题,但对地下水系统中碘的赋存形态及迁移富集机理研究尚显不足.为了解华北平原地下水系统中碘的空间分布特征及迁移富集规律,选取石家庄-衡水-沧州典型水文地质剖面,完成地下水样品采集,分析其水化学组成、总碘含量及碘形态组成特征,同时运用phreeqc完成水文地质剖面地球化学反向模拟及相关矿物饱和指数计算,定性定量表征水流场内所发生的水文地球化学过程,进而深入探讨上述过程对地下水系统碘迁移富集的影响.结果表明,区域内地下水中碘含量变化范围为3.35~1 106.00 μg/L,其中,41.86%样品碘含量超过《水源性高碘地区和地方性高碘甲状腺肿病区的规定(GB/T19380-2003)》所界定的150 μg/L国家标准;空间上,高碘地下水主要分布于渤海湾区;地下水中碘的主要赋存形态为碘离子及碘酸根离子,其分布受氧化还原环境控制,碘酸根离子主要出现于氧化环境中;沿地下水流向,地下水环境朝利于液相碘迁移富集的方向演变;渤海湾区,海水入侵影响下形成的偏碱性、(弱)还原环境,利于碘从沉积物中迁移释放至地下水中;碘在不同铁矿物相上的搭载能力及氧化还原环境演化导致的铁矿物相转化,是造成华北平原地下水系统中碘迁移富集的主要水文地球化学过程.   相似文献   

4.
针对内陆盆地区高碘地下水的成因问题,在典型地区--内蒙古河套平原杭锦后旗系统采集了25个地下水样和3个地表水样,分析了地下水中的I、Na+、Ca2+、Mg2+、Cl-、SO2-4、HCO-3、As、Fe、Br、pH、Eh等指标。应用因子分析和多元线性回归分析方法,对内陆盆地区高碘地下水的成因进行了分析。结果表明:地下水中碘含量为31.84~1 289.57 μg/L,高碘地下水主要分布于研究区北部地下水流相对滞缓的排泄带附近、地下35 m的范围内,水化学类型以碱金属非重碳酸型为主;地下水中碘可能来源于狼山中元古代狼山群沉积物或平原区第四纪浅层沉积物;沉积物中的Fe2O3和有机质在低Eh条件下(Eh<-30 mV)分别发生还原性溶解和分解,吸附在其上的碘随之被释放到地下水中。另外,沉积物中的碘在高Ca2+和弱碱性条件下吸附作用较弱,这也间接促进了碘在地下水中的富集。相对而言,有机质分解更为普遍,但Fe2O3的还原性溶解对碘富集影响更为强烈。该成果进一步深化了对内陆盆地区高碘地下水形成机制的认识,并为当地饮水安全和生态安全提供科学依据。  相似文献   

5.
在湖南新田县部分岩溶区发现高碘地下水,威胁着周边居民的饮水安全,查明该区域地下水中碘的分布特征及其控制因素具有重要意义。采集新田县66组泉水样和45组井水样,采用水化学图解法、主成分分析法和GIS技术,分析了泉水和井水的水化学特征,查明了地下水中碘的空间分布特征,剖析了碘富集的主要控制因素。研究发现泉水与井水中碘含量分别为2.7~92.8μg·L-1和4.15~3 861μg·L-1,其中,53.3%井水样品碘含量超过《水源性高碘地区和高碘病区的划定》(GB 19380-2016)标准中的界定值100μg·L-1。受沉积环境、pH、Eh和地下水径流条件影响,高碘地下水主要沿着一条NE-SW向的河谷分布,从峰林谷地地区到地势低洼的河谷平原地带,地下水碘含量整体随着径流条件变差呈现逐渐增加的趋势。海相沉积所形成的富碘富有机质地层是高碘地下水形成的地质基础,发生有机质降解和竞争吸附的弱碱性偏还原环境是导致碘被释放到地下水中的主要因素;此外,水流滞缓的封闭地下水环境也是控制高碘地下水形成的重要因素。  相似文献   

6.
灌溉等人为活动会造成外源物质的输入,如硝酸盐、有机质等,从而引起浅层地下水环境发生周期性波动。为研究农业灌溉对沉积含水层中碘迁移富集过程的影响,选取代表性富碘沉积物,通过室内实验模拟了灌溉活动外源物质输入条件下,盆地地下水系统中碘迁移释放的(生物)地球化学过程。实验结果表明:厌氧条件下,外源有机质输入可促使微生物利用有机质作为电子供体,还原固相铁矿物相,进而造成搭载于铁氧化物/氢氧化物表面的碘释放,以碘离子形式在地下水中富集;而在NO3-输入情况下,微生物会优先利用NO3-为电子受体,至硝酸盐被全部消耗后,Fe(Ⅲ)可进一步被还原为Fe(Ⅱ)。研究结果表明,人为活动造成浅表环境外源物质的输入可直接影响浅层地下水中碘的迁移释放过程。伊利石黏土矿物吸附的铁氧化物矿物相可能为浅层环境中碘的主要搭载介质,微生物作用下,铁氧化物/氢氧化物的还原溶解是高碘地下水形成的主控因素。  相似文献   

7.
高碘地下水(碘浓度大于100μg/L)广泛分布于我国沿海地区和干旱内陆盆地,威胁近千万人口的饮水安全,但目前对湿润区河湖平原地下水中碘的分布与成因机制的认识还十分薄弱.通过采集长江中游故道区75组浅层地下水样品和7组地表水样品进行了水化学分析,查明了地下水中碘的空间分布特征,并运用主成分分析识别了碘富集的水环境要素和水...  相似文献   

8.
原生高碘地下水在我国有广泛分布,为查明不同区域地下水碘赋存机理的异同,通过选取我国大同盆地以及华北平原为代表性区域,完成区域地下水样品系统性采集及水化学、碘形态测试工作,对区域地下水水环境及其演化特征完成详细刻画.结果表明:大同盆地地下水总碘含量为2.86~1 286 μg/L,华北平原地下水总碘含量为2.40~1 106 μg/L,分别约有50.0%及49.5%地下水碘含量超过(GB19380- 2016)《水源性高碘地区和高碘病区的划定》中界定的100 μg/L国家标准.地下水水环境特征表明,在大同盆地,第四纪河湖相沉积所形成的,富含有机质、偏碱性、还原性、Na-HCO3型水环境,利于赋存于固相介质上的碘以碘离子的形式进入地下水中,沿地下水流向,富集于盆地中心排泄区;在华北平原,由第四纪6次海侵形成的冲湖积、海积松散沉积物中富含Na、Cl、I等元素,其偏碱性、还原性、Na-Cl型水环境及低水力坡度的平缓地形利于赋存在固相介质上的碘以碘离子的形式进入地下水,沿地下水流向富集于沿海排泄区.控制两个地区高碘地下水形成的相同因素是偏碱性及偏还原的地下水环境,且该环境下碘的主要赋存形态均为碘离子,但大同盆地高碘地下水形成主要受富有机质环境影响,而华北平原高碘地下水形成的主要受富碘的海相沉积控制.   相似文献   

9.
内蒙古河套平原高碘地下水的水文地球化学特征   总被引:3,自引:2,他引:1       下载免费PDF全文
以内蒙古河套平原西北部的高砷地下水分布区为研究区,通过对区内22组地下水和2组地表水中碘含量的测试和分析可知,研究区地下水中碘含量在27.30~1 638.00μg/L,其中,约50%的地下水样品中碘含量超过我国饮用水的标准限定值150μg/L,约84.6%的高碘地下水为高砷地下水。高碘地下水主要分布于研究区北部地下水水流相对滞缓的平原中心地带,以Cl-Na、Cl·HCO3-Na和HCO3·Cl-Na型水为主。研究区地下水中碘的富集有两种机制:浅层地下水的蒸发作用和深部富含有机质的、偏还原的地下水环境中的微生物作用。两种机制相比,后者对地下水中碘的贡献更大些,但前者更普遍些。  相似文献   

10.
为查明大同盆地高砷地下水的分布规律及其主要控制因素,对大同盆地典型高砷区35件地下水样进行了水化学特征及形态分析研究。结果表明,高砷地下水[ρ(As)≥50μg/L]主要存在于20~50 m的浅层地下水中,总砷质量浓度为0.56~927μg/L,主要以As(Ⅴ)形态存在。该区高砷地下水以Na-HCO3型水为主,具有明显的高pH值,高HCO-3、Fe2+、HS-质量浓度及低Eh值,低SO2-4质量浓度特征。这可能与微生物催化氧化有机碳的同时还原含铁矿物和硫酸盐的过程有关。PHREEQC模拟矿物饱和指数结果表明,高砷地下水[ρ(As)≥50μg/L]中菱铁矿均为过饱和,而低砷地下水[ρ(As)50μg/L]中均不饱和,且菱铁矿饱和指数与地下水中总砷质量浓度呈显著正相关性,该现象表明微生物还原含铁矿物生成FeCO3(菱铁矿)的过程可能是控制本区地下水中砷富集的主要因素。  相似文献   

11.
溶解性有机物(dissolved organic matter, DOM)可以通过多种方式控制含水层中砷的迁移转化。贵德盆地承压含水层地下水砷含量显著高于潜水含水层。为查明承压水中溶解性有机物对砷浓度的影响,对研究区地表水、潜水以及承压水进行吸光度和三维荧光光谱的分析,利用平行因子分析法确定了水样中有机物成分及荧光特征。结果表明,贵德盆地水体中DOM包含陆源类腐殖质(C1)、受人为影响的腐殖质(C2)、类醌化合物(C3)和微生物来源的腐殖质(C4)4种组分。陆源类腐殖质C1可在地下水中富集,占总有机质的40%~55%。相比于地下水,C2和C3则在地表水中占据较高的比例。高砷承压水中C2、C3所占比例高于低砷潜水。其中,C1可以通过络合作用促进溶解性砷浓度的提高,C3作为电子穿梭体可以促进含砷铁氧化物或氢氧化物的还原性溶解从而释放砷。微生物降解有机质生成的HCO-3可以与砷竞争吸附,促进砷的解吸附。此外,还原性溶解产生的Fe(II)与HCO-3形成FeCO3固定一部分的砷。该研究表明,地下水中的天然有机物通过络合作用和作为电子穿梭体促进铁氧化物还原导致地下水砷的富集,为分析黄河上游地区高砷地下水的成因提供理论依据。  相似文献   

12.
微生物活动对地下水水化学组分、氧化还原环境及砷的迁移转化有重要影响。研究高砷地下水系统的氧化还原分带性,有助于进一步理解微生物作用下地下水中砷的迁移转化规律,并为高砷地下水原位修复技术提供理论依据。在综述前人的研究成果的基础上,阐明了不同生物地球化学阶段砷的吸附、释放及固定过程,并刻画出高砷地下水系统的氧化还原分带性概念模型。在地下水环境中,微生物依次消耗(还原)溶解氧、NO-3、Fe(Ⅲ)、SO2-4和CO2等组分,氧化有机物获取能量。在溶解氧和NO-3还原阶段,地下水处于偏氧化环境,此时Fe(Ⅲ)还原受到抑制,其负载的砷不会释放到地下水中;当Fe(Ⅲ)还原时,地下水处于还原环境,会导致与之共存的砷释放,形成高砷地下水;而当SO2-4还原时,地下水处于强还原环境,产生的HS-与Fe2+形成的铁硫化物吸附或共沉淀砷,会降低地下水中的砷浓度。  相似文献   

13.
大同盆地是我国典型原生高砷地下水分布区,为精细刻画地下水系统中砷迁移富集的机理,在盆地高砷地下水分布区建立了面积为150m×250m的多水平试验监测场,开展了系统的水文地质与水文地球化学监测研究。结果表明,富砷沉积物是地下水中砷的直接来源,高pH值、强还原性的地下水环境及竞争吸附离子的存在是含水沉积物中砷向地下水迁移富集的主要控制因素。场地范围内地下水水化学组成及砷的空间分布特征明显受水流场影响,沿地下水径流方向,砷质量浓度逐渐升高。  相似文献   

14.
薛江凯  邓娅敏  杜尧  罗义鹏  程一涵 《地球科学》2021,46(11):4140-4149
长期摄入高碘地下水(碘浓度>100 μg/L)会造成人体甲状腺机能损伤.天然有机质被认为是影响高碘地下水形成的关键组分,为研究地下水中溶解性有机质(DOM)分子组成对碘富集的影响,选取长江中游沿岸浅层地下水作为研究对象,运用傅立叶变换离子回旋共振质谱仪(FT-ICR-MS)表征不同碘浓度地下水中DOM分子组成差异.研究发现碘易富集在还原环境的浅层地下水中,地下水中碘的浓度与溶解性有机碳(DOC)浓度无显著关系,DOM分子总数越多碘浓度越高;高碘地下水较低碘水DOM分子均一性、多样性更强,氧化程度和不饱和程度更高,含更多芳香性结构.长江中游沿岸高碘地下水的形成受DOM分子组成控制,主要与不饱和程度高尤其是含芳香性结构的大分子DOM有关,含芳香性结构的DOM分子与碘络合在高碘地下水的形成过程中起重要作用.   相似文献   

15.
通过矿床地质地球化学、煤岩学、有机地球化学及成矿模拟实验的研究,首次阐明临沧盆地大寨超大型煤中锗(铀)的有机成矿机理:初始锗来源于赋锗的花岗岩风化产物;在泥炭化阶段通过微生物对陆生高等植物降解和改造,经有机质吸附和生成锗络合物等环节构成富锗泥炭层。当富锗泥炭层形成褐煤时,未成熟有机质从含锗的粒间孔隙水中富集锗形成褐煤锗矿层;在表生氧化阶段中,褐煤锗矿层中锗被含氧地下水淋滤、迁移、叠加再造形成富大锗矿体。为进一步探讨锗矿的有机成矿机理进行了包括浸出、吸附、络合的锗矿预富集,以及锗重新迁移和聚集实验,来表述和证明上述有机成矿机理。  相似文献   

16.
中国典型地区高碘地下水分布特征及启示   总被引:6,自引:0,他引:6       下载免费PDF全文
长期饮用高碘水(150μg/L)将对人体造成危害。中国有12个省市存在高碘地下水,主要分布在干旱半干旱内陆盆地区、冲洪积平原区和沿海地区,黄淮海平原是高碘地下水的主要分布区,在分析华北平原、淮海流域平原高碘地下水分布特征及成因的基础上,指出地下水中的碘主要是海洋碘通过大气输入,受此影响近海地区含水层碘含量往往较高;由河湖相地层组成且富含有机质、粘土矿物和铁铝氧化物的含水层有利于碘的富集;呈中-碱性的灰岩风化层土壤也有利于碘的富集,其中的碘通过水循环进入地下含水层,形成高碘地下水区。在此基础上,针对《生活饮用水卫生标准(GB5749-2006)》碘限值规定的缺项和《地下水质量标准(GB/T14848-93)》碘限值规定的不足,提出了地下水质量标准中碘限值修改的建议。  相似文献   

17.
内蒙古河套平原高砷地下水赋存环境特征   总被引:4,自引:0,他引:4       下载免费PDF全文
内蒙古河套平原是世界地方性砷中毒较为严重的地区之一。笔者以平原西部的重病区杭锦后旗为研究区,对高砷地下水赋存环境进行了调查研究。研究表明:高砷区沉积物中As的含量为7.7~34.6mg/kg,其中粘性土和亚粘性土中As含量相对较高。高砷地下水的pH值为7.0~8.3,平均Eh值为-155.1mV,平均矿化度为1.58g/L,主要的水化学类型包括:Cl-HCO3-Na型、Cl-Na型、HCO3-Cl-Na型,As的含量为15.5~1093μg/L,且主要以As(Ⅲ)形态存在,水中DOC(0.73~35.76mg/L)、HCO3-(283.75~1290.48mg/L)、NH4+(0.27~10.48mg/L)的浓度较高,硝酸盐和硫酸盐含量较低。研究区的氟中毒现象也较严重,高氟地下水中氟含量为1.11~6.01mg/L。绝大多数高氟水中砷含量也超标,出现了一种高砷水与高氟水并存的现象。综合判断,河套平原的高砷地下水赋存环境处于还原性环境。还原条件下,高砷区沉积物中的铁/锰氧化物的还原溶解易使吸附的砷释放到地下水中。这是研究区高砷地下水形成的主要原因。  相似文献   

18.
双辽市氟中毒病区与非病区地下水水化学类型均处于重碳酸型水带内。病区水文地球化学作用处于元素迁移—富集的过渡阶段或元素富集阶段的初期,其水化学类型呈现由HCO3→HCO3.Cl→Cl.HCO3型水的分带性展布,地下水溶解固体浓度为0.5~2.0 mg/L;非病区则处于元素迁移阶段,其水化学类型则为单一的HCO3.Ca型水,地下水溶解固体浓度一般均低于0.5 mg/L。地方性氟中毒的分布与区域水文地球化学特征之间存在着一定的联系,此种关系虽然不可作为病因看待,但仍可当作一种环境标志加以考虑。  相似文献   

19.
在内陆干旱区,作为重要饮用水源的地下水常面临氟含量超标问题。查明内陆干旱区高氟地下水的分布规律,了解氟在地下水中的富集过程及其影响因素,既可丰富高氟地下水的研究体系,也是保证内陆干旱区饮水安全的重要基础。以新疆阿克苏地区典型山前洪积扇——依格齐艾肯河-喀拉玉尔滚河河间地带为研究区,基于水文地球化学调查结果,刻画了高氟地下水的分布区;结合氟离子含量与特征性水化学指标间的关系,揭示了高氟地下水的成因机制。结果表明:(1)地下水中氟含量的变化范围为0.8~6.1 mg/L,83%的水样氟含量超过《生活饮用水卫生标准》(GB 5749-2006)规定的上限(1.0 mg/L);(2)总体上,氟含量沿地下水流动路径逐渐增大,低氟地下水(ρ(F~-)≤1.0 mg/L)分布在国道314以北的补给区,高氟地下水(ρ(F~-)1.0 mg/L)分布在国道314以南的径流区和排泄区;(3)高氟地下水的水化学类型以Cl·HCO_3-Na型为主,而低氟地下水则以Cl·SO_4-Na型为主,高氟地下水相比于低氟地下水优势阴离子偏向于HCO~-_3;(4)地下水的pH值范围为7.9~8.9(均值为8.4),表明其处于弱碱环境中。地下水中ρ(F~-)与pH值呈正相关,此外构成浅层含水层的上更新统沉积物中含有黑云母、氟磷灰石等矿物,其表面存在一定数量的可交换F~-,这表明水中OH~-与矿物表面F~-间的阴离子交换可能对氟的富集有一定贡献;(5)地下水的F~-含量与Ca~(2+)含量呈负相关,即高氟地下水中ρ(Ca~(2+))小于低氟地下水。考虑到氟化钙(CaF_2)是自然界中的主要含氟矿物,也是地下水中氟的主要来源,ρ(F~-)与ρ(Ca~(2+))间的这种负相关指示着高氟地下水中可能存在去Ca~(2+)、Mg~(2+)作用,如阳离子交替吸附或碳酸盐岩沉淀等。研究区地下水样中ρ(F~-)与ρ(Mg~(2+))间也呈负相关关系,且和ρ(F~-)与ρ(Ca~(2+))间的关系高度相似,也佐证了高氟地下水中去Ca~(2+)、Mg~(2+)作用的存在;(6)绝大部分地下水样品都位于氯碱性指数图的负值区域,且ρ(F~-)与CAI-1和CAI-2均呈较好负相关,CAI-1和CAI-2都随ρ(F~-)的增大而减小,这表明高氟地下水中存在Ca~(2+)、Mg~(2+)与Na~+间更强的交换作用,对氟富集起着重要作用。地下水中ρ(F~-)与SAR间呈较好正相关关系,且高氟地下水样的SAR均值(5.71)远大于低氟地下水SAR均值(1.67),这也进一步证明高氟地下水中的Ca~(2+)、Mg~(2+)与含水介质的Na~+间存在强烈的交替作用,对氟的富集起着重要作用;(7)所有地下水样中的萤石均处于未饱和状态,且萤石的饱和指数(SI)与F~-含量间呈现较好的正相关,这表明地下水对含氟矿物(主要是萤石)的持续溶解应是导致研究区地下水中氟富集的主要原因。与之相反,研究区所有地下水样中的方解石均处于过饱和状态(SI0)。这表明CaCO_3的沉淀可能促进了CaF_2的溶解,导致地下水中氟离子质量浓度增高;(8)研究区低氟地下水的δ~(18)O值介于-11.20‰~-10.67‰间,平均值为-10.94‰,而高氟地下水的δ~(18)O值介于-11.65‰~-11.21‰间,平均值为-11.49‰,即低氟地下水较高氟地下水富集δ~(18)O。此外,F~-质量浓度较低(ρ(F~-)≤3.0 mg/L)的地下水样中δ~(18)O值与F~-质量浓度呈负相关,即低氟地下水具有更正的δ~(18)O值;F~-质量浓度较高(ρ(F~-)≥4.8 mg/L)的地下水样中δ~(18)O值与F~-质量浓度的相关性不显著,随F~-质量浓度的增高,δ~(18)O值基本维持不变。以上表明蒸发浓缩作用对地下水中氟的富集贡献较小;(9)研究区地下水中ρ(F~-)/ρ(Cl~-)比值与ρ(F~-)间呈现正相关,即ρ(F~-)/ρ(Cl~-)比值随ρ(F~-)增高呈增大趋势,这也说明地下水中氟富集的主要原因是含氟矿物的溶解,而不是蒸发浓缩作用。此外,Gibbs图也提供了证据:研究区地下水样基本处于水岩作用主导区域,表明地下水化学特征(包括氟的富集)主要受水岩作用控制,蒸发浓缩影响很小。总之,地下水中氟的富集主要由溶解作用引起,OH~-与矿物表面F~-间的交换也有贡献,但蒸发浓缩作用影响微弱。含氟矿物持续溶解的驱动机制是阳离子交替吸附(地下水中Ca~(2+)与岩土颗粒表面Na~+之间)及方解石沉淀所引起的地下水中Ca~(2+)的衰减。  相似文献   

20.
干旱内陆盆地高砷含量的地下水威胁着当地饮用水安全,其形成机制尚不完全清楚。为厘清这类高砷地下水的形成机制,本文以河套平原西部地下水为研究对象,分析其中As等部分氧化还原敏感元素含量和氢、氧同位素组成(δD和δ18O)。结果表明,地下水样的As的质量浓度为1.5~155μg/L(均值为36.7μg/L),超半数样品超过10μg/L,主要分布于盆地中部的浅层含水层。水样的氢、氧同位素组成和离子间的相关性分析表明,虽然蒸发浓缩作用导致地下水富集Na+和Cl-,但对As的富集影响不显著;在偏碱性环境中因解吸附作用产生的As进入地下水,对As的富集有一定贡献;负载As的铁氧化物还原性溶解和沉积物中的As(V)还原性解吸附是地下水中As富集的主要原因;强还原环境中,硫酸盐还原作用形成的硫代砷可能会促使As在地下水中高度富集。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号