首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the direct shear test (DST), an internal moment is distributed within the rock specimen by non‐coaxial shear loads applied to the specimen, which cause non‐uniform distributions of both the traction on the loading planes and the stress and deformation in the specimen. To examine the validity of the DST for a rock fracture and to clarify the effect of specimen height, both the stress and deformation in a fracture in the DST were analyzed for specimens with three different heights using a three‐dimensional finite element method with quadratic joint elements for a fracture model. The constitutive law of the fracture considers the dependence of the non‐linear behavior of closure on shear displacement and that of shear stiffness on normal stress and was implemented in simulation code to give a conceptional fracture with uniform mechanical properties to extract only the effect of non‐uniform traction on the stress and deformation in the fracture. The results showed that both normal and shear stresses are concentrated near the end edges of the fracture, and these stress concentrations decrease with a decrease in the specimen height according to the magnitude of the moment produced by the non‐coaxial shear loads. Furthermore, although closure is greater near the end edges of the fracture, where normal stress is concentrated, this concentration of closure is not so significant within the range of this study because of the non‐linear behavior of closure, that is, closure does not significantly increase with an increase in normal stress at large normal stresses. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Geotechnical experiments show that Lode angle‐dependent constitutive formulations are appropriate to describe the failure of geomaterials. In the present study, we have adopted one such class of failure criteria along with a versatile constitutive relationship to theoretically analyze the effects of Lode angle on localized shear deformation or shear band formation in loose sand for both drained and undrained conditions. We determine the variation in the possible stress states for shear localization due to the introduction of Lode angle by considering the localized deformation as a bifurcation problem. Further, similar bifurcation analysis is performed for the stress states along a specific loading path, namely, plane strain compression at the constitutive level. In addition, the plane strain compression tests have been simulated as a boundary value finite element problem to see how Lode angle affects the post‐localization response. Results show that the inclusion of a Lode angle parameter within the failure criterion has considerable effects on the onset, plastic strain, and propagation of shear localization in loose sand specimens. For drained condition, we notice early inception of shear localization and multiple band formation when the Lode angle‐dependent failure criterion is used. Undrained localization characteristics, however, found to be independent of Lode angle consideration.  相似文献   

3.
4.
超固结粘土的剪切带数值模拟   总被引:5,自引:0,他引:5  
基于中井的子负荷面本构关系模型,采用高精度的隐式应力积分算法,研究了平面应变试验中超固结粘土试样的变形局部化问题。模拟了不同的加载速度和边界约束条件,得到了超固结比为8的藤森粘土土体内部明显可见的X型剪切带和单一型剪切带。结果表明:土体的剪胀特性、孔隙水在土体内的移动规律以及边界约束条件对剪切带的形成和发展起着控制作用。  相似文献   

5.
土工格栅加筋砂土的变形与破坏机理解析   总被引:8,自引:2,他引:8  
利用可考虑局部破坏的非线性弹塑性有限元,对无加筋和加筋砂土的平面应变压缩试验结果进行了从小变形到破坏的全过程数值解析。加筋砂土试验体用土工格栅分6层和11层进行加筋加固。将等价二维有限元解析所得到的解析结果与试验得到的实测值进行了较为伞面的比较,结果表明:合理的二维非线性弹塑性有限元解析,不仅可以较为精确的模拟加筋砂土的平均心力-应变特性,而且还可以全面地调查试验体的局部应力-应变分布以及剪切破坏发生状况,从而,对加筋砂土的变彤破坏以及加筋材的加州机理有一个更加全面合理的认识。  相似文献   

6.
The initiation and propagation of microcracks under stress are highly dependent upon the mineralogical and textural characteristics of the various lithotypes. Detailed observation and quantification of microcracks before and after uniaxial compression test were conducted. A fresh olivine-rich harzburgite and a serpentinized dunite were analyzed, collected from the Pindos and Vourinos ophiolites (northern Greece) respectively, in order to compare their microcrack patterns. Quantitative analysis indicated that during uniaxial compression the intragranular microcracks, which are the dominating crack-type, are gradually transformed or organized into transgranular cracks. Some of the newly formed transgranular cracks may also be a result of the growth of existing grain-boundary cracks. The new intragranular microcracks in the olivine-rich harzburgite are oriented predominantly parallel to the compressive stress direction, while those in the serpentinized dunite show a scattered orientation presumably due to the mesh texture of this rock-type. The new transgranular cracks of both peridotites tend to be subparallel to the compressive stress direction, however, many of them show a random orientation due to the fact that they have been formed as a result of the propagation of grain-boundary cracks. The occurrence of the soft serpentine along fracture surfaces of olivine, when it is in assemblage with orthopyroxene, tends to absorb the applied stress hampering the development of microcracks in olivine. On the other hand in serpentinized peridotites, the microcracks are enhanced in olivine because it is surrounded by large amounts of the much softer and flexible serpentine. Microcracks are usually formed along the cleavage planes of orthopyroxene porphyroclasts, indicating that such crystallographic preferred orientations act as planes of weakness, controlling the direction of the crack paths. Cr-spinel grains likely comprise locations of initiation of microcracks due to their very hard nature and different mechanical behaviour relative to the surrounding silicate phases. Knowledge of the mineralogical and textural characteristics may assist in the prediction of potential development of failure surfaces of an ultrabasic rock in-service.  相似文献   

7.
This paper investigates the possibility of interpreting progressive shear failure in hard soils and soft rocks as the result of shear propagation of a pre‐existing natural defect. This is done through the application of the principles of fracture mechanics, a slip‐weakening model (SWM) being used to simulate the non‐linear zone at the tips of the discontinuity. A numerical implementation of the SWM in a computation method based on the boundary element technique of the displacement discontinuity method (DDM) is presented. The crack and the non‐linear zone at the advancing tip are represented through a set of elements, where the displacement discontinuity (DD) in the tangential direction is determined on the basis of a friction law. A residual friction angle is assumed on the crack elements. Shear resistance decreases on elements in the non‐linear zone from a peak value at the tip, which is characteristic of intact material, to the residual value. The simulation of a uniaxial compressive test in plane strain conditions is carried out to exemplify the numerical methodology. The results emphasize the role played by the critical DD on the mechanical behaviour of the specimen. A validation of the model is shown through the back analysis of some experimental observations. The results of this back analysis show that a non‐linear fracture mechanics approach seems very promising to simulate experimental results, in particular with regards to the shear band evolution pattern. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
徐辉  韩青锋  连晓伟  王靖涛  卫军 《岩土力学》2008,29(9):2383-2386
在工程荷载范围内,不计骨架颗粒的变形,骨架的变形实际是颗粒接触面变形的总和。当剪应力达到某个临界值时,黏性土骨架中有一部分颗粒接触面开始滑动,随着剪应力的增大,出现滑动的颗粒接触面的取向范围也会扩大。将这种颗粒接触面的滑动视为一种损伤。在损伤阶段,黏性土骨架中既有未滑动的接触面,也有已滑动的接触面,宏观剪切模量是这两种接触面的剪切模量的加权平均。在 平面中,根据应力圆与颗粒起始滑动包络线的相对位置,计算出已出现了滑动的颗粒接触面的取向范围,并定义该取向范围与其所能达到的最大值(由破坏时的应力圆计算)之比为骨架的损伤比。按损伤比进行加权平均得到骨架的整体剪切模量。模型中的参数完全可以根据常规三轴试验确定,模型的形式简单,可适用于复杂的应力路径。对试验结果的拟合表明,该模型能较好地反映黏性土在固结不排水条件下剪切变形的主要特征。  相似文献   

9.
剪切带图案的复杂性及应力-应变曲线的离散性   总被引:1,自引:0,他引:1  
王学滨 《岩土力学》2005,26(Z1):25-30
在平面应变压缩条件下,通过在岩样左边界靠近下端面的位置及右边界的不同位置预制材料缺陷,采用拉格朗日元法研究了材料缺陷位置不同时的剪切带图案启动、演变及试样的宏观力学行为。在数值计算中,采用了莫尔-库仑与拉破坏复合的破坏准则,峰后岩石的本构关系为线性应变软化。当试样左、右边界上的缺陷距离较远时,剪切带仅出现1条,以通过两缺陷形式贯通试样两边界;当两缺陷距离较近时,启动于缺陷附近的剪切带按各自其固有方向发展,剪切带图案十分复杂。当右缺陷距离试样上端面较近时,由于上端面的约束,仅位于缺陷下方的剪切带能得到充分的发展。若剪切带数量较少且贯通试样两边界时,试样发生脆性剪切破坏,应力-变形曲线软化段比较陡峭;反之,发生韧性剪切破坏,软化段比较平缓。当剪切带的前端迎面遇到试样上、下端面附近的上、下三角形区域时,由于端面的约束,剪切带的方向将改变。当剪切带的前端与试样的纵向对称线距离较近时,剪切带发生折射现象;当距离较远时,剪切带将发生反射现象。  相似文献   

10.
To study the damage process of microscale to macroscale in coarse-grained granite specimen under uniaxial compressive stress, we have observed micro-damage localization and propagation by using a newly developed experimental system that allows us to observe the damaging process continuously.

The results showed that pre-existing microcracks lead to macroscopic shear fracture through the damage development process. The mechanism of micro-damage initiation in a granite specimen under uniaxial compressive stress may be considered for two cases. One is that two grains such as quartz and feldspar contact each other in the same direction as the axial stress, and the other is that a biotite grain inclined to the axial stress direction is surrounded by feldspar grains. The homogenization theory was applied to verify numerically the micromechanics of stress-induced damage in the mineral contacts. Local stress distribution in the periodic-micro structure was also calculated by the homogenization theory. It is shown that this analysis, which takes into account the initial state of the specimen, is well adapted to the behavior of two grains for which microcracking is the fundamental mechanism of damage.  相似文献   


11.
This article presents a fundamental study on the role of particle breakage on the shear behavior of granular soils using the three‐dimensional (3‐D) discrete element method. The effects of particle breakage on the stress ratio, volumetric strain, plastic deformation, and shear failure behavior of dense crushable specimens undergoing plane strain shearing conditions are thoroughly investigated through a variety of micromechanical analyses and mechanism demonstrations. The simulation of a granular specimen is based on the effective modeling of realistic fracture behavior of single soil particles, which is demonstrated by the qualitative agreement between the results from platen compression simulations and those from physical laboratory tests. The simulation results show that the major effects of particle breakage include the reduction of volumetric dilation and peak stress ratio and more importantly the plastic deformation mechanisms and the shear failure modes vary as a function of soil crushability. Consistent macro‐ and micromechanical evidence demonstrates that shear banding and massive volumetric contraction depict the two end failure modes of a dense specimen, which is dominated by particle rearrangement–induced dilation and particle crushing–induced compression, respectively, with a more general case being the combination and competition of the two failure modes in the medium range of soil crushability and confining stress. However, it is further shown that a highly crushable specimen will eventually develop a shear band at a large strain because of the continuous decay of particle breakage. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Geomaterials such as soils and rocks are inherently anisotropic and sensitive to temperature changes caused by various internal and external processes. They are also susceptible to strain localization in the form of shear bands when subjected to critical loads. We present a thermoplastic framework for modeling coupled thermomechanical response and for predicting the inception of a shear band in a transversely isotropic material using the general framework of critical state plasticity and the specific framework of an anisotropic modified Cam–Clay model. The formulation incorporates anisotropy in both elastic and plastic responses under the assumption of infinitesimal deformation. The model is first calibrated using experimental data from triaxial tests to demonstrate its capability in capturing anisotropy in the mechanical response. Subsequently, stress‐point simulations of strain localization are carried out under two different conditions, namely, isothermal localization and adiabatic localization. The adiabatic formulation investigates the effect of temperature on localization via thermomechanical coupling. Numerical simulations are presented to demonstrate the important role of anisotropy, hardening, and thermal softening on strain localization inception and orientation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
王学滨  马剑  刘杰  潘一山 《岩土力学》2004,25(6):904-908
研究了岩样在单轴压缩条件下轴向应力.侧向或环向变形的全程曲线特征。基于考虑峰值剪切强度后微小结构之间相互影响和作用的梯度塑性理论,得到了由于剪切局部化而引起的侧向塑性变形。利用虎克定律描述了试件的弹性变形,得到了轴向应力.侧向变形全程曲线的解析解。在软化阶段,试件中部侧向变形及对靠近试件上端或下端部位的侧向变形并不相同。与轴向应力.应变曲线可能出现的回跳现象类似。试件中部轴向应力.侧向应变曲线也可能出现回跳现象。在应变软化阶段,与应力.侧向应变曲线相比,应力.环向应变曲线不容易发生回跳现象。若在试件内部出现多条剪切带,则应该以等效剪切带宽度替代本文中的剪切带宽度。随着剪切带倾角、内部长度参数的降低、剪切模量的增加及弹性模量的降低,轴向应力.侧向应变曲线越陡;甚至能出现弹性回跳。  相似文献   

14.
The inelastic response of Tennessee marble is modelled by an elastic plastic constitutive relation that includes pressure dependence of yield, strain‐softening and inelastic volume strain (dilatancy). Data from 12 axisymmetric compression tests at confining pressures from 0 to 100 MPa are used to determine the dependence of the yield function and plastic potential, which are different, on the first and second stress invariants and the accumulated inelastic shear strain. Because the data requires that the strain at peak stress depends on the mean stress, the locus of peak stresses is neither a yield surface nor a failure envelope, as is often assumed. Based on the constitutive model and Rudnicki and Rice criterion, localization is not predicted to occur in axisymmetric compression although faulting is observed in the tests. The discrepancy is likely due to the overly stiff response of a smooth yield surface model to abrupt changes in the pattern of straining. The constitutive model determined from the axisymmetric compression data describes well the variation of the in‐plane stress observed in a plane strain experiment. The out‐of‐plane stress is not modelled well, apparently because the inelastic normal strain in this direction is overpredicted. In plane strain, localization is predicted to occur close to peak stress, in good agreement with the experiment. Observation of localization on the rising portion of the stress–strain curve in plane strain does not, however, indicate prepeak localization. Because of the rapid increase of mean stress in plane strain, the stress–strain curve can be rising while the shear stress versus shear strain curve at constant mean stress is falling (negative hardening modulus). Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
邵生俊  陈菲  代亚锋  陆嫄 《岩土力学》2015,36(Z1):66-70
采用西安理工大学自主研发的真三轴仪,对西安白鹿原黄土进行了不同中主应力比值、不同固结围压的试验研究,探讨了黄土剪切带形成与峰值强度、中主应变与大主应变关系曲线、体应变与大主应变关系曲线特征点之间的联系以及子午平面、 平面上的强度变化规律。分析了真三轴应力条件下黄土强度变形规律和试样剪切带破坏模式和黄土在复杂应力状态下剪切带形成的判断依据和原因,研究表明,真三轴压缩原状黄土具有明显的剪切带,围压和中主应力比值较小时表现为软化,围压和中主应力比值较大时则表现为硬化;中主应变、体应变与大主应变关系曲线较为一致的转折点反映了土变形性状发生变化;与中主应变方向一致的剪切带两侧土结构块体产生相对滑移,剪切带开始形成和发展;土应变曲线的转折点可以作为土固结结构内剪切带形成的判断依据;子午平面上强度线呈线性变化规律, 平面上呈曲边三角形非线性变化规律,并且与 -SMP强度准则较为接近。不同应力条件下剪切带变化复杂的破坏模式与黄土原生的结构特征和加载共同作用的变化有密切联系。  相似文献   

16.
主应力轴旋转对剪切带形成的影响分析   总被引:4,自引:2,他引:2  
软土的剪切带形成对于研究土的工程性质、土体稳定性评价有重要的意义。 采用可以考虑主应力轴旋转影响的土的弹塑性本构模型———关口-太田模型, 分析主应力轴旋转对剪切带形成的影响, 得出最可能发生局部剪切变形的方向同主应力轴的旋转角有关, 但主轴旋转对激发变形局部化失稳的影响不大的结论。  相似文献   

17.
曹日红  曹平  林杭  张科  谭希文 《岩土力学》2013,34(Z2):456-463
利用二维颗粒流程序生成5种不同粗糙程度的节理模型,并对5种节理模型进行了5种不同法向恒定荷载作用下的直剪试验,从细观角度分析了不同粗糙程度的节理模型在法向荷载下的形貌损伤情况和裂纹演化机制。与此同时,分析了节理JRC值和节理面颗粒摩擦系数对节理抗剪强度影响,并反推出了节理面抗剪强度参数Cj与?j与JRC值的关系。结果为:法向恒定荷载越大时,节理峰值抗剪应力越大,剪胀现象越小,节理形貌损伤范围越大。随着剪切的进行,上下节理面接触范围减小,微裂纹开始主要沿节理面产生,随着剪切位移的继续增加微裂纹数量显著增加,并且不局限于节理面附近而深入到模型内部。随着节理粗糙程度(JRC值)和节理面颗粒摩擦系数的增加节理峰值抗剪应力也增大。节理抗剪强度参数Cj与?j随着JRC值的增大而增大。所得结果可以为室内试验和工程应用提供参考和依据。  相似文献   

18.
The appearance of shear banding in granular materials has been investigated intensively during the last decades and is still of ongoing importance in terms of understanding the stress–strain behaviour of the material, the localization phenomena and the interaction between soil and structure. Only less attention has been paid to the occurrence of systems of shear bands although such systems can be identified in geotechnical structures as well as in geological formations. In this paper we present results of experiments on sand specimens under extensional load in natural gravity as well as in increased gravity in the centrifuge where the influence of the stress level on the geometry of a shear band pattern, specified by the spacing of the shear bands and the angle between failure surfaces and minor stress direction, has been investigated. X‐ray technique has been used to visualize the failure zones inside the specimen, an optical measurement system called Digital Image Correlation has been applied to identify and observe the appearing deformation mechanism on the sides of the specimens in natural gravity as well as during the flight in the centrifuge. It can be shown that the geometry of the shear band pattern is sparsely influenced by the change of the stress level. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
In situ observations of polycrystalline ice deformed in simple shear between −10 and −1°C are presented. This study illustrates the processes responsible for the deformation, the development of a preferred crystallographic orientation and the formation of a preferred dimensional orientation. Intracrystalline glide on the basal plane, accompanying grain rotations and dynamic recrystallization, helps to accommodate the large intragranular strains. These are the most important mechanisms for crystallographic reorientation and produce a stable fabric that favours glide on the basal plane. Localized kinks, developed in grains unfavourably oriented for easy glide, are unstable and are overprinted by dynamic recrystallization. Dynamic recrystallization is a strain softening process with nucleation occurring in the form of equiaxed grains that grow subparallel to pre-existing grain anisotropies and become elongate during deformation. Plots of grain axial ratio against orientation ( ) indicate a weak shape fabric which does not correspond to the theoretical foliation and elongation for the appropriate increment of shear strain. We argue that estimates of the strain magnitude made from orientation of elongate grains are unreliable in high temperature shear zones. These results are applicable to both geological and glacial shear environments.  相似文献   

20.
A computational framework is presented for dynamic strain localization and deformation analyses of water‐saturated clay by using a cyclic elasto‐viscoplastic constitutive model. In the model, the nonlinear kinematic hardening rule and softening due to the structural degradation of soil particles are considered. In order to appropriately simulate the large deformation phenomenon in strain localization analysis, the dynamic finite element formulation for a two‐phase mixture is derived in the updated Lagrangian framework. The shear band development is shown through the distributions of viscoplastic shear strain, the axial strain, the mean effective stress, and the pore water pressure in a normally consolidated clay specimen. From the local stress–strain relations, more brittleness is found inside the shear bands than outside of them. The effects of partially drained conditions and mesh‐size dependency on the shear banding are also investigated. The effect of a partially drained boundary is found to be insignificant on the dynamic shear band propagation because of the rapid rate of applied loading and low permeability of the clay. Using the finer mesh results in slightly narrower shear bands; nonetheless, the results manifest convergency through the mesh refinement in terms of the overall shape of shear banding and stress–strain relations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号