首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
叶加兵  张家发  邹维列 《岩土力学》2018,39(12):4457-4467
颗粒形状是影响碎石料孔隙特性的主要因素之一,进而影响碎石料的渗透特性和力学行为。选取粒径为2~5 mm和5~10 mm的灰岩碎石颗粒填筑试样,同时与相同级配和孔隙率的玻璃球试样进行对比研究,采用CT扫描技术和图形处理软件获取多孔介质孔隙边界轮廓,选取0.5 mm开度阈值分割孔隙;每组试样选取3张扫描断面图像,取定量参数的平均值为研究对象,对孔隙特性进行定量分析。结果表明:玻璃球多孔介质孔隙形状的复杂性甚于碎石料;玻璃球多孔介质孔隙系统的连通度大于同粒组碎石料。  相似文献   

2.
粗粒土的颗粒级配、形状和密实度都是影响其孔隙结构,进而影响其渗透特性的重要因素。但长期以来,对颗粒形状影响的关注度较少,其主要原因在于不容易定量描述颗粒形状及其影响的孔隙结构特征。选取已获取长宽比和圆形度的不规则形状碎石、规则形状的球和八面体颗粒分别装填试样,针对颗粒级配和颗粒形状的差异,开展孔隙结构特征和渗透性的对比研究。通过CT扫描试样内部结构图像,重构试样的三维孔隙结构并计算孔隙比表面积。通过渗透试验测得试样的渗透系数。结果表明:试样孔隙比表面积是表达孔隙结构特征的有效参数,在相同级配和孔隙率的条件下,试样孔隙比表面积随颗粒圆形度和趋近球形程度的增加而减小;相同级配和孔隙率的条件下,渗透系数随孔隙比表面积的减小而增大,随颗粒圆形度增大而增大;球形颗粒试样的渗透性最强,试样颗粒越偏离球形,孔隙系统中水流阻力越大,试样渗透性越弱。  相似文献   

3.
粗粒土的颗粒级配、形状和密实度都是影响其孔隙结构、进而影响其渗透特性的重要因素。但长期以来,对颗粒形状影响的关注度较少,其主要原因在于不容易定量描述颗粒形状及其影响的孔隙结构特征。本文选取已获取长宽比和圆形度的不规则形状碎石、规则形状的球和八面体颗粒分别装填试样,针对颗粒级配和颗粒形状的差异,开展孔隙结构特征和渗透性的对比研究;通过CT扫描试样内部结构图像,重构试样的三维孔隙结构并计算孔隙比表面积。结果表明,试样孔隙比表面积是表达孔隙结构特征的有效参数,在相同级配和孔隙率的条件下,试样孔隙比表面积随颗粒圆形度和趋近球形程度的增加而减小;通过渗透试验测得试样的渗透系数,结果表明,相同级配和孔隙率的条件下,渗透系数随孔隙比表面积的减小而增大,随颗粒圆形度增大而增大,球形颗粒试样的渗透性最强,试样颗粒越偏离球形,孔隙系统中水流阻力越大,试样渗透性越弱。  相似文献   

4.
大位移剪切下钙质砂破碎演化特性   总被引:1,自引:0,他引:1  
为了揭示钙质砂在大位移剪切作用下的破碎及形状演化规律,对南海钙质砂进行了系列不同剪切位移下的环剪试验。首先,利用筛分和激光粒度分析获取试验后的颗粒粒径分布,分析颗粒分布变化情况;其次,通过粒径分布对破碎进行定量分析;最后,运用图像处理技术计算颗粒圆度和扁平度,分析了颗粒形状的变化情况。试验结果表明,在不同的竖向压力下,颗粒会达到不同的稳定级配,但达到稳定所需的剪切位移相同;经历大位移剪切后,出现粒径为0.01~0.075 mm钙质砂破碎严重的现象;随剪切位移的增加,颗粒的圆度和扁平度减小。针对细小颗粒破碎严重的现象,修正了相对破碎率;修正后的相对破碎率能考虑粒径为0.01~0.075 mm颗粒发生的破碎。剪切后的钙质砂颗粒更为规则,整体轮廓趋于圆形、表面更光滑。  相似文献   

5.
珊瑚砂是一种含钙极高的海洋生物成因材料,具有高棱角性、形状不规则、易破碎等特点。通过珊瑚砂的高压一维蠕变试验,研究颗粒破碎引起颗粒分布曲线和形状因子的演化规律。借助于高速动态图像的激光粒度粒形仪器,从统计学的角度分析试验前后颗粒形状随压力演化的关系,发现颗粒的形状因子,如长宽比、球形度和凹凸度等,随压力增加而逐渐增加。不同粒径的颗粒形状因子均向一个窄幅范围趋近,说明颗粒破碎具有无尺度性和自相似性的分形特性,分形维数随压力增加而逐渐增大,且趋近分形破碎极限。采用Hardin和Einav的方法计算相对破碎量,发现在两种计算方法下相对破碎量与压力呈幂函数关系,且幂指数相同。相对破碎量随时间增加的现象并不明显,说明在高压力下颗粒破碎主要为压缩破碎,且颗粒细化滑移填充孔隙引起的变形是造成蠕变的主要原因。  相似文献   

6.
珊瑚颗粒形状不规则是其显著区别于陆源土的一大特征。为揭示珊瑚颗粒形状对钙质粗粒土压缩性能的影响,人工挑选出不同形状(块状、枝状、棒状、片状)的珊瑚颗粒,以块状颗粒为基础,与其他3种不同形状的粗颗粒任意一种混合,控制不同颗粒形状配比制成钙质粗粒土试样,完成室内压缩试验,对比分析试验前后珊瑚颗粒的圆度、长宽比、扁平度和凹凸度等形状参数,评价颗粒形状对压缩性能的影响。结果表明:(1)粒径为10~20 mm钙质粗粒土的压缩模量是4~5. 5 MPa,回弹系数为42~53;(2)随枝状、棒状或片状颗粒掺量的增加(0、10%、20%、30%),试样压缩模量呈小幅波状变化,回弹系数呈持续减小趋势;(3)各加载区间应力-应变曲线包括应力快速增长阶段、应力-应变同步增长阶段、应变增长阶段共3个阶段和1个稳定点;(4)随枝状颗粒掺量的增加,试样的长宽比和凹凸度逐渐增加,圆度和扁平度基本无变化;因颗粒破碎的影响,试验后试样的长宽比及扁平度有所增加,圆度及凹凸度则有所减小。选择钙质粗粒土地基时,应考虑其压缩性能,避免施工初期的快速加载。  相似文献   

7.
砂土颗粒形状量化及其对力学指标的影响分析   总被引:2,自引:0,他引:2  
刘清秉  项伟  M.Budhu  崔德山 《岩土力学》2011,32(Z1):190-197
砂作为一种特殊的散体材料,其宏观物理力学性质,如密实度、剪切特性(临界状态角,剪胀角)、压缩性及颗粒破碎特征等均受到颗粒形状的影响,目前为止,对于砂粒土颗粒形状的量化工作,未到达成熟阶段。试验采用普通光学显微镜获取3种不同砂颗粒及一种相似材料(玻璃球)数字图像,利用ImageJ图形软件对其进行黑白二值化处理,获取颗粒形状轮廓边界;从3个层次定义颗粒形状参数,并利用java语言编制形状量化插件程序,计算砂粒各形状参数值,最后通过相对密度试验、直剪试验测试不同砂样的极限孔隙比、剪切强度指标。试验结果表明:整体轮廓系数、球形度、棱角度3项形状参数可作为不同砂粒形状鉴别和量化的关键参数,且与剪胀角、临界状态摩擦角均具有良好的相关性,试验提供了一种量化砂颗粒形状的有效方法,并可将得到的关键量化参数应用到宏观力学性质分析与数值模拟工作中  相似文献   

8.
筑坝堆石料由于尺寸较大,必须对其按一定比例缩尺后才能用来开展室内三轴试验。但缩尺前后颗粒形状难免会有差异,如何评价颗粒形状变化对堆石料变形特性的影响是十分重要的。引入了高精度的三维激光扫描技术对紫坪铺面板坝筑坝堆石料2.5~5、5~10、10~20 mm以及20~40 mm 4个粒径组的颗粒进行了空间形状分析,在此基础上进一步开展了单一粒组的三轴试验,研究了4个粒组的颗粒形状指标与颗粒破碎率的相关性。试验表明,紫坪铺堆石料颗粒破碎率随着其平均球度的增加而减小,并且呈近似半对数线性关系;随着围压的增加,颗粒形状对颗粒破碎的影响逐渐减弱,颗粒强度的影响逐渐增大。紫坪铺堆石料的颗粒强度随着颗粒尺寸的增加逐渐减小,但其破碎率反而随着颗粒尺寸的增加而逐渐减小,主要是因为试验所采用的紫坪铺堆石料颗粒尺寸越小时,其形状越不规则。因此,研究缩尺效应对颗粒破碎率的影响时,要同时考虑颗粒尺寸和颗粒形状。  相似文献   

9.
颗粒形状是影响砂土密实度、力学与渗流等特性的主要因素之一。傅里叶描述法是一种有效表征颗粒形状的数学方 法。基于傅里叶系数与颗粒平均半径定义傅里叶描述符Dn。采用傅里叶描述符D2,D3,D8以及D3与D8对数线性组合的简化 算法可自动生成复杂的砂土颗粒形状。颗粒形状由傅里叶描述符Dn与相位角δn序列共同控制。分析了傅里叶描述符D2、 D3、D8与颗粒几何参数间的相关性,结果表明,长宽比a与D2正相关,圆形度C 与D2,D8负相关,磨圆度R与D8强负相 关,球形度S与D2,D3之间均呈现显著负相关,规则度Re与D8呈负相关性,且在D8=0时与D3之间呈强负相关性。以显微CT 扫描南京粉砂断层序列二值图像中典型颗粒为样本,基于Pearson相关性准则,计算了重构颗粒与实际颗粒轮廓相似性,相 关系数大于0.94,表明算法具有较高的表征精度。算法可用于二维数值模拟中实际砂土颗粒的批量自动生成。  相似文献   

10.
颗粒形貌是影响珊瑚砂力学性质的重要参数,研究珊瑚砂多尺度形貌特征有助于从细观角度阐释其力学特性。基于颗粒动态图像分析技术对不同粒径范围内超过20万个珊瑚砂和陆源石英砂(包括人工破碎石英砂和天然石英砂)颗粒开展颗粒形貌扫描和对比分析,提出了适用于珊瑚砂的颗粒形状分类标准,并从颗粒形状、磨圆度和凸度3个尺度上揭示了海相珊瑚砂与陆源石英砂颗粒形貌的差异性。结果表明:(1)珊瑚砂主要由块状、片状及棒状3种类型的颗粒组成,以伸长率和扁平率为0.5作为珊瑚砂颗粒形状的划分阈值进行颗粒形状分类,该分类方法的准确率可达90%。(2)珊瑚砂中块状颗粒占比最大,且含量大于50%。随着粒径增加,块状颗粒占比增加,片状颗粒占比下降,而棒状颗粒基本维持不变;随着粒径的增加,石英砂中的块状颗粒占比高于珊瑚砂,这是由颗粒的矿物性质决定的,而与颗粒的风化破碎方式无关。(3)人工破碎石英砂的磨圆度与珊瑚砂的较为接近,且略小于天然石英砂。块状颗粒的磨圆度大于片状颗粒,更大于棒状颗粒,因此块状颗粒占比越高,集合体的磨圆度越大。(4)珊瑚砂的颗粒凸度介于0.85~1.00间,石英砂的凸度大于珊瑚砂。随着粒径的增加,珊瑚砂的凸...  相似文献   

11.
《Sedimentology》2018,65(5):1761-1776
Grain shape plays an important role in textural analysis of sedimentary grains. Textural analysis helps to determine the formation, transportation and deposition processes of sedimentary rocks. However, there is a lack of standardized methodology for quantitative characterization of grain shapes. The utility of fully automated image analysis for grain shape measurement is assessed in this paper. This research aimed to identify the most useful shape parameters for textural characterization of populations of grains and determine the relative importance of the parameters. A key aspect of this study is to determine whether, in a particular sedimentary environment, textural maturity of the samples can be ranked based on their grain shape data. Furthermore, discrimination of sedimentary depositional environments is explored on the basis of grain shape. In this study, 20 loose sediment samples from four known depositional environments (beach, aeolian, glacial and fluvial) were analysed using newly implemented automatic image analysis methods. For each sample, a set of 11 shape parameters were calculated for 200 grains. The data demonstrate a progression in textural maturity in terms of roundness, angularity, irregularity, fractal dimension, convexity, solidity and rectangularity. Furthermore, statistical analysis provides strong support for significant differences between samples grouped by environment and generates a ranking consistent with trends in maturity. Based on novel application of machine learning algorithms, angularity and fractal dimension are found to be the two most important parameters in texturally classifying a grain. The results of this study indicate that textural maturity is readily categorized using automated grain shape parameter analysis. However, it is not possible to absolutely discriminate between different depositional environments on the basis of shape parameters alone. This work opens up the possibility of detailed studies of the relationship between textural maturity and sedimentary environment, which may be more complicated than previously considered.  相似文献   

12.
Important to grain entrainment by a flowing fluid is the pivoting angle of the grain about its contact point with an underlying grain. A series of experiments has been undertaken to determine how this angle depends on grain shape (rollability and angularity), on the ratio of the size of the pivoting grain to those beneath, and on factors such as imbrication. The experiments involved gravel-sized spheres (ball-bearings and marbles), natural pebbles selected for their approximately triaxial ellipsoid shapes, and angular crushed basalt pebbles. The pivoting angles for these grains were measured on an apparatus consisting of a board which can be progressively inclined, the angle of the board being equal to the pivoting angle at the instant of grain movement. The pivoting angles of spheres showed reasonable agreement with a theoretically derived equation, showing much better agreement than in previous studies which utilized sand-sized spheres. A series of measurements with spheres ranging from sand to gravel sizes reveals that the pivoting angles decrease with increasing particle size. Our results are therefore consistent with the earlier studies limited to sand-size spheres. The cause of this size dependence is unknown since moisture and electrostatic binding can be ruled out. Similar size dependencies are also found for the ellipsoidal pebbles and angular gravel. The experiments with ellipsoidal pebbles demonstrated a strong shape dependence for the pivoting angle, being a function of the ratio of the pebble's smallest to intermediate axial diameters. This ratio controls the grain's ability to roll and pivot; with small ratios of these diameters the pebbles tended to slide out of position, whereas with ratios closer to unity (circular cross-section) true pivoting took place and the angles were smaller. Experiments with flat pebbles placed in an imbricated arrangement yielded much larger angles than when the pebbles lay in a horizontal position, the pivoting angle being increased approximately by the imbrication angle. The angular crushed gravel also required high pivoting angles, apparently due to interlocking of the grains resulting from their angularity. Other factors being equal, the measurements of pivoting angles demonstrate that the order of increasing difficulty of entrainment is spheres, ellipsoidal grains, angular grains, and imbricated grains. The results obtained here make possible the quantitative evaluation of these shape effects on grain threshold, as well as evaluation of the selective entrainment of grains from a bed of mixed sizes.  相似文献   

13.
Measured variations of pivoting angles with grain size, shape (‘reliability’ and angularity) and imbrication are employed in analyses of grain threshold to examine how these factors influence selective grain entrainment and sorting. With a bed of uniform grain sizes, as employed experimentally to establish the standard threshold curves such as that of Shields, the threshold condition depends on grain shape and fabric. The analysis demonstrates quantitatively that there should be a series of nearly-parallel threshold curves depending on grain pivoting angles. For a given grain size, the order of increasing flow strength required for entrainment is spheres, smooth ellipsoids (depending on their ‘reliability’), angular grains, and imbricated ellipsoids (depending on their imbrication angles). The relative threshold values for these different grain shapes and fabric are predicted according to their respective pivoting angles, but remain to be directly tested by actual threshold measurements. The pivoting angle of a grain also depends on the ratio of its size to those it rests upon. This dependence permits an evaluation of selective entrainment by size of grains from a bed of mixed sizes, the condition generally found in natural sediments. The pivoting model predicts systematic departures from the standard threshold curves for uniform grain sizes. Such departures have been found in recent studies of gravel threshold in rivers and offshore tidal currents. The pivoting model is compared with those threshold data with reasonable agreement. However, more controlled measurements are required for a satisfactory test of the model. It is concluded that variations in pivoting angles for grain entrainment are significant to the processes of selective sorting by grain size and shape.  相似文献   

14.
ABSTRACT A measure of grain shape is needed for incorporation in calculations of the behaviour of grain populations (for example during transport by fluids). Many shape measures have been proposed, most of them for application to single grains rather than to populations. In this paper three such shape parameters are evaluated for samples taken by size fraction from each of three parent sands. The chosen parameters are the maximum projection sphericity of Sneed & Folk (based on triaxial measurements made on the grains), the dynamic shape factor of Briggs (based on settling velocity in water), and rollability, after Winkelmolen (based on rolling behaviour in a specially mounted rotating cylinder).
It is shown that the Sneed & Folk parameter and rollability both discriminate clearly between the shape characteristics of the three sands over the size range 150-500 μm. Moreover the discrimination of the two parameters is mutually consistent. However, dynamic shape factor gives results which for sizes smaller than 300 μm are inconsistent with those of the other two methods and which do not discriminate reliably between the populations. This is inevitable because the differences between drag on spheres and on other shapes become very small at Reynolds Numbers corresponding to those which obtain in settling tests on grains smaller than 300 μm.  相似文献   

15.
16.
In this study, the chemistry and microstructure of garnet aggregates within a metamorphic vein are investigated. Garnet‐bearing veins in the Sanbagawa metamorphic belt, Japan, occur subparallel to the foliation of a host mafic schist, but some cut the foliation at low angle. Backscattered electron image and compositional mapping using EPMA and crystallographic orientation maps from electron‐backscattered diffraction (EBSD) reveal that numerous small garnet (10–100 μm diameter) coalesce to form large porphyroblasts within the vein. Individual small garnet commonly exhibits xenomorphic shape at garnet/garnet grain boundaries, whereas it is idiomorphic at garnet/quartz boundaries. EBSD microstructural analysis of the garnet porphyroblasts reveals that misorientation angles of neighbour‐pair garnet grains within the vein have a random distribution. This contrasts with previous studies that found coalescence of garnet in mica schist leads to an increased frequency of low angle misorientation boundaries by misorientation‐driven rotation. As garnet nucleated with random orientation, the difference in misorientation between the two studies is due to the difference in the extent of grain rotation. A simple kinetic model that assumes grain rotation of garnet is rate‐limited by grain boundary diffusion creep of matrix quartz, shows that (i) the substantial rotation of a fine garnet grain could occur for the conditions of the Sanbagawa metamorphism, but (ii) the rotation rate drastically decreased as garnet grains formed large clusters during growth. Therefore, the random misorientation distribution of garnet porphyroblasts in the Sanbagawa vein is interpreted as follows: (i) garnet within the vein grew so fast that substantial grain rotation did not occur through porphyroblast formation, and thus (ii) random orientations at the nucleation stage were preserved. The extent of misorientation‐driven rotation indicated by deviation from random orientation distribution may be useful to constrain the growth rate of constituent grains of porphyroblast that formed by multiple nucleation and coalescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号