首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
基于Coulomb3.3软件,通过研究地震累加与单震的库仑应力变化对后续地震的触发关系,对北祁连山东段及邻区自1561年以来的9次强震静态库仑应力变化进行了研究。结果表明:对于叠加现象来说,后一地震事件除了门源地震落在应力影区外,先前地震活动对后续地震都产生了明显的触发作用,库仑应力变化在0.1~4.066 bar之间;而对于单独事件的应力变化,断层距较小的地震之间相互触发的影响较大。根据库仑应力变化和年应力累积量的比值,得出地震在没有先前地震作用下还需要的应力累积时间。最后根据大震后区域断裂库伦应力变化及断裂强震活动历史等特征,对本区未来强震地震危险性进行分析,得出本区未来地震危险区位于云雾山断裂以及天祝-景泰—古浪一带的金强河断裂上。  相似文献   

2.
祁连山西段疏勒河流域地貌特征及其构造意义   总被引:1,自引:0,他引:1       下载免费PDF全文
疏勒河流域盆地位于祁连山西段,跨越了该区多条不同方向和不同性质的活动断裂带,其所呈现的地貌特征反映了该区最新构造活动的信息。文中基于GIS空间分析技术,利用SRTM-3数字高程模型(DEM)数据,系统提取了疏勒河流域及其4个亚流域盆地的面积-高程积分曲线、疏勒河水系的Hack剖面以及河流坡降指标(SL),并对整个流域地形做了坡谱分析,获得了疏勒河流域的地貌特征。研究表明,疏勒河的流域地貌发育受到该区的阿尔金断裂、昌马断裂、托勒南山断裂以及疏勒南山断裂等强烈构造活动和区域岩性差异的影响,坡度以0°~35°的区段为主;整个流域盆地处于河流发育的"壮年期";构造活动是造成河流纵剖面发生改变的最主要因素,局部河段同时还受到岩性因素的控制和影响。这表明在活跃的造山带内部,河流地貌的发育过程中,活动断裂的构造作用是重要的控制因素。  相似文献   

3.
刘小丰  刘洪春  李保雄  范兵 《高原地震》2011,23(3):50-54,66
基于河流阶地高度和阶地形成年代数据,通过二者的线性拟合方法得到了渭河不同河段及其支流的下切速率,结果表明河流在陇西盆地的下切速率明显高于渭河盆地,可能反应了西秦岭北麓构造活动西高东低的特点。  相似文献   

4.
对东祁连造山带早白垩世红层进行详细的古地磁学及岩石磁学研究, 系统热退磁研究结果表明: 紫红色砂岩的剩磁方向可分离出2~3个磁性分量, 其低温分量在地理坐标下与现今地磁场方向一致; 高温特征方向主要由赤铁矿携带, 19个采点的平均极位置为: λ=62.2°N, Φ =193.4°E, A95=3.2°, 其在99%置信水平下通过了褶皱检验, 且在95%的置信水平通过了倒转检验; 该极位置在95%置信水平下与Halim等人在该地区的研究结果是一致的; 对比同时代华北、华南、欧亚的古地磁结果表明: 兰州地区相对于华北、华南及欧亚白垩纪后不存在明显的南北向地壳缩短, 但却发生了20°左右的顺时针旋转, 造成这一旋转的原因很可能是印度/欧亚的碰撞挤压造成青藏高原北缘阿尔金断裂发生了大规模的左旋走滑所致.  相似文献   

5.
1 研究背景德钦—维西地区位于滇西北川滇菱形块体边缘的活动构造区(马瑾,1988),构造位置特殊,地处青藏高原东南缘横断山脉中南段,川滇菱形块体西北界争议较大的三江并流地区,特提斯—喜马拉雅构造域东南部弧形构造转折处,冈瓦纳古陆与欧亚大陆拼合带边缘,也是扬子准地台与滇西地槽摺皱带交接区,构造复杂(吴长富,1998)....  相似文献   

6.
7.
Because of the strong uplift of the Qilian Shan since late Cenozoic,the drainage basins that are derived from the mountains have undergone strong tectonic deformation.So the typical geomorphology characteristics of these drainage basins may indicate the strong tectonic movement in the region.For example,the Shule River drainage basin,which originates from the western part of the Qilian Shan owns unique geomorphology characteristics which may indicate the neotectonic movement. Stream networks of the Shule drainage basin extracted from the DEM data based on GIS spatial analysis technology are graded into five levels using Strahler classification method.Four sub-catchments,numbered 1,2,3 and 4 are chosen for detailed analysis.Furthermore,the four sub-catchments,the hypsometric integral curves,Hack profiles,SL index and average slope of the Shule drainage basin are determined by GIS tools.In addition,we analyzed the slope spectrum of the Shule drainage basin. The average elevation of the Shule drainage basin is very high,however,the slope of the drainage basin is very low,the gentle slope occupies so large area proportion that the slope spectrum shows a unimodal pattern and a peak value is in low slope region (0°~5°),so tectonic movement has a strong influence on the drainage basin.Under the intensive impact of the tectonic movement of the active fault and regional uplift,the hypsometric integral curve is sigmoid,revealing that the Shule drainage basin is in the mature stage.The Hack profile is on a convex,the longitudinal profile is best fitted by linear fitting and the abnormal data of the SL index of the Shule River has a good fit with the section through which the active fault traverses,that means the tectonic movement of the active fault has strong influence on the river's SL index.It is worth noting that lithologic factors also have great impact on the river geomorphology in some sections. According to the above analysis,we recognize that in the interior of active orogen,the evolution of river geomorphology usually is influenced by tectonic movement and reveals the regional neotectonics in turn.  相似文献   

8.
北祁连东段及其邻区地震滑坡的基本特征和危险区预测   总被引:3,自引:0,他引:3  
本文根据野外调查和航片解译,研究了北祁连东段及其邻区地震滑坡的基本特征和形成条件,探讨了地震滑坡的动力机制,并在本区使用多因素模糊数学综合评判方法预测滑坡危险区。  相似文献   

9.
祁连山西段酒西盆地区阶地构造变形的研究   总被引:22,自引:3,他引:22  
对祁连山西段酒西盆地晚第四纪阶地的研究表明,该区早第四纪以挤压褶皱、逆冲为特征的构造变形在晚更新世期间乃至全新世仍继承性地进行着,表现为横穿褶皱和逆断裂带的河流及冲沟阶地面的形成、阶地类型的转变、阶地级数的增多和阶地面被断错或发生拱曲变形.其中祁连山北缘大断裂晚更新世晚期以来的垂直运动速率约为1.92~2.00mm/a.老君庙背斜逆断裂带在晚更新世初以来的垂直运动速率约为1.15~2.56mm/a.白杨河背斜逆断裂带晚更新世初以来的垂直运动速率约为0.32~0.58mm/a.  相似文献   

10.
The interaction between the continental-continental collision of the Indian-Eurasian plate and the westward underthrusting of Pacific plate is generally considered to be the cause of the destruction of North China Craton. At present, there are still doubts in the researches worldwide about the dynamic mechanism of the formation and evolution of the Ordos peripheral fault-depression system and the contemporary tectonic stress field.
The Hetao Basin is a Cenozoic fault basin located between the Ordos block and the Yinshan Mountains. Due to the effect of uplift of the Tibet Plateau and the continuous subduction of the Pacific plate, graben faulting of different intensities occurred in different periods of Cenozoic around the Ordos block. Late Quaternary lacustrine facies sedimentary strata are widely developed in Hetao Basin. The Haolaigou profile, Bianqianhao profile and the Langshan profile in this study are all located in Hetao Basin. According to the lithology and structural analysis of the upper Pleistocene series in the three profiles, angular unconformities of phase 1-2 are recorded in the lacustrine facies sediments with a thickness of about 10m. The dating results of the Haolaigou profile, Bianqianhao profile and Langshan profile show that the formation time of both unconformities is 80ka BP.
Using the tectonic geology, Quaternary geology, stratigraphy, sedimentology and a variety of dating methods, we also carry out a comprehensive study and obtain the following results:
(1)The analysis of lithological and structural features of Haolaigou profile, Bianqianghao profile and Langshan profile in the Hetao Basin shows that multi-phase angular unconformities events are recorded in the lacustrine strata of a thickness of nearly 10m. These unconformities represent the tectonic movement in the late Pleistocene period since the 80ka BP and they may be widely distributed in the North China region. They are probably the direct products of the latest tectonic movement in the Quaternary period.
(2)The present tectonic movement initiates at about 80ka BP. It not only causes multiple angular unconformity events, but also leads to the disappearance of the Hetao ancient lake. The rapid regional epeirogenetic uplifting of the Ordos block since 76.4ka BP should also be the specific manifestation of this tectonic movement. Because of the influence of the accelerated uplifting and eastward spreading of the Qinghai-Tibet plateau in the late Quaternary, the NEE thrusting effect of the Ordos block is enhanced and affected.  相似文献   

11.
The Daqingshan Fault located in the northern margin of the Hetao Basin has experienced intensive activity since late Quaternary, which is of great significance to the molding of the present geomorphology. Since basin geomorphological factors can be used to reflect regional geomorphological type and development characteristics, the use of typical geomorphology characteristics indexes may reveal the main factors that control the formation of topography. In recent years, more successful research experience has been accumulated by using hypsometric integral(HI) values and channel steepness index(ksn)to quantitatively obtain geomorphic parameters to reveal regional tectonic uplift information. The rate of bedrock uplifting can be reflected by channel steepness index, the region with steep gradient has high rate of bedrock uplifting, while the region with slower slope has low rate of bedrock uplifting. The tectonic uplift can shape the geomorphic characteristics by changing the elevation fluctuation of mountains in study area, and then affect the hypsometric integral values distribution trend, thus, the HI value can be used to reflect the intensity of regional tectonic activity, with obvious indicating effect. Knick point can be formed by fault activity, and the information of knick point and its continuous migration to upstream can be recorded along the longitudinal profile of stream. Therefore, it is possible and feasible to obtain the information of tectonic activity from the geomorphic characteristics of Daqinshan area. The research on the quantitative analysis of regional large-scale tectonic activities in the Daqingshan area of the Yellow River in the Hetao Basin is still deficient so far. Taking this area as an example, based on the method of hypsometric integral(HI) and channel steepness index(ksn), we use the DEM data with 30m resolution and GIS spatial analysis technology to extract the networks of drainage system and seven sub-basins. Then, we calculate the hypsometric integral(HI) values of each sub-basin and fit its spatial distribution characteristics. Finally, we obtain the values of channel steepness index and its fitting spatial distribution characteristics based on the improved Chi-plot bedrock analysis method. Combining the extraction results of geomorphic parameters with the characteristics of fault activity, we attempt to explore the characteristics of drainage system development and the response of stream profile and geomorphology to tectonic activities in the Daqingshan section of the Yellow River Basin. The results show that the values of the hypsometric integral in the Daqingshan drainage area are medium, between 0.5~0.6, and the Strahler curve of each tributary is S-shaped, suggesting that the geomorphological development of the Daqingshan area is in its prime, and the tectonic activity and erosion is strong. Continuous low HI value is found in the tectonic subsidence area on the hanging wall of the Daqingshan Fault. The distribution characteristics of the HI value reveal that the Daqingshan Fault controls the geomorphic difference between basin and mountain. Longitudinal profiles of the river reveal the existence of many knick points. The steepness index of river distributes in high value along the trend of mountain which lies in the tectonic uplift area on the footwall of the Daqingshan Fault. It reflects that the bedrock uplift rate of Daqingshan area is faster. The distribution characteristics of the channel steepness index show that the uplift amplitude of Daqingshan area is strong and the bedrock is rapidly uplifted, which is significantly different from the subsidence amplitude in the depression basin at the south margin of the fault, indicating that the main power source controlling the basin mountain differential movement comes from Daqingshan Fault. Based on the comparison and analysis on tectonic, lithology and climate, there is no obvious corresponding relationship between the difference of rock erosion resistance and the change of geomorphic parameters, and the precipitation has little effect on the geomorphic transformation of Daqingshan area, and its contribution to the geomorphic development is limited. Thus, we think the lithology and rainfall conditions have limited impact on the hypsometric integral, longitudinal profiles of the river and channel steepness index. Lithology maybe has some influences on the channel knick points, while tectonic activity of piedmont faults is the main controlling factor that causes the unbalanced characteristics of the longitudinal profile of the channel and plays a crucial role in the development of the channel knick points. So, tectonic activity of the Daqingshan Fault is the main factor controlling the uplift and geomorphic evolution of the Daqingshan area.  相似文献   

12.
长江三峡地区地壳形变特征及其构造意义   总被引:5,自引:1,他引:5  
李愿军 《地震地质》1991,13(3):249-257
本文讨论了三峡地区地壳形变特征,认为黄陵断块相对于周缘的差异性运动是存在的,最大年速率可达5—10毫米。跨断层的短水准结果以继承性断层活动为主,年速率在毫米级。水平形变网揭示仙女山断裂带近年来表现为左旋压扭性,天阳坪断裂带以右旋滑动为主  相似文献   

13.
14.
Using quantitative geomorphic factors for regional active tectonic evolution is becoming more and more popular. Qilian Mountains-Hexi Corridor which locates in the northern edge of Qinghai-Tibet plateau is the most leading edge of the plateau's northward extension. The uplift rate of all segments and the intensity of influence from tectonic activity are the important evidences to understand the uplift and extension of the plateau. Heihe River Basin is located at the northern piedmont of the western segment of Qilian Mountains, the development of the rivers is influenced by the tectonic activity of the Qilian Mountains, and the unique river morphology is important carriers of the regional tectonic uplift. Geomorphologic indexes such as hypsometric integral, geomorphologic comentropy and river longitudinal profiles were extracted by GIS tools with free access to the Shuttle Radar Topography Mission(SRTM)DEMs, and according to the different expression of the geomorphological indexes in the Heihe River Basin, we divided the drainage basin into two parts and further compared them to each other. Recent studies reveal that obvious differences exist in the landscape factors(hypsometric integral, geomorphology entropy and river profiles)in the east and west part of the Heihe Basin. The structural intensity of the west part is stronger than that of the east, for example, in areas above the main planation surface on the western part, the average HI value is 0.337 8, and on the eastern part the HI value is 0.355. Accordingly, areas under the main planation surface are just on the contrary, indicating different structural strength on both sides. Similar phenomenon exists in the whole drainage basins. Furthermore, by comparing the fitting river profiles with the real river profiles, differential uplift is derived, which indicates a difference between west and east(with 754m on the western part and 219m on the east). Comprehensive comparison and analysis show that the lithologic factors and precipitation conditions are less influencing on the geomorphic factors of the study area, and the tectonic activities, indicated by field investigation and GPS inversion, are the most important element for geomorphic evolution and development. The variation of the geomorphologic indexes indicates different tectonic strength derived from regional structures of the Qilian Shan.  相似文献   

15.
1 INTRODUCTION The Middle Yellow River Basin of China is well-known worldwide for its severe soil erosion. The basin extends across arid and desert steppe, semi-arid steppe, and warmly temperate semi-humid forest-steppe from north to south, and morphological characteristics consist of mountains alternating with inter-mountain basins. Landforms change frequently from rocky mountains through rock-loess mixed mountains or hills to loess gullied hills and loess tableland from mountain to bas…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号