首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
武晗 《地质找矿论丛》2020,35(3):363-372
津巴布韦大岩墙蕴含丰富的铬铁矿资源,不同部位成矿特征存在差异。钙碱性铁质基性-超基性岩浆结晶分异过程中伴随着铬铁矿的成矿作用,南部岩浆房两翼300m深度范围内共赋存7个不连续的铬铁矿层,矿层垂向间距30~50m,南部矿层发育优于北部;铬铁矿层厚度多为0.2~1m,铬铁矿层发育于辉橄岩系和辉石岩系的接触部位,三者呈渐变式过渡接触,共同构成典型的韵律结构;两翼矿层产状呈对称状倾向于岩墙的轴部,倾角约为10°~20°;矿石多为自形-半自形微细粒结构,稀疏浸染状及中等浸染状构造,矿石为需选贫铬矿石,w(Cr2O3)=5%~30%,且矿体内Pt+Pd含量可观。大岩墙南段两翼铬铁矿为典型的早期岩浆结晶分异矿床,后期构造运动加剧了矿层的不连续性,并对局部岩矿层产状产生改造,蛇纹石化蚀变形成了指示矿体的标志性斑杂构造岩。  相似文献   

2.
匹克铬铁矿是津巴布韦少有的大型透镜状铬铁矿床之一。文章总结了匹克铬铁矿的成矿地质背景、矿床地质特征、矿床地球化学特征和矿床成因方面的研究进展。文章认为该矿床的初始组分与初始科马提岩型铬铁矿相似,主量元素表明铬铁矿的氧逸度比较低,保留了岩浆初始的还原环境,并表现出岩浆结晶分异演化的特征。尽管矿床形成之后受到交代和角闪岩相变质作用的影响,但初始组分没有被显著破坏。矿床所在地区铬铁矿Re-Os同位素分析表明,津巴布韦克拉通岩石圈地幔同位素比值显著低于硅酸盐地球的平均值,并没有受到上地幔对流的影响。归纳了前人对匹克铬铁矿成因的几种观点,提出矿床的成矿模式和形成过程。  相似文献   

3.
张海峰 《地质与资源》2013,22(6):513-517
津巴布韦大岩墙北部红土型镍矿严格受橄榄岩控制,受地形地貌条件影响,位于橄榄岩出露的支谷山前缓坡地带的红土下部和靠山坡一侧.沟谷平坦和山上陡坡地段则无矿或有极薄氧化壳.该大岩墙上部橄榄岩、辉石岩、橄榄辉石岩带和铬铁矿层呈层状相互交替组成韵律性层序.在橄榄岩出露的地表植被稀疏,多为草本植物,而辉石岩、橄榄辉石岩带上呈现出茂密树丛.  相似文献   

4.
5.
古鲁韦镍矿床位于津巴布韦大岩墙上,矿体严格受含镍的超基性岩——津巴布韦大岩墙控制,并与超基性岩体风化层深度关系密切。文章通过对古鲁韦风化壳镍矿床成矿地质背景和镍矿体地质特征的阐述,说明镍矿成因与超基性岩体、地形地貌、气候等关系,认为含镍的超基性岩经过化学风化作用以后,在风化带中经过富集形成了现在的矿床。  相似文献   

6.
文章对产于津巴布韦大岩墙内的哈特利(Hartley)铂矿床的地质特征和成因进行研究。津巴布韦大岩墙于新太古代侵入,在津巴布韦克拉通内形成南北段次级岩浆房格局。哈特利铂矿的铂族元素主要分布在杂岩体的中下部,与硫化物密切相关,主要含矿矿物为铋、碲矿物。在岩浆侵位的过程中发生结晶分异,形成了铂族元素和硫化物的垂向分带。哈特利矿床与中国金川等铂族元素矿床相比,其成岩成矿时代早,矿床特征、成矿元素组合方面均有明显不同。  相似文献   

7.
承德三岔口基性岩墙地球化学特征及地质意义   总被引:1,自引:0,他引:1  
对承德三岔口基性岩墙进行了锆石LA-ICP-MS U-Pb年代学和岩石地球化学研究。定年结果表明岩墙属晚印支期(222.1±1.6)Ma岩浆活动的产物;地球化学特征显示岩墙具有拉斑玄武岩特征,轻稀土(LREE)和大离子亲石元素(LILE)相对富集岩墙,亏损Nb、Ta和Ti等。同位素组成特征显示,岩墙具有正的初始Sr比值和负的εNd(t)值。以上特征都暗示三岔口基性岩墙可能来源于富集的岩石圈地幔。根据年代学、地球化学和前期研究成果认为,与三岔口基性岩墙同期位于华北北缘的东西向侵入岩带,可能是华北克拉通减薄的最初表现。  相似文献   

8.
9.
黄陵地区基性岩墙群的地球化学特征及其地质意义   总被引:8,自引:0,他引:8  
黄陵地区的基性岩墙群主要由辉绿岩脉和辉绿玢岩脉组成, 走向主要为NEE向, 少量为NNW向.元素地球化学显示其为形成于板内拉张环境下的亚碱性玄武岩特征, 其很低的Mg# 指示为岩浆高度演化的产物, 同时Nb、Ta的亏损和Pb的富集表明其受到地壳物质的混染, 这说明可能是在拉张环境下由先前被俯冲带流体交代的地幔源重熔的结果.根据前人的年代学研究结果, 它形成于770Ma左右, 可能跟Rodinia超级古陆裂解构造背景相关.   相似文献   

10.
白杨河地区中基性岩墙地球化学研究显示,该岩墙属于亚碱性系列,为岩浆高度演化的产物,轻稀土元素适度富集,轻重稀土分异中等,Nb、Ta强烈亏损,Ti、Zr和Hf适度亏损,不相容元素(K、Rb、Ba、Sr、LREE)与Pb富集,说明该岩墙源自与俯冲作用有关的交代地幔,且在侵位过程中受到地壳物质的混染。该岩墙侵位时期可能为270~250Ma左右,为造山期后伸展环境下的产物,是中亚造山带后碰撞阶段陆壳垂向生长的重要标志。  相似文献   

11.
O. Nebel  K. Mezger   《Precambrian Research》2008,164(3-4):227-232
Dating low temperature events such as magmatic cooling or (hydro-)thermal surges in Archean and Proterozoic terranes is crucial in defining cratonal thermal stabilization after episodic continental growth during the Archean and Early Proterozoic. Rubidium–Sr chronology is potentially a powerful tool in this regard because of its low closure temperature, i.e., <400 °C in most minerals, but has until now been hampered by its relatively low precision compared to high-temperature chronometers. Consequently, Rb–Sr age investigations have so far failed to provide high-precision age constraints on the cooling of rocks older than 2 Ga. Here, it is demonstrated that internal Rb–Sr microchrons can yield important, high-precision age constraints on the cooling history of Archean intrusions. After careful mineral selection and chemical treatment, a Rb–Sr age of 2543.0 ± 4.4 Ma was obtained from the Archean Great Dyke, Zimbabwe Craton, in contrast to the intrusion age of 2575.8 ± 1 Ma, yielding an ambient average cooling of 5 ± 2 °C/Ma. The non-disturbed magmatic Rb–Sr cooling age of the Great Dyke marks the final stage of Zimbabwe craton stabilization and that the greater craton area did not experience any intensive later reheating event during metamorphic or tectonic events.  相似文献   

12.
Stratigraphic offsets in the peak concentrations of platinum-group elements (PGE) and base-metal sulfides in the main sulfide zone of the Great Dyke and the precious metals zone of the Sonju Lake Intrusion have, in part, been attributed to the interaction between magmatic PGE-bearing base-metal sulfide assemblages and hydrothermal fluids. In this paper, we provide mineralogical and textural evidence that indicates alteration of base-metal sulfides and mobilization of metals and S during hydrothermal alteration in both mineralized intrusions. Stable isotopic data suggest that the fluids involved in the alteration were of magmatic origin in the Great Dyke but that a meteoric water component was involved in the alteration of the Sonju Lake Intrusion. The strong spatial association of platinum-group minerals, principally Pt and Pd sulfides, arsenides, and tellurides, with base-metal sulfide assemblages in the main sulfide zone of the Great Dyke is consistent with residual enrichment of Pt and Pd during hydrothermal alteration. However, such an interpretation is more tenuous for the precious metals zone of the Sonju Lake Intrusion where important Pt and Pd arsenides and antimonides occur as inclusions within individual plagioclase crystals and within alteration assemblages that are free of base-metal sulfides. Our observations suggest that Pt and Pd tellurides, antimonides, and arsenides may form during both magmatic crystallization and subsolidus hydrothermal alteration. Experimental studies of magmatic crystallization and hydrothermal transport/deposition in systems involving arsenides, tellurides, antimonides, and base metal sulfides are needed to better understand the relative importance of magmatic and hydrothermal processes in controlling the distribution of PGE in mineralized layered intrusions of this type.  相似文献   

13.
Halogen geochemistry of the Great Dyke,Zimbabwe   总被引:5,自引:0,他引:5  
 Apatite from the Great Dyke of Zimbabwe is relatively rich in the hydroxy-fluorapatite end-members. The mole fraction of fluorapatite increases from approximately 40% in cumulates of the Ultramafic Sequence to over 60% in a sample near the top of the exposed Mafic Sequence. The chlorapatite component decreases from a typical high of 10–20 mole% in the Ultramafic Sequence to about 1% in the uppermost part of the Mafic sequence. However, within-sample variation may be as great as the entire stratigraphic variation. Halogen contents of marginal samples generally are similar to axial samples, but tend not to have as high Cl concentration and tend to OH-enrichment. Biotite compositions approach hydroxyl end-member compositions, and apatite-biotite OH-F exchange geothermometers give an average closure temperature of 564° C. Apatite from the Umvimeela Dyke, an unlayered dike that parallels the Great Dyke over much of its length, contains less Cl than is seen in the Ultramafic Sequence cumulates of the Great Dyke. While the overall stratigraphic trend is characterized by a decrease in the Cl/F ratio with stratigraphic height, within the P1 unit at the top of the Ultramafic Sequence there is a positive correlation between Cl and other incompatible elements such as Na and Ce. The apparent contradiction between the general stratigraphic trend of decreasing Cl/F ratio with fractionation and the apparent increase in Cl and other incompatible elements seen in the P1 unit can be explained by assuming that the Great Dyke magma chamber was degassing near its top, where confining pressure was lowest and Cl was preferentially lost to a separating volatile-rich fluid. As cumulates formed on the floor, they entrapped liquid that was increasingly depleted in Cl at the higher stratigraphic levels. However, at any given stratigraphic interval, either local fluid enrichment or the eventual crystallization of halogen-bearing minerals that incorporate the smaller F ion in preference to the larger Cl ion led to a local increase in the Cl/F ratio. Received: 31 October 1994/Accepted: 13 June 1995  相似文献   

14.
Sedimentary geochemistry of fine-grained strata of the Great Valley Group (GVG) in California documents a provenance signal that may better represent unstable, mafic minerals and volcanic clasts within sediment source regions than the provenance signal documented in the petrofacies and detrital zircon analysis of coarser sedimentary fractions. Geochemistry of the GVG provides an overall provenance framework within which to interpret sandstone petrofacies and detrital zircon age signatures. The geochemical signature for all Sacramento Valley samples records an overall continental arc source, with significant variation but no clear spatial or temporal trends, indicating that the geochemical provenance signal remained relatively consistent and homogenized through deposition of Sacramento basin strata. The San Joaquin basin records a distinct geochemical provenance signature that shifted from Early to Late Cretaceous time, with Lower Cretaceous strata recording the most mafic trace element geochemical signature of any GVG samples, and Upper Cretaceous strata recording the most felsic geochemical signature. These provenance results suggest that the early San Joaquin basin received sediment from the southern Sierran foothills terranes and intruding plutons during the Early Cretaceous, with sediment sources shifting east as the southern Sierran batholith was exhumed and more deeply eroded during the Late Cretaceous. The GVG provenance record does not require sediment sources inboard of the arc at any time during GVG deposition, and even earliest Cretaceous drainage systems may not have traversed the arc to link the continental interior with the margin. Because the GVG provenance signature is entirely compatible with sediment sources within the Klamath Mountains, the northern and western Sierran foothills belt, and the main Cretaceous Sierran batholith, the Klamath-Sierran magmatic arc may have formed a high-standing topographic barrier throughout the Cretaceous period.  相似文献   

15.
Compilation of some new data on ophiolites for Greece and Yugoslavia, and published data from previous studies, indicate that platinum-group element (PGE) and gold concentrations in chromite ores are generally low, ranging from less than 100 ppb to a few hundred ppb. However, samples from several ophiolite complexes exhibit an enrichment (of a few ppm) (a) only in Os, Ir and Ru,(b) only in Pt and/or Pd or (c) in all PGE. This enrichment (up to 10s ppm) is mainly related with chromitites hosted in supra-Moho dunites and dunites of the uppermost stratigraphic levels of the mantle sequence and it seems to be local, independent of the chromitite major element composition and the chromite potential of the ophiolite complexes. The contents of PGE combined with less chalcophile elements (Ni, Co, Cu), the ratios of incompatible/compatible elements, and PGE-patterns provide evidence for discrimination between chromitites derived from primitive magmas and those derived from partially fractionated magmas, although they have a similar major element composition. Thus, they can be used for a stratigraphic orientation in the mantle sequence, and therefore for exploration targets. Moreover, PGE data offer valuable information for the evaluation of the chromite potential in ophiolite complexes. The most promising ophiolites seem to be those which apart from the petrological and geochemical characteristics indicating extensive degree of partial melting in the mantle source contain only one chromite ore type (the other type being only in small proportion) of limited compositional variation, in both major elements and PGE, low ratios of , while PGE-enriched chromitites in the mantle sequence are only occasionally present. In contrast, ophiolites which contain both high-Cr and -Al chromitites, and where their chalcophile element data implies relatively extensive fractionation trend are not good exploration targets for chromite ores, although they are related with a SSZ environment.  相似文献   

16.
塔源二支线铅锌铜矿床地处额尔古纳地块东南缘,位于得尔布干成矿带东段.为确定塔源二支线铅锌铜矿区岩浆岩的岩石成因及其地质意义,对矿区岩浆岩开展了岩石学、地球化学以及同位素年代学研究.笔者在矿区识别出两期岩浆作用,早期发生于(296.1±2.3)Ma(早二叠世),侵入体为二长闪长岩;晚期发生在(136.5±2.1)Ma(早...  相似文献   

17.
我国铬铁矿床地质特征和找矿方向   总被引:1,自引:0,他引:1       下载免费PDF全文
我国已知的铬铁矿床均属于中小型豆荚状铬铁矿床,分布区域不均衡,开发利用条件差。豆荚状铬铁矿床包括高铬型和高铝型,两种矿床的形成环境和机制各不相同。弧后弧前盆地、岛弧、大洋中脊、转换断层均可能是豆荚状铬铁矿形成的理想构造环境,越来越多的学者认为豆荚状铬铁矿为深部地幔成因。铬铁矿是我国急缺的战略矿产,需要加大重要铬铁矿带隐伏矿体的找矿力度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号