首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 608 毫秒
1.
Younger Dryas to earliest Holocene mega‐landslides (>10 km2) in the eastern Fish Lake Plateau of central Utah required unusually wet conditions to drive movement. The sediment from abundant small lakes, ponds and especially fens that formed in swales between hummocks on the landslide surfaces are excellent archives of past climate. An integrated geophysical, geochemical and micro‐palaeontological investigation characterized fen deposits, determining the timing of mass movement and establishing the subsequent climate history of the region. High‐resolution P‐(compressional) wave surveys of fen deposits were conducted to image fen‐landslide contacts. Past climate states were assessed through loss on ignition, pollen and diatom abundances. Diatoms, in particular, record large variations in precipitation as the present‐day wetland switched from fen (intermittent standing water) to pond states in response to variable precipitation. One core was analysed for detailed climate proxies. A wet episode (pond) prevailed from 11.5 to 10 ka after which the climate became much drier (fen) until 6 ka due to weakening of the North American Monsoon. After 2.5–2.0 ka, reduced insolation produced cooler summers and wet winters (pond). Only recently (<500 years) has a fen re‐emerged based on direct observation and the disappearance of diatoms that require standing water. 14C ages of basal sediment from four cores show two episodes of movement: 12.8–12.5 and 10.5 ka. The earlier ages indicate that Younger Dryas high effective precipitation caused mass wasting. Later, during early Holocene times, colder winters followed by warmer summers and vigorous monsoons drove movement as rapid spring snow‐melt was followed by wet summers. In broad terms, this work highlights variable climate conditions that can drive mass movement, as well as the sensitivity of diatom records in fens to effective precipitation.  相似文献   

2.
Landslides in the three studied basins of the Siwalik Hills are not random in distribution; they tend to cluster in certain areas implying the control of certain in situ factors or their combination. Landslide controlling in situ factors were reviewed and analyzed from maps, aerial photos and imageries using GIS. Chi square analysis was carried out to test the significance of landslide distribution vis-à-vis in situ factors. Slope gradient and relative relief were consistently significant in landslide distribution. Geology, dip-topography relation, land use and land cover, and vegetation conditions appeared important in landslide occurrence in all three basins either in terms of area or count in any two basins. Slope aspect and altitude tested significant for landslide occurrence in at least two basins. However, upslope flow contributing area, drainage density and distance to lineament were found insignificant in all three basins. In situ factors that tested significant in any two basins were used for landslide susceptibility analysis using a bivariate statistical approach. The distribution of landslides strongly correlates with susceptibility indices. With in situ factors, landslide susceptibility had good correlation with slope gradient and relative relief. Incorporating calculated factor weight values from one basin to the other two basins, proxy susceptibility index maps were also prepared. A moderate to good positive correlation appeared between them implying certain range of confidence for replicating the result for whole of the Siwalik Hills. Slope gradient and relative relief can be used as proxy indicators of landslide susceptible areas in the Siwalik Hills.  相似文献   

3.
We present results from a 484 km wide-angle seismic profile acquired in the northwest part of the South China Sea (SCS) during OBS2006 cruise. The line that runs along a previously acquired multi-channel seismic line (SO49-18) crosses the continental slope of the northern margin, the Northwest Subbasin (NWSB) of the South China Sea, the Zhongsha Massif and partly the oceanic basin of the South China Sea. Seismic sections recorded on 13 ocean-bottom seismometers were used to identify refracted phases from the crustal layer and also reflected phases from the crust-mantle boundary (Moho). Inversion of the traveltimes using a simple start model reveals crustal images in the study area. The velocity model shows that crustal thickness below the continental slope is between 14 and 23 km. The continental part of the line is characterized by gentle landward mantle uplift and an abrupt oceanward one. The velocities in the lower crust do not exceed 6.9 km/s. With the new data we can exclude a high-velocity lower crustal body (velocities above 7.0 km/s) at the location of the line. We conclude that this part of the South China Sea margin developed by a magma-poor rifting. Both, the NWSB and the Southwest Sub-basin (SWSB) reveal velocities typical for oceanic crust with crustal thickness between 5 and 7 km. The Zhongsha Massif in between is extremely stretched with only 6–10 km continental crust left. Crustal velocity is below 6.5 km/s; possibly indicating the absence of the lower crust. Multi-channel seismic profile shows that the Yitongansha Uplift in the slope area and the Zhongsha Massif are only mildly deformed. We considered them as rigid continent blocks which acted as rift shoulders of the main rift subsequently resulting in the formation of the Northwest Sub-basin. The extension was mainly accommodated by a ductile lower crustal flows, which might have been extremely attenuated and flow into the oceanic basin during the spreading stage. We compared the crustal structures along the northern margin and found an east-west thicken trend of the crust below the continent slope. This might be contributed by the east-west sea-floor spreading along the continental margin.  相似文献   

4.
This paper presents a u‐p (displacement‐pressure) semi‐Lagrangian reproducing kernel (RK) formulation to effectively analyze landslide processes. The semi‐Lagrangian RK approximation is constructed based on Lagrangian discretization points with fixed kernel supports in the current configuration. As a result, it tracks state variables at discretization points while allowing extreme deformation and material separation that is beyond the capability of Lagrangian formulations. The u‐p formulation following Biot theory is incorporated into the formulation to describe poromechanics of saturated geomaterials. In addition, a stabilized nodal integration method to ensure stability of the domain integration and kernel contact algorithms to model contact between bodies are introduced in the u‐p semi‐Lagrangian RK formulation. The proposed method is verified with several numerical examples and validated with an experimental result and the field data of an actual landslide.  相似文献   

5.
Emplacement of small‐volume (<0·1 km3) pyroclastic flows is significantly influenced by topography. The Arico ignimbrite on Tenerife (Canary Islands) is a characteristic small‐volume pyroclastic flow deposit emplaced on high relief topography. The pyroclastic flow flowed down pre‐existing valleys on the southern slopes of the island. In proximal areas deep (up to 100 m) valleys acted as efficient conduits for the pyroclastic flow, which was mostly channelled; in this particular area the ignimbrite corresponds to a homogeneous, moderately welded deposit, consisting of flattened pumices in an abundant ashy matrix with a relatively low lithic fragment content. In intermediate zones significant changes occur in the steepness of the slope and, although still channelled, here the pyroclastic flow was influenced by hydraulic jumps. In this area, two different units can be clearly distinguished in the ignimbrite: the lower unit is composed of a lithic‐rich ground‐layer deposit that formed at the turbulent, highly concentrated head of the flow; the upper unit consists of a well welded pumice‐rich deposit that occasionally reveals a basal layer formed by shearing with the lower part. This division into two units is maintained as far as distal areas near the present‐day coastline, where the slope is very gentle or null and the ignimbrite is not channelled. The ground layer is not found in distal areas. The ignimbrite here only consists of the upper unit, which is occasionally repeated due to a surging process provoked by the lower flow speed, as the pyroclastic flow spread out of the channelled zone. A theoretical model on how topography controlled the deposition of the Arico ignimbrite is derived by interpreting the observed lithological and sedimentological variations in terms of changes in topography and bedrock morphology. This new model is of general applicability and will help to explain other deposits of similar characteristics.  相似文献   

6.
The initial conditions for the development of a large peatland complex in the St Lawrence Lowlands were reconstructed to increase the understanding of early development and expansion modes in this region. Peatland basin morphometry was identified by creating a model based on over 1500 existing peat depth measurements, and six cores were extracted along transects from a central (deepest) location towards the margins. C accumulation rates and ecohydrological conditions were reconstructed from plant macrofossils, testate amoeba assemblages and 14C chronologies. Luminescence dating was performed to better delineate the timing of dune stabilization in the area and potentially related climate changes. Shallow freshwater plant communities acted as nuclei for the development of a rich minerotrophic fen around 10 300 cal. a BP in the deepest part of a shallow depression at the surface of the St‐Maurice river delta. Peat inception was followed by the paludification of peripheral parabolic dune systems. Luminescence dating suggested dune stabilization between 11 500 and 10 900 years ago. The initial rich fen persisted until 9500 cal. a BP, and was replaced by a poor fen dominated by sedges as a result of a decrease in mineral nutrient influx from upland runoff. The shift to ombrotrophic conditions in the oldest section of Lac‐à‐la‐Tortue peatland started around 5150 cal. a BP. This major ecohydrological change coincides with those observed in several other peatlands in southern Québec. Variations in carbon and peat accumulation rates in both ombrotrophic and minerotrophic sectors appear to have been primarily controlled by hydroseral succession, peat‐forming vegetation, hydrological conditions, topography and fire activity. This study is the first to provide a quantification of the total carbon pool of a peatland complex in southern Québec at 6.39 Mt C, corresponding to a mean C mass per area of 96.9 kg C m−2 (σ = 50.60 kg C m−2).  相似文献   

7.
The early Pleistocene clastic succession of the Peri‐Adriatic basin, eastern central Italy, records the filling of a series of piggyback sub‐basins that formed in response to the development of the eastward‐verging Apennine fold‐thrust belt. During the Gelasian (2·588 to 1·806 Ma), large volumes of Apennine‐derived sediments were routed to these basins through a number of slope turbidite systems. Using a comprehensive outcrop‐based dataset, the current study documents the depositional processes, stratigraphic organization, foraminiferal age and palaeodepth, and stratigraphic evolution of one of these systems exposed in the surroundings of the Castignano village. Analysis of foraminiferal assemblages consistently indicates Gelasian deposition in upper bathyal water depths. Sediments exposed in the study area can be broken into seven main lithofacies, reflecting specific gravity‐induced depositional elements and slope background deposition: (i) clast‐supported conglomerates (conglomerate channel‐fill); (ii) amalgamated sandstones (late stage sandstone channel‐fill); (iii) medium to thick‐bedded tabular sandstones (frontal splay sandstones); (iv) thin to thick‐bedded channelized sandstones (sandy channel‐fill); (v) medium to very thin‐bedded sandstones and mudstones (levée‐overbank deposits); (vi) pebbly mudstones and chaotic beds (mudstone‐rich mass‐transport deposits); and (vii) massive mudstones (hemipelagic deposits). Individual lithofacies combine vertically and laterally to form decametre‐scale, disconformably bounded, fining‐upward lithofacies successions that, in turn, stack to form slope valley fills bounded by deeply incised erosion surfaces. A hierarchical approach to the physical stratigraphy of the slope system indicates that it has evolved through multiple cycles of waxing then waning flow energy at multiple scales and that its packaging can be described in terms of a six‐fold hierarchy of architectural elements and bounding surfaces. In this scheme, the whole system (sixth‐order element) is comprised of three distinct fifth‐order stratigraphic cycles (valley fills), which define sixth‐order initiation, growth and retreat phases of slope deposition, respectively; they are separated by discrete periods of entrenchment that generated erosional valleys interpreted to record fifth‐order initiation phases. Backfilling of individual valleys progressed through deposition of two vertically stacked lithofacies successions (fourth‐order elements), which record fifth‐order growth and retreat phases. Fourth‐order initiation phases are represented by erosional surfaces bounding lithofacies successions. The component lithofacies (third‐order element) record fourth‐order growth and retreat phases. Map trends of erosional valleys and palaeocurrent indicators converge to indicate that the sea floor bathymetric expression of a developing thrust‐related anticline markedly influenced the downslope transport direction of gravity currents and was sufficient to cause a major diversion of the turbidite system around the growing structure. This field‐based study permits the development of a sedimentological model that predicts the evolutionary style of mixed coarse‐grained and fine‐grained turbidite slope systems, the internal distribution of reservoir and non‐reservoir lithofacies within them, and has the potential to serve as an analogue for seismic or outcrop‐based studies of slope valley fills developed in actively deforming structural settings and under severe icehouse regimes.  相似文献   

8.
Shelf‐edge deltas are a key depositional environment for accreting sediment onto shelf‐margin clinoforms. The Moruga Formation, part of the palaeo‐Orinoco shelf‐margin sedimentary prism of south‐east Trinidad, provides new insight into the incremental growth of a Pliocene, storm wave‐dominated shelf margin. Relatively little is known about the mechanisms of sand bypass from the shelf‐break area of margins, and in particular from storm wave‐dominated margins which are generally characterized by drifting of sand along strike until meeting a canyon or channel. The studied St. Hilaire Siltstone and Trinity Hill Sandstone succession is 260 m thick and demonstrates a continuous transition from gullied (with turbidites) uppermost slope upward to storm wave‐dominated delta front on the outermost shelf. The basal upper‐slope deposits are dominantly mass‐transport deposited blocks, as well as associated turbidites and debrites with common soft‐sediment‐deformed strata. The overlying uppermost slope succession exhibits a spectacular set of gullies, which are separated by abundant slump‐scar unconformities (tops of rotational slides), then filled with debris‐flow conglomerates and sandy turbidite beds with interbedded mudstones. The top of the study succession, on the outer‐shelf area, contains repeated upward‐coarsening, sandstone‐rich parasequences (2 to 15 m thick) with abundant hummocky and swaley cross‐stratification, clear evidence of storm‐swell and storm wave‐dominated conditions. The observations suggest reconstruction of the unstable shelf margin as follows: (i) the aggradational storm wave‐dominated, shelf‐edge delta front became unstable and collapsed down the slope; (ii) the excavated scars of the shelf margin became gullied, but gradually healed (aggraded) by repeated infilling by debris flows and turbidites, and then new gullying and further infilling; and (iii) a renewed storm wave‐dominated delta‐front prograded out across the healed outer shelf, re‐establishing the newly stabilized shelf margin. The Moruga Formation study, along with only a few others in the literature, confirms the sediment bypass ability of storm wave‐dominated reaches of shelf edges, despite river‐dominated deltas being, by far, the most efficient shelf‐edge regime for sediment bypass at the shelf break.  相似文献   

9.
A landslide susceptibility map is very important and necessary to efficiently prevent and mitigate the losses brought by natural hazard for a large area. For the purpose of landslide susceptibility analysis for the whole Xiangxi catchment (3,209 km2), Artificial Neural Network (ANN) analysis was applied as the main method. The whole catchment was divided into two parts: the training area and the implementation area. The backwater area (559 km2) of Xiangxi catchment was used as the training area for the ANN method. In the training area the correlations between the landslide distribution and its causative factors, which includes lithology, slope angle, slope curvature and river network, have been analyzed based on the geological map and digital elevation model (DEM). The back-propagation training algorithm in ANN was selected to train the sample data from the training area, which were composed of input data (causative factors) and target output data (landslide occurrence), in order to find the correlations between them. Based on these correlations and input data in the implementation area (causative factors), the network output data were obtained for the implementation area. In the end, a map of landslide susceptibility, which was established by network output data, was presented for Xiangxi catchment. ArcGIS was applied to extract and quantify input information from a DEM for susceptibility analysis and also to present the result visually. As a result, a landslide susceptibility map, in which 70 % of all landslides are rightly classified in the training area (backwater area), was created for Xiangxi catchment.  相似文献   

10.
Analysis of time-varying rainfall infiltration induced landslide   总被引:5,自引:0,他引:5  
A case study of rainstorm-induced landslide is modeled following the hourly rainfall time series from the stage of infiltration caused by induced slope movement and soil saturated to excess pore pressures—Transient Rainfall Infiltration and Grid-based Regional Slope-Stability Analysis (TRIGRS). The grid-based landslide stability analysis was conducted to model the increased pore pressures and runoff in the study area under the specified rainfall conditions. The generated time variances of pore pressures help determine landslide characteristics and mechanisms under rainfall conditions. Inputs of soil properties and permeability parameters for landslide stability analysis in the study area were prepared by TRIGRS adopted for transient infiltration analysis. Results of the analyses show that under heavy rainfall conditions, the infiltrated slope is unstable and the time of debris masses movement initiated is correlated to the recorded time. In the initiated landslide, characteristics and effects are considered and reflected in the numerical modeling under combinations of topography, land use, climatic and geological conditions. Results reveal that there is a plane failure surface and a potential circular failure surface at the study site besides the rock topple failures in the crest. A grid-based slope-stability analysis incorporated with the GIS spatial functions is more advantageous than the traditional two-dimensional analysis for specified slope profiles to determine the whole behavior of a slope.  相似文献   

11.
Subduction and exhumation dynamics can be investigated through analysis of metamorphic and deformational evolution of associated high‐grade rocks. The Erzgebirge anticline, which forms at the boundary between the Saxothuringian and Teplá‐Barrandian domains of the Bohemian Massif, provides a useful study area for these processes owing to the occurrence of numerous meta‐basites preserving eclogite facies assemblages, and coesite and diamond bearing quartzofeldspathic lithologies indicating subduction to deep mantle depths. The prograde and retrograde evolution of meta‐basite from the Czech portion of the Erzgebirge anticline has been constrained through a combination of thermodynamic modelling and conventional thermobarometry. Garnet growth zoning indicates that the rocks underwent burial and heating to peak conditions of 2.6 GPa and at least 615 °C. Initial exhumation occurred with concurrent cooling and decompression resulting in the growth of amphibole and zoisite poikiloblasts overgrowing and including the eclogite facies assemblage. The development of clinopyroxene–plagioclase–amphibole symplectites after omphacite and Al‐rich rims on matrix amphibole indicate later heating at the base of the lower crust. Omphacite microstructures, in particular grain size analysis and lattice‐preferred orientations, indicate that the prograde evolution was characterized by a constrictional strain geometry transitioning into plane strain and oblate fabrics during exhumation. The initial constrictional strain pattern is interpreted as being controlled by competing slab pull and crustal buoyancy forces leading to necking of the subducting slab. The transition to plane strain and flattening geometries represents transfer of material from the subducting lithosphere into a subduction channel, break‐off of the dense slab and rebound of the buoyant crustal material.  相似文献   

12.
坡脚开挖诱发古滑坡复活的机制分析   总被引:1,自引:0,他引:1  
黄土地区存在许多古滑坡体,由于滑后土体土质疏松,裂隙发育,在坡脚开挖作用下极易发生变形破坏,造成大量财产损失,同时也对开挖施工安全构成了极大的威胁,因此对坡脚开挖诱发古滑坡复活的失稳机制的研究十分迫切和必要。以延安市王窑村滑坡为例,通过室内试验分析了三轴应力环境下围压、含水量对土体变形破坏的影响,并运用数值模拟研究了开挖过程中最危险滑面上的应力及强度变化趋势,揭示了坡脚开挖诱发古滑坡复活的变形破坏机理。研究结果表明:坡脚开挖改变了坡体中下部的应力分布,抗滑段土方开挖减小了滑坡抗滑力,增大了下滑力,最终滑坡下滑力超过抗滑力,导致古滑坡复活。  相似文献   

13.
The Magallanes‐Austral Basin of Patagonian Chile and Argentina is a retroforeland basin associated with Late Cretaceous–Neogene uplift of the southern Andes. The Upper Cretaceous Dorotea Formation records the final phase of deposition in the Late Cretaceous foredeep, marked by southward progradation of a shelf‐edge delta and slope. In the Ultima Esperanza district of Chile, laterally extensive, depositional dip‐oriented exposures of the Dorotea Formation contain upper slope, delta‐front and delta plain facies. Marginal and shallow marine deposits include abundant indicators of tidal activity including inclined heterolithic stratification, heterolithic to sandy tidal bundles, bidirectional palaeocurrent indicators, flaser/wavy/lenticular bedding, heterolithic tidal flat deposits and a relatively low‐diversity Skolithos ichnofacies assemblage in delta plain facies. This work documents the stratigraphic architecture and evolution of the shelf‐edge delta that was significantly influenced by strong tidal activity. Sediment was delivered to a large slump scar on the shelf‐edge by a basin‐axial fluvial system, where it was significantly reworked and redistributed by tides. A network of tidally modified mouth bars and tidal channels comprised the outermost reaches of the delta complex, which constituted the staging area and initiation point for gravity flows that dominated the slope and deeper basin. The extent of tidal influence on the Dorotea delta also has important implications for Magallanes‐Austral Basin palaeogeography. Prior studies establish axial foreland palaeodrainage, long‐term southward palaeotransport directions and large‐scale topographic confinement within the foredeep throughout Late Cretaceous time. Abundant tidal features in Dorotea Formation strata further suggest that the Magallanes‐Austral Basin was significantly embayed. This ‘Magallanes embayment’ was formed by an impinging fold–thrust belt to the west and a broad forebulge region to the east.  相似文献   

14.
On August 27, 2014, a large-scale landslide occurred in Fuquan, Guizhou, China. This high-speed landslide caused considerable destruction; 23 people were killed, 22 were injured, and 77 houses were damaged. Field investigations, deformation monitoring, and numerical analyses have been performed to examine the characteristics and formation processes of this landslide. In the Xiaoba area, the slope showed a two-layered structure with a hard upper layer and a soft lower layer. Dolomite of the Dengying Formation in the slope front formed a locked segment controlling slope stability. Based on deformation and failure characteristics, the landslide is divided into sliding source area A and accumulation area B. The landslide is also divided into the following stages: bedding slip, tension cracking at the slope scarp, and the appearance of the locked section at the slope toe. Numerical calculations show that excavation led to maximum shear strain concentration along the interface of siltstone and slate in the middle of the slope, which became a potential sliding surface. Stress concentration and distribution of the plastic zone of the locked segment of the Dengying Formation dolomite occurred in the slope toe. Continuous rainfall caused the groundwater level to rise in the Xiaoba slope. The unfavorable geological structure was a determinant factor, and the combined effects of excavation and continuous rainfall were triggering factors that induced the landslide. The geomechanical mode for the Xiaoba landslide is sliding tension–shear failure.  相似文献   

15.
充气截排水主要依据非饱和渗流理论,通过向坡体后缘压入气体驱除部分地下水,形成非饱和帷幕带,降低土体的渗透性,截排斜坡后缘地下水的入渗,降低潜在滑坡体内地下水位。多孔介质的多相渗流问题相当复杂,模拟技术往往是有效的研究方法。笔者以试验得到的地下水位及渗流量为基础进行数值反演分析,得到土质参数,构建数值计算模型,研究不同充气位置对边坡潜在滑坡区地下水位的影响。结果表明:在坡体后缘压入气体能够降低潜在滑坡区的地下水位线;在坡体后缘充气时,充气点放置在距离潜在滑坡区较近的位置时,截排水效果更好;充气点充气压力越大,潜在滑坡区的地下水位线下降得越多;选择充气点深度时,宜选择较深的充气深度,这样能够选择较大的充气压力。  相似文献   

16.
A mathematical model is developed for the dynamic analysis of earthquake‐triggered rapid landslides, considering two mechanically coupled systems: (a) the accelerating deformable body of the slide and (b) the rapidly deforming shear band at the base of the slide. The main body of the slide is considered as a one‐phase mixture of Newtonian incompressible fluids and Coulomb solids sliding on a plane of variable inclination. The evolution of the landslide is modeled via a depth‐integrated model of the Savage–Hutter type coupled with: (a) a cyclic hysteretic constitutive model of the Bouc–Wen type and (b) Voellmy's rheology for the deformation of the material within the shear band. The original shallow‐water equations that govern the landslide motion are appropriately reformulated to account for inertial forces due to seismic loading, and to allow for a smooth transition between the active and the passive state. The capability of the developed model is tested against the Higashi–Takezawa landslide. Triggered by the 2004 Niigata‐ken Chuetsu earthquake, the slide produced about 100m displacement of a large wedge from an originally rather mild slope. The mechanism of material softening inside the shear band responsible for the surprisingly large run‐out of the landslide is described by a set of equations for grain crushing‐induced pore‐water pressures. The back‐analysis reveals interesting patterns on the flow dynamics, and the numerical results compare well with field observations. It is shown that the mechanism of material softening is a crucial factor for the initiation and evolution of the landslide, while viscoplastic frictional resistance is a key requirement for successfully reproducing the field data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Shelf‐edge deltas play a critical role in shelf‐margin accretion and deepwater sediment delivery, yet much remains to be understood about the detailed linkage between shelf edge and slope sedimentation. The shelf edge separates the flat‐lying shelf from steeper slope regions, and is observable in seismic data and continuous outcrops; however, it is commonly obscured in non‐continuous outcrops. Defining this zone is essential because it segregates areas dominated by shelf currents from those governed by gravity‐driven processes. Understanding this linkage is paramount for predicting and characterizing associated deepwater reservoirs. In the Tanqua Karoo Basin, the Permian Kookfontein Formation shelf‐slope clinothems are well‐exposed for 21 km along depositional strike and dip. Two independent methods identified the shelf‐edge position, indicating that it is defined by: (i) a transition from predominantly shelf‐current to gravitational deposits; (ii) an increase in soft‐sediment deformation; (iii) a significant gradient increase; and (iv) clinothem thickening. A quantitative approach was used to assess the impact of process‐regime variability along the shelf edge on downslope sedimentation. Facies proportions were quantified from sedimentary logs and photographic panels, and integrated with mapped key surfaces to construct a stratigraphic grid. Spatial variability in facies proportions highlights two types of shelf‐edge depositional zones within the same shelf‐edge delta. Where deposition occurred in fluvial‐dominated zones, the slope is sand rich, channelized with channels widening downslope, and rich in collapse features. Where deltaic deposits indicate considerable tidal reworking, the deposits are thin and pinch‐out close to the shelf edge, and the slope is sand poor and lacks channelization. Amplification of tidal energy, and decrease in fluvial drive on the shelf, coincides with a decrease in mouth bar and shelf‐edge collapse, and a lack of channelization on the slope. This analysis suggests that process‐regime variability along the shelf edge exercised significant control on shelf‐edge progradation, slope channelization and deepwater sediment delivery.  相似文献   

18.
The 1989 Loma Prieta, California earthquake (moment magnitude, M=6.9) generated landslides throughout an area of about 15,000 km2 in central California. Most of these landslides occurred in an area of about 2000 km2 in the mountainous terrain around the epicenter, where they were mapped during field investigations immediately following the earthquake. The distribution of these landslides is investigated statistically, using regression and one-way analysis of variance (ANOVA) techniques to determine how the occurrence of landslides correlates with distance from the earthquake source, slope steepness, and rock type. The landslide concentration (defined as the number of landslide sources per unit area) has a strong inverse correlation with distance from the earthquake source and a strong positive correlation with slope steepness. The landslide concentration differs substantially among the various geologic units in the area. The differences correlate to some degree with differences in lithology and degree of induration, but this correlation is less clear, suggesting a more complex relationship between landslide occurrence and rock properties.  相似文献   

19.
The objective of this study is to map landslide susceptibility in Zigui segment of the Yangtze Three Gorges area that is known as one of the most landslide-prone areas in China by using data from light detection and ranging (LiDAR) and digital mapping camera (DMC). The likelihood ratio (LR) and logistic regression model (LRM) were used in this study. The work is divided into three phases. The first phase consists of data processing and analysis. In this phase, LiDAR and DMC data and geological maps were processed, and the landslide-controlling factors were derived such as landslide density, digital elevation model (DEM), slope angle, aspect, lithology, land use and distance from drainage. Among these, the landslide inventories, land use and drainage were constructed with both LiDAR and DMC data; DEM, slope angle and aspect were constructed with LiDAR data; lithology was taken from the 1:250,000 scale geological maps. The second phase is the logistic regression analysis. In this phase, the LR was applied to find the correlation between the landslide locations and the landslide-controlling factors, whereas the LRM was used to predict the occurrence of landslides based on six factors. To calculate the coefficients of LRM, 13,290,553 pixels was used, 29.5 % of the total pixels. The logical regression coefficients of landslide-controlling factors were obtained by logical regression analysis with SPSS 17.0 software. The accuracy of the LRM was 88.8 % on the whole. The third phase is landslide susceptibility mapping and verification. The mapping result was verified using the landslide location data, and 64.4 % landslide pixels distributed in “extremely high” zone and “high” zone; in addition, verification was performed using a success rate curve. The verification result show clearly that landslide susceptibility zones were in close agreement with actual landslide areas in the field. It is also shown that the factors that were applied in this study are appropriate; lithology, elevation and distance from drainage are primary factors for the landslide susceptibility mapping in the area, while slope angle, aspect and land use are secondary.  相似文献   

20.
As is common in suture zones, widespread high‐pressure rocks in the Caribbean region reached eclogite facies conditions close to ultrahigh‐pressure metamorphism. Besides eclogite lenses, abundant metapelitic rocks in the Chuacús complex (Guatemala Suture Zone) also preserve evidence for high‐pressure metamorphism. A comprehensive petrological and geochronological study was undertaken to constrain the tectonometamorphic evolution of eclogite and associated metapelite from this area in central Guatemala. The integration of field and petrological data allows the reconstruction of a previously unknown segment of the prograde P–T path and shows that these contrasting rock types share a common high‐pressure evolution. An early stage of high‐pressure/low‐temperature metamorphism at 18–20 kbar and 530–580°C is indicated by garnet core compositions as well as the nature and composition of mineral inclusions in garnet, including kyanite–jadeite–paragonite in an eclogite, and chloritoid–paragonite–rutile in a pelitic schist. Peak high‐pressure conditions are constrained at 23–25 kbar and 620–690°C by combining mineral assemblages, isopleth thermobarometry and Zr‐in‐rutile thermometry. A garnet/whole‐rock Lu‐Hf date of 101.8 ± 3.1 Ma in the kyanite‐bearing eclogite indicates the timing of final garnet growth at eclogite facies conditions, while a Lu‐Hf date of 95.5 ± 2.1 Ma in the pelitic schist reflects the average age of garnet growth spanning from an early eclogite facies evolution to a final amphibolite facies stage. Concordant U‐Pb LA‐ICP‐MS zircon data from the pelitic schist, in contrast, yield a mean age of 74.0 ± 0.5 Ma, which is equivalent to a U‐Pb monazite lower‐intercept age of 73.6 ± 2.0 Ma in the same sample, and comparable within errors with a less precise U‐Pb lower‐intercept age of 80 ± 13 Ma obtained in post‐eclogitic titanite from the kyanite‐bearing eclogite. These U‐Pb metamorphic ages are interpreted as dating an amphibolite facies overprint. Protolith U‐Pb zircon ages of 167.1 ± 4.2 Ma and 424.6 ± 5.0 Ma from two eclogite samples reveal that mafic precursors in the Chuacús complex originated in multiple tectonotemporal settings from the Silurian to Jurassic. The integration of petrological and geochronological data suggests that subduction of the continental margin of the North American plate (Chuacús complex) beneath the Greater Antilles arc occurred during an Albian‐Cenomanian pre‐collisional stage, and that a subsequent Campanian collisional stage is probably responsible of the amphibolite facies overprint and late syncollisional exhumation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号