首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluated the ability of Weather Research and Forecasting (WRF) multi-physics ensembles to simulate storm systems known as East Coast Lows (ECLs). ECLs are intense low-pressure systems that develop off the eastern coast of Australia. These systems can cause significant damage to the region. On the other hand, the systems are also beneficial as they generate the majority of high inflow to coastal reservoirs. It is the common interest of both hazard control and water management to correctly capture the ECL features in modeling, in particular, to reproduce the observed spatial rainfall patterns. We simulated eight ECL events using WRF with 36 model configurations, each comprising physics scheme combinations of two planetary boundary layer (pbl), two cumulus (cu), three microphysics (mp), and three radiation (ra) schemes. The performance of each physics scheme combination and the ensembles of multiple physics scheme combinations were evaluated separately. Results show that using the ensemble average gives higher skill than the median performer within the ensemble. More importantly, choosing a composite average of the better performing pbl and cu schemes can substantially improve the representation of high rainfall both spatially and quantitatively.  相似文献   

2.
物理过程参数化方案对中尺度暴雨数值模拟影响的研究   总被引:48,自引:5,他引:43  
陈静  薛纪善  颜宏 《气象学报》2003,61(2):203-218
利用中尺度非静力MM 5模式和中国 2 0 0 1年 8月的 4个暴雨个例 ,研究了非绝热物理过程对中国暴雨动力和热力场预报的影响 ,深入分析了对流参数化方案在中尺度暴雨预报中的作用 ,讨论了利用模式扰动方法开展中国暴雨集合预报的可行性。结果表明 ,在短期数值预报中 ,非绝热物理过程对高度场预报影响较小 ,但边界层方案和对流参数化方案对产生暴雨的 3个基本条件即水汽通量散度、垂直速度、不稳定层结的影响很明显。不同对流参数化方案所预报的中尺度热力、动力场离差的结构特征与所预报降水的离差特征相似 ,且主要是在模式积分初期迅速增加 ,其后即趋于稳定。对中国热力场较均匀的暴雨过程 ,可以通过扰动模式的边界层和对流参数化方案 ,构造集合预报模式  相似文献   

3.
不同参数化方案对长江中游汛期降水模式预报试验   总被引:2,自引:2,他引:0  
李俊  王斌  王志斌  沈铁元 《气象科技》2008,36(2):134-138
利用中尺度模式多个物理过程组合成不同预报方案,对长江中游汛期降水预报进行了对比试验.试验结果表明,使用不同物理过程参数化方案对长江中游汛期降水的预报效果存在差异,这种差异随降水预报量级的提高而愈加明显;而就试验而言,Grell积云对流参数化方案与Blackadar边界层参数化方案的组合预报效果相对较好;就单个降水个例而言,预报效果相对好的参数化方案存在不确定性,集合平均预报相对稳定且优于大多数方案,其对降水评分的改进尤其体现在暴雨以下量级的预报中.  相似文献   

4.
In the context of regional downscaling, we study the representation of extreme precipitation in the Weather Research and Forecasting (WRF) model, focusing on a major event that occurred on the 8th of June 2007 along the coast of eastern Australia (abbreviated “Newy”). This was one of the strongest extra-tropical low-pressure systems off eastern Australia in the last 30 years and was one of several storms comprising a test bed for the WRF ensemble that underpins the regional climate change projections for eastern Australia (New South Wales/Australian Capital Territory Regional Climate Modelling Project, NARCliM). Newy provides an informative case study for examining precipitation extremes as simulated by WRF set up for regional downscaling. Here, simulations from the NARCliM physics ensemble of Newy available at ~10 km grid spacing are used. Extremes and spatio-temporal characteristics are examined using land-based daily and hourly precipitation totals, with a particular focus on hourly accumulations. Of the different physics schemes assessed, the cumulus and the boundary layer schemes cause the largest differences. Although the Betts-Miller-Janjic cumulus scheme produces better rainfall totals over the entire storm, the Kain-Fritsch cumulus scheme promotes higher and more realistic hourly extreme precipitation totals. Analysis indicates the Kain-Fritsch runs are correlated with larger resolved grid-scale vertical moisture fluxes, which are produced through the influence of parameterized convection on the larger-scale circulation and the subsequent convergence and ascent of moisture. Results show that WRF qualitatively reproduces spatial precipitation patterns during the storm, albeit with some errors in timing. This case study indicates that whilst regional climate simulations of an extreme event such as Newy in WRF may be well represented at daily scales irrespective of the physics scheme used, the representation at hourly scales is likely to be physics scheme dependent.  相似文献   

5.
为了检验用Fritsch-Chappell积云参数化方案改进的MM4模式^[1]对梅雨锋暴雨系统的模拟能力,初步确定该模型的稳定性,可靠性,用不同的侧边界条件,地形条件,行星边界层参数化方法进行了模拟试验,并将模拟结果与采用Kuo-Anthes积云参数化方案的模式模拟结果分别进行了比较,结果表明,改进模式对高度场和降水的预报均有改善,并能预报出一些细致特征,此外,改进模式对侧边界条件和地形极为敏感,而对行星边界层参数化方法的敏感性较弱,因此在模式侧边界条件选取和地形处理方面应十分谨慎。  相似文献   

6.
The use of high resolution atmosphere–ocean coupled regional climate models to study possible future climate changes in the Mediterranean Sea requires an accurate simulation of the atmospheric component of the water budget (i.e., evaporation, precipitation and runoff). A specific configuration of the version 3.1 of the weather research and forecasting (WRF) regional climate model was shown to systematically overestimate the Mediterranean Sea water budget mainly due to an excess of evaporation (~1,450 mm yr?1) compared with observed estimations (~1,150 mm yr?1). In this article, a 70-member multi-physics ensemble is used to try to understand the relative importance of various sub-grid scale processes in the Mediterranean Sea water budget and to evaluate its representation by comparing simulated results with observed-based estimates. The physics ensemble was constructed by performing 70 1-year long simulations using version 3.3 of the WRF model by combining six cumulus, four surface/planetary boundary layer and three radiation schemes. Results show that evaporation variability across the multi-physics ensemble (~10 % of the mean evaporation) is dominated by the choice of the surface layer scheme that explains more than ~70 % of the total variance and that the overestimation of evaporation in WRF simulations is generally related with an overestimation of surface exchange coefficients due to too large values of the surface roughness parameter and/or the simulation of too unstable surface conditions. Although the influence of radiation schemes on evaporation variability is small (~13 % of the total variance), radiation schemes strongly influence exchange coefficients and vertical humidity gradients near the surface due to modifications of temperature lapse rates. The precipitation variability across the physics ensemble (~35 % of the mean precipitation) is dominated by the choice of both cumulus (~55 % of the total variance) and planetary boundary layer (~32 % of the total variance) schemes with a strong regional dependence. Most members of the ensemble underestimate total precipitation amounts with biases as large as 250 mm yr?1 over the whole Mediterranean Sea compared with ERA Interim reanalysis mainly due to an underestimation of the number of wet days. The larger number of dry days in simulations is associated with a deficit in the activation of cumulus schemes. Both radiation and planetary boundary layer schemes influence precipitation through modifications on the available water vapor in the boundary layer generally tied with changes in evaporation.  相似文献   

7.
Realistic regional climate simulations are important in understanding the mechanisms of summer rainfall in the southeastern United States (SE US) and in making seasonal predictions. In this study, skills of SE US summer rainfall simulation at a 15-km resolution are evaluated using the weather research and forecasting (WRF) model driven by climate forecast system reanalysis data. Influences of parameterization schemes and model resolution on the rainfall are investigated. It is shown that the WRF simulations for SE US summer rainfall are most sensitive to cumulus schemes, moderately sensitive to planetary boundary layer schemes, and less sensitive to microphysics schemes. Among five WRF cumulus schemes analyzed in this study, the Zhang–McFarlane scheme outperforms the other four. Further analysis suggests that the superior performance of the Zhang–McFarlane scheme is attributable primarily to its capability of representing rainfall-triggering processes over the SE US, especially the positive relationship between convective available potential energy and rainfall. In addition, simulated rainfall using the Zhang–McFarlane scheme at the 15-km resolution is compared with that at a 3-km convection-permitting resolution without cumulus scheme to test whether the increased horizontal resolution can further improve the SE US rainfall simulation. Results indicate that the simulations at the 3-km resolution do not show obvious advantages over those at the 15-km resolution with the Zhang–McFarlane scheme. In conclusion, our study suggests that in order to obtain a satisfactory simulation of SE US summer rainfall, choosing a cumulus scheme that can realistically represent the convective rainfall triggering mechanism may be more effective than solely increasing model resolution.  相似文献   

8.
In this study the capability of the MM5 model in simulating the main mode of intraseasonal variability during the warm season over South America is evaluated through a series of sensitivity experiments. Several 3-month simulations nested into ERA40 reanalysis were carried out using different cumulus schemes and planetary boundary layer schemes in an attempt to define the optimal combination of physical parameterizations for simulating alternating wet and dry conditions over La Plata Basin (LPB) and the South Atlantic Convergence Zone regions, respectively. The results were compared with different observational datasets and model evaluation was performed taking into account the spatial distribution of monthly precipitation and daily statistics of precipitation over the target regions. Though every experiment was able to capture the contrasting behavior of the precipitation during the simulated period, precipitation was largely underestimated particularly over the LPB region, mainly due to a misrepresentation in the moisture flux convergence. Experiments using grid nudging of the winds above the planetary boundary layer showed a better performance compared with those in which no constrains were imposed to the regional circulation within the model domain. Overall, no single experiment was found to perform the best over the entire domain and during the two contrasting months. The experiment that outperforms depends on the area of interest, being the simulation using the Grell (Kain–Fritsch) cumulus scheme in combination with the MRF planetary boundary layer scheme more adequate for subtropical (tropical) latitudes. The ensemble of the sensitivity experiments showed a better performance compared with any individual experiment.  相似文献   

9.
In this study,an extreme rainfall event that occurred on 25 May 2018 over Shanghai and its nearby area was simulated using the Weather Research and Forecasting model,with a focus on the effects of planetary boundary layer(PBL)physics using double nesting with large grid ratios(15:1 and 9:1).The sensitivity of the precipitation forecast was examined through three PBL schemes:the Yonsei University Scheme,the Mellor?Yamada?Nakanishi Niino Level 2.5(MYNN)scheme,and the Mellor?Yamada?Janjic scheme.The PBL effects on boundary layer structures,convective thermodynamic and large-scale forcings were investigated to explain the model differences in extreme rainfall distributions and hourly variations.The results indicated that in single coarser grids(15 km and 9 km),the extreme rainfall amount was largely underestimated with all three PBL schemes.In the inner 1-km grid,the underestimated intensity was improved;however,using the MYNN scheme for the 1-km grid domain with explicitly resolved convection and nested within the 9-km grid using the Kain?Fritsch cumulus scheme,significant advantages over the other PBL schemes are revealed in predicting the extreme rainfall distribution and the time of primary peak rainfall.MYNN,with the weakest vertical mixing,produced the shallowest and most humid inversion layer with the lowest lifting condensation level,but stronger wind fields and upward motions from the top of the boundary layer to upper levels.These factors all facilitate the development of deep convection and moisture transport for intense precipitation,and result in its most realistic prediction of the primary rainfall peak.  相似文献   

10.
Based on the non-hydrostatic version of Mesoscale Model version 5 (MMS) and the data sets of four heavy rainfall scenarios occurring in August 2001 in China,this paper investigates the impacts of diabatic physical processes on predictions of dynamic and thermodynamic elements of heavy rainfall in China,deeply analyzes the effects of convective schemes on mesoscale heavy rain simulations and discusses the feasibility of using model physics perturbations in ensemble simulation of heavy rain,The results show that diabatic physical processes have little impact on the short-range prediction of geopotential height.However,planetary boundary layer schemes and convective schemes have significant influence on moisture divergence flux,vertical velocity,and unstable stratification,which are the three basic conditions of torrential rain.The forecast deviations in different convection schemes increase rapidly in the first 12 h time periods of simulation and the deviation structures are well correlated to that of sub-grid scale rainfall,while in the later periods of simulation with less correlation.Diabatie physical processes influence the structure and evolution of the simulations.For the rain storm events with a homogeneous thermal environmental condition in China.the numerical model ensembles could be created by perturbing the planetary parameterization scheme and convective parameterization.  相似文献   

11.
The Mesoscale Modeling System Version 5 (MM5) was one-way nested to the Goddard Institute for Space Studies global climate model (GISS GCM), which provided the boundary conditions for present (1990s) and future (IPCC SRES A2 scenario, 2050s) five-summer “time-slice” simulations over the continental and eastern United States. Five configurations for planetary boundary layer, cumulus parameterization, and radiation scheme were tested, and one set was selected for use in the New York City Climate and Health Project—a multi-disciplinary study investigating the effects of climate change and land-use change on human health in the New York metropolitan region. Although hourly and daily data were used in the health project, in this paper we focus on long-term current and projected mean climate change. The GISS-MM5 was very sensitive to the choice of cumulus parameterization and planetary boundary layer scheme, leading to significantly different temperature and precipitation outcomes for the 1990s. These differences can be linked to precipitation type (convective vs. non-convective), to their effect on solar radiation received at the ground, and ultimately to surface temperature. The projected changes in climate (2050s minus 1990s) were not as sensitive to choice of model physics combination. The range of the projected surface temperature changes at a given grid point among the model versions was much less than the mean change for all five model configurations, indicating relative consensus for simulating surface temperature changes among the different model projections. The MM5 versions, however, offer less consensus regarding 1990s to 2050s changes in precipitation amounts. All of the projected 2050s temperature changes were found to be significant at the 95th percent confidence interval, while the majority of the precipitation changes were not.  相似文献   

12.
中尺度降水集合预报随机参数扰动方法敏感性试验   总被引:6,自引:2,他引:4  
中尺度降水模式预报具有很大的不确定性,为更好地描述与模式降水预报密切相关的物理过程关键参数的不确定性,基于中国气象局GRAPES(Global/Regional Assimilation and Prediction System)中尺度区域集合预报模式,从对模式降水预报不确定性有较大影响的积云对流、云微物理、边界层及近地面层等4个参数化方案中选取了18个关键参数,设计了一种随机参数扰动方案(Stochastically Perturbed Parameterization,SPP),并通过2015年6—7月总计10 d的随机扰动集合预报试验,对比分析了SPP方案对不同物理过程参数扰动敏感性、随机场时、空尺度敏感性、能量变化特征及其集合预报效果。结果显示,对所选择的任一物理过程参数化方案增加SPP扰动后,降水及等压面要素的概率预报技巧优于无SPP扰动的预报,而扰动积云对流和边界层过程中的参数较扰动云微物理过程中的参数影响更显著,且同时扰动积云对流、云微物理、边界层及近地面层参数化方案中的18个参数的集合预报效果优于扰动任何单一物理过程中的部分参数,表明SPP方案能够有效地提高中尺度降水概率预报技巧;从能量变化特征可知,不同物理过程的参数扰动对动能、内能和总能量的影响层次和特征有所不同,但总体而言,扰动前后各项能量基本相同;随机场时、空尺度敏感性试验发现,SPP扰动随机场时间、空间相关尺度对集合预报效果有明显影响,当扰动随机场选用12 h抗相关时间及截断波数20时,集合预报结果最优。上述结果表明,SPP随机参数扰动方案不仅能够有效提高集合概率预报效果,还能够提高集合降水概率预报技巧,具有良好的业务应用与发展前景。   相似文献   

13.
为评估CWRF模式的降尺度能力和其热带气旋模拟对物理参数化方案的敏感性,本文利用ERI再分析资料驱动CWRF在30km网格上对1982-2016年中国近海热带气旋开展了一次集合模拟.结果表明:CWRF与ERI均能模拟出热带气旋的季节变化和年际变化形势且均存在低估,但相较ERI,CWRF的降尺度技术和集合模拟可以再现更多...  相似文献   

14.
In the context of non-hydrostatic MM5 version we have explored the impact of convective parameterization schemes on uncertainty in mesoscale numerical prediction of South China heavy rain and mesoscale heavy rainfall short-range ensemble simulation by using two kinds of physics perturbation methods through a heavy rain case occurring on June 8, 1998 in Guangdong and Fujian Provinces. The results show the physical process of impacts of convective schemes on heavy rainfall is that different latent heat of convective condensation produced by different convective schemes can make local temperature perturbation, leading to the difference of local vertical speed by the intrinsic dynamic and thermodynamic processes of atmosphere,and therefore, making difference of the timing, locations and strength of mesh scale and subgrid scale precipitation later. New precipitations become the new source of latent heat and temperature perturbation,which finally make the dynamic and thermodynamic structures different in the simulations. Two kinds of methods are used to construct different model version stochastically. The first one is using different convective parameterization and planetary boundary layer schemes, the second is adjusting different parameters of convective trigger functions in Grell scheme. The results indicate that the first ensemble simulations can provide more uncertainty information of location and strength of heavy rainfall than the second. The single determinate predictions of heavy rain are unstable; physics ensemble predictions can reflect the uncertainty of heavy rain, provide more useful guidance and have higher application value.Physics ensembles suggest that model errors should be taken into consideration in the heavy rainfall ensembles. Although the method of using different parameters in Grell scheme could not produce good results, how to construct the perturbation model or adjust the parameter in one scheme according to the physical meaning of the parameter still needs further investigation. The limitation of the current study is that it is based on a single case and more cases will be addressed in the future researches.  相似文献   

15.
Xubin ZHANG 《大气科学进展》2022,39(11):1833-1858
To improve the ensemble prediction system of the tropical regional atmosphere model for the South China Sea(TREPS) in predicting landfalling tropical cyclones(TCs), the impacts of three new implementing strategies for surface and model physics perturbations in TREPS were evaluated for 19 TCs making landfall in China during 2014–16. For sea surface temperature(SST) perturbations, spatially uncorrelated random perturbations were replaced with spatially correlated ones. The multiplier f, which is u...  相似文献   

16.
华南中尺度暴雨数值预报的不确定性与集合预报试验   总被引:50,自引:0,他引:50  
陈静  薛纪善  颜宏 《气象学报》2003,61(4):432-446
利用非静力MM5模式,分析了不同积云对流参数化方案对华南暖区暴雨数值预报的不确定性影响,进行了中尺度暴雨模式扰动集合预报试验。不同对流参数化方案的对流凝结加热引起不同的局地温度扰动,通过大气内部的热力动力过程,导致垂直速度的差异,进而影响网格尺度和次网格尺度降水时间、地点和强度。后续降水再通过凝结潜热释放形成新的扰动源。不同积云对流参数化方案还可引起扰动源能量传播方式不同,最终使模拟大气的动力和热力结构有差异。针对物理过程的不确定性,使用两种模式扰动方法构造集合预报扰动模式,第一种方法是随机组合不同积云对流参数化方案和边界层方案,第二种方法是扰动Grell积云对流参数化方案中主要参数振幅。集合预报结果表明,第一种方法的集合预报效果优于第二种方法,仅扰动参数振幅值似乎还不足以反映华南暴雨预报的不确定性。单一的确定性预报在暴雨落区和强度方面的可信度不稳定,集合产品能给华南暴雨过程提供更有用价值的指导预报,具有较高的应用价值。  相似文献   

17.
A good representation of the interaction between the planetary boundary layer(PBL) and the surface layer(SL) in numerical models is of great importance for the prediction of the initiation and development of convection. This study examined an ensemble that consists of the available suites of PBL and SL parameterizations based on a torrential rainfall event over south China. The sensitivity of the simulations was investigated against objective measurements using multiple PBL and SL parameterization schemes. The main causes of the bias from different parameterization schemes were further analysed by comparing the good and bad ensemble members. The results showed that good members tended to underestimate the rainfall amount but presented a decent evolution of mesoscale convective systems that were responsible for the torrential rainfall. Using the total energy mass flux(TEMF) scheme, the bad members overestimated the amount and spatial coverage of rainfall. The failure of the bad member was due to a spurious convection initiation(CI) resulting from the overestimated high-θe elevated air. The spurious CI developed and expanded rapidly, causing intensive and extensive rainfall over south China. Consistent with previous studies, the TEMF scheme tends to produce a warmer and moister PBL environment. The detailed sensitivity analysis of this case may provide reference for the operational forecast of rainfall over south China using multiple PBL and SL parameterizations.  相似文献   

18.
This study illustrates the sensitivity of regional climate change projections to the model physics. A single-model (MM5) multi-physics ensemble of regional climate simulations over the Iberian Peninsula for present (1970–1999) and future (2070–2099 under the A2 scenario) periods is assessed. The ensemble comprises eight members resulting from the combination of two options of parameterization schemes for the planetary boundary layer, cumulus and microphysics. All the considered combinations were previously evaluated by comparing hindcasted simulations to observations, none of them providing clearly outlying climates. Thus, the differences among the various ensemble members (spread) in the future projections could be considered as a matter of uncertainty in the change signals (as similarly assumed in multi-model studies). The results highlight the great dependence of the spread on the synoptic conditions driving the regional model. In particular, the spread generally amplifies under the future scenario leading to a large spread accompanying the mean change signals, as large as the magnitude of the mean projected changes and analogous to the spread obtained in multi-model ensembles. Moreover, the sign of the projected change varies depending on the choice of the model physics in many cases. This, together with the fact that the key mechanisms identified for the simulation of the climatology of a given period (either present or future) and those introducing the largest spread in the projected changes differ significantly, make further claims for efforts to better understand and model the parameterized subgrid processes.  相似文献   

19.
1. IntroductionHeavy rain is a kind of severe natural calamitythat influences South China. After decades of years oftests and theoretical exploration by Chinese scientists,significant progresses have been achieved in its predic-tion and basic theoretical studies (Huang, 1986; Xue,1999; Zhou et al., 2003). Currently, the mesoscale nu-merical model has already been employed as one of themajor tools in the prediction and research on heavyrain in South China, promoting considerably the ac-curac…  相似文献   

20.
This study investigates the influences of urban land cover on the extreme rainfall event over the Zhengzhou city in central China on 20 July 2021 using the Weather Research and Forecasting model at a convection-permitting scale [1-km resolution in the innermost domain(d3)]. Two ensembles of simulation(CTRL, NURB), each consisting of 11 members with a multi-layer urban canopy model and various combinations of physics schemes, were conducted using different land cover scenarios:(i) the real urban ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号