首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李祥忠  刘卫国 《湖泊科学》2012,24(4):623-628
介形类壳体的氧同位素组成已成为恢复湖区古气候/古环境的有效代用指标,而其氧同位素分馏及环境意义目前还缺乏研究.为评价青海湖介形类壳体氧同位素分馏及其环境意义,在青海湖进行系统的表层沉积物和水样的采集,测定表层沉积物中的意外湖花介(Limnocythere inopinata Bird)和相应水样的氧同位素组成.结果表明:意外湖花介壳体的氧同位素组成主要受控于水体的氧同位素组成,除温度的影响外,还可能受到盐度的影响,随着盐度变化,该种壳体与水体之间的同位素分馏呈减小趋势,而两者的氧同位素组成均呈偏正趋势.青海湖意外湖花介壳体的氧同位素组成在一定程度上可能间接反映水体盐度的变化,值得进行更深入的研究.  相似文献   

2.
The loess-paleosol sequence on the Chinese Loess Plateau provides a unique archive that records climate change in East Asia in the Quaternary, yet absolute dating of the loess deposits is challenging due to the lack of directly datable materials. Fossil land snail shells, which are made from aragonite, are widely preserved in the loess deposits and have long been used to reconstruct past environmental changes. U-series dating of fossil land snail shells has the potential to provide a route for absolute dating of the loess deposits but remains largely unexplored. In this study, we present the first systematic investigation on the U-series isotope geochemistry as well as the early diagenetic imprints of fossil land snail shells (Cathaica sp.) from the Mangshan loess-paleosol sequence in Henan province, central China. Several geochemical techniques, including Raman microscopy, SEM, LA-ICPMS, LA-MC-ICPMS, solution-MC-ICPMS, and AMS 14C dating, were employed to investigate the mineralogy, chemical and isotopic compositions of both modern and fossil snail shells to micrometer level. Our results show that the fossil Cathaica sp. shells are overall characterized by a higher degree of porosity and elevated contents of organic matter compared to live-collected shells of the same species. The layers with higher porosity and organic matter content in the fossil Cathaica sp. shell are also found to be enriched in Na, Mg, Mn, Ba, and U, indicating diffusion and adsorption of these elements by specific surface binding sites of either aragonitic lattice or organic compounds of the fossil shell. Combining in-situ measurements using LA-MC-ICPMS with solution U-series determination, we further demonstrate that fossil Cathaica sp. shell is relatively homogeneous regrading both [234U/238U] and [230Th/238U] values although the distribution of U in the fossil shell is sample-specific. The comparison of different dating results suggests that the calculated apparent closed system U–Th ages are all systematically younger (∼6000 to 13,000 years) than the corresponding shell 14C ages and quartz SAR (single-aliquot regenerative-dose) ages from the Mangshan section. We suggest that the underestimation of U–Th ages of fossil Cathaica sp. shells is very likely caused by diagenetic uptake of U that started immediately after the burial of the shell and effectively ceased when the fossil shell was isolated from the pore waters due to persistent deposition of eolian dust at the Mangshan section. Our work on both modern and fossil Cathaica sp. shells thus provides detailed morphological and geochemical characterization for the diagenetic alteration of fossil snail shells and suggests that U-series dating of fossil land snail shells may provide age constraints for dust deposits in the semi-arid region although the timing of early diagenetic U-uptake by the fossil shells need to be better quantified for reliable age determination.  相似文献   

3.
A review of O, C, Sr and S isotope trends for the entire Phanerozoic shows that the present-day values of isotope signals are similar to those at the Proterozoic termination. The sharp rise in 87Sr/86Sr since 65 Ma has been attributed to an uplift and subsequent metamorphism and erosion associated with the Himalayas and Tibet. This orogenic evolution has been postulated to have influenced the global organic and inorganic carbon cycles and climate as well. A similar large-scale orogeny, the Pan-African event, also dominated the Neoproterozoic (Vendian) times, and the similarity of modern and Neoproterozoic isotope values for seawater may therefore have had a comparable tectonic cause. In this contribution, we present the results of a numerical model of the coupled C–alkalinity–S–Sr cycles suggesting that the early Paleozoic (from early Cambrian to late Devonian) evolution of Sr, O, C and S seawater isotope signals could have been the consequence of progressive oxidation of a large reduced carbon reservoir exhumed during the Pan-African orogeny. The δ18O measured in brachiopod shells is used as a forcing of the model, postulating that any change in the oxygen isotopic composition of seawater is the result of a disequilibrium in the organic carbon subcycle through the coupling of the oxygen isotopic and carbon cycles. The calculated δ13C, 87Sr/86Sr and δ34S are in good agreement with the data, as is the reasonable calculated history for atmospheric pCO2 and its relation to global climate.  相似文献   

4.
Spatio‐temporal heterogeneity in soil water content is recognized as a common phenomenon, but heterogeneity in the hydrogen and oxygen isotope composition of soil water, which can reveal processes of water cycling within soils, has not been well studied. New advances are being driven by measurement approaches allowing sampling with high density in both space and time. Using in situ soil water vapour probe techniques, combined with conventional soil and plant water vacuum distillation extraction, we monitored the hydrogen and oxygen stable isotopic composition of soil and plant waters at paired sites dominated by grasses and Gambel's oak (Quercus gambelii) within a semiarid montane ecosystem over the course of a growing season. We found that sites spaced only 20 m apart had profoundly different soil water isotopic and volumetric conditions. We document patterns of depth‐ and time‐explicit variation in soil water isotopic conditions at these sites and consider mechanisms for the observed heterogeneity. We found that soil water content and isotopic variability were damped under Q. gambelii, perhaps due in part to hydraulic redistribution of deep soil water or groundwater by Q. gambelii in these soils relative to the grass‐dominated site. We also found some support for H isotope discrimination effects during water uptake by Q. gambelii. In this ecosystem, the soil water content was higher than that at the neighbouring Grass site, and thus, 25% more water was available for transpiration by Q. gambelii compared with the Grass site. This work highlights the role of plants in governing soil water variation and demonstrates that they can also strongly influence the isotope ratios of soil water. The resulting fine‐scale heterogeneity has implications for the use of isotope tracers to study soil hydrology and evaporation and transpiration fluxes to improve understanding of water cycling through the soil–plant–atmosphere continuum.  相似文献   

5.
The isotopic composition of precipitation (D and 18O) has been widely used as an input signal in water tracer studies. Whereas much recent effort has been put into developing methodologies to improve our understanding and modelling of hydrological processes (e.g., transit‐time distributions or young water fractions), less attention has been paid to the spatio‐temporal variability of the isotopic composition of precipitation, used as input signal in these studies. Here, we investigated the uncertainty in isotope‐based hydrograph separation due to the spatio‐temporal variability of the isotopic composition of precipitation. The study was carried out in a Mediterranean headwater catchment (0.56 km2). Rainfall and throughfall samples were collected at three locations across this relatively small catchment, and stream water samples were collected at the outlet. Results showed that throughout an event, the spatial variability of the input signal had a higher impact on hydrograph separation results than its temporal variability. However, differences in isotope‐based hydrograph separation determined preevent water due to the spatio‐temporal variability were different between events and ranged between 1 and 14%. Based on catchment‐scale isoscapes, the most representative sampling location could also be identified. This study confirms that even in small headwater catchments, spatio‐temporal variability can be significant. Therefore, it is important to characterize this variability and identify the best sampling strategy to reduce the uncertainty in our understanding of catchment hydrological processes.  相似文献   

6.
In oxic oceans, most of the dissolved iron (Fe) exists as complexes with siderophore-like, strongly coordinating organic ligands. Thus, the isotope composition of the little amount of free inorganic Fe that is available for precipitation and preservation in the geological record may largely be controlled by isotope fractionation between the free and complexed iron. We have determined the equilibrium Fe isotope fractionation induced by organic ligand activity in experiments with solutions having co-existing inorganic Fe(III) species and siderophore complexes, Fe-desferrioxamine B (at pH 2). The two differently complexed Fe(III) pools were separated by addition of Na2CO3, which led to immediate precipitation of the inorganic Fe without causing significant dissociation of Fe-desferrioxamine complexes. Experiments using enriched 57Fe tracer showed that isotopic equilibration between the 57Fe-labelled inorganic species and the isotopically “normal” siderophore-bound Fe was rapid during the first few seconds and then became slower. Consequently, the data fitted poorly to first and second order reaction equations. However, with a two-stage reaction, the data fit perfectly with a first order equation for the slower stage, indicating that approximately 40% re-equilibration may take place during the separation of the two pools. To further test if the induced precipitation leads to experimental artefacts, the fractionation during precipitation of inorganic Fe was determined. Assuming a Rayleigh-type fractionation during precipitation, this experiment yielded an isotope fractionation factor of 56Fesolution-solid = 1.00027. Calculations based on these results indicate that isotopic re-equilibration is unlikely to significantly affect our determined equilibrium Fe isotope fractionation between inorganically and organically complexed Fe. To determine the equilibrium Fe isotope fractionation between inorganically and organically bound Fe(III), experiments with variable proportions of inorganic Fe were carried out at 25 °C. Irrespective of the proportion of inorganic Fe, equilibrium fractionation factors were within experimental uncertainty, yielding an average fractionation factor, Δ56FeDFOB-inorg of 0.60 ± 0.15‰. The results indicate that equilibrium Fe isotope fractionation induced by strongly coordinating organic ligands may fractionate Fe isotopes in nature. The fractionation is likely to be important in oxic, Fe(III)-bearing environments, such as soils and rivers, and may, for example, largely control the Fe isotope composition of marine Fe–Mn crusts.  相似文献   

7.
The microaerobic iron-oxidizing bacteria in circumneutral environment produce extracellular polymeric substances(EPS)with unique morphologic features,such as stalks or sheaths,which can be regarded as geobiological signatures.The Archean and early Palaeoproterozoic oceans were anoxic with high soluble Fe(II)that were suggested to have been oxidized through the metabolism of Fe(II)-oxidizing bacteria.The precursor of the ultrafine hematite in banded iron formation(BIF),e.g.,ferrihydrite,was suggested to be the mineral record of microbial Fe(II)-oxidation at that time.However,both the biological materials and primary iron minerals were prone to being altered by diagenetic or low-grade metamorphic processes.This makes it difficult to interpret the genesis of Precambrian BIFs.Here,we report experimental simulation on the effects of diagenesis or low-grade metamorphism on neutrophilic microaerobic Fe(II)-oxidizing bacteria and their biomass.Stalks,sheaths,and iron oxide spheroidal aggregates are partially preserved after the 100 MPa/300°C treatments,which indicates the mixed organic matters and iron oxides could survive the diagenetic or low-grade metamorphic processes.Some organic-mineral mixing structures carry information on microbial processes,though they appear similar to pseudomorphs of fossilized bacteria.  相似文献   

8.
Carbon isotope stratigraphy of the Late Jurassic and earliest Cretaceous was revealed from Torinosu‐type limestone, which was deposited in a shallow‐marine setting in the western Paleo‐Pacific, in Japan. Two sections were examined; the Nakanosawa section of the late Kimmeridgian to early Tithonian age (Fukushima Prefecture, Northeast Japan), and the Furuichi section of the late Kimmeridgian to early Berriasian age (Ehime Prefecture, Southwest Japan). The age‐model was established using Sr isotope ratio and fossil occurrence. The limestone samples have a low Mn/Sr ratio (mostly <0.5) and lack a distinct correlation between δ13C and δ18O, indicating a low degree of diagenetic alteration. Our composite δ13C profile from the two limestone sections shows three stratigraphic correlation points that can be correlated with the profiles of relevant ages from the Alpine Tethyan region: a large‐amplitude fluctuation (the lower upper Kimmeridgian, ~152 Ma), a positive anomaly (above the Kimmeridgian/Tithonian boundary, ~150 Ma), and a negative anomaly (the upper lower Tithonian, ~148 Ma). In addition, we found that δ13C values of the Torinosu‐type limestone are ~1‰ lower than the Tethyan values in the late Kimmeridgian. This inter‐regional difference in δ13C values is likely to have resulted from a higher productivity and/or an organic burial in the Tethyan region. The difference gradually reduces and disappears in the late Tithonian, where the Tethyan and our δ13C records show similar stable values of 1.5–2.0‰. This isotopic homogenization is probably due to changes in the continental distribution and the global ocean circulation, which propagated the 13C‐depleted signature from the larger Paleo‐Pacific to the smaller Tethys Ocean during this time.  相似文献   

9.
Yong Il  Lee  Dong Hyun  Lim 《Island Arc》2008,17(1):152-171
Abstract The Gyeongsang Basin is a non‐marine sedimentary basin formed by extensional tectonism during the Early Cretaceous in the southeastern Korean Peninsula. The sediment fill starts with the Sindong Group distributed along the western margin of the basin. It consists of three lithostratigraphic units: the Nakdong (alluvial fan), Hasandong (fluvial) and Jinju (lacustrine) formations with decreasing age. Sindong Group sandstones are classified into four petrofacies (PF) based on their detrital composition: PF‐A consists of the lower Nakdong Formation with average Q73F12R15; PF‐B the upper Nakdong and lower Hasandong formations with Q66F15R18; PF‐C the middle Hasandong to middle Jinju formations with Q49F29R22; and PF‐D the upper Jinju Formation with Q26F34R41. The variations of detrital composition influenced the diagenetic mineral assemblage in the Sindong Group sandstones. Illite and dolomite/ankerite are important diagenetic minerals in PF‐A and PF‐B, whereas calcite and chlorite are dominant diagenetic minerals in PF‐C and PF‐D. Most of the diagenetic minerals can be divided into early and late diagenetic stages of formation. Early diagenetic calcites occur mostly in PF‐C, probably controlled by arid to semiarid climatic conditions during the sandstone deposition, no early calcite being found in PF‐A and PF‐B. Late‐stage calcites are present in all Sindong Group sandstones. The calcium ions may have been derived from shale diagenesis and dissolution of early stage calcites in the Hasandong and Jinju sandstones. Illite, the only diagenetic clay mineral in PF‐A and lower PF‐B, is inferred to be a product of kaolinite transformation during deep burial, and the former presence of kaolinite is inferred from the humid paleoclimatic conditions during the deposition of the Nakdong Formation. Chlorites in PF‐C and PF‐D are interpreted to be the products of transformation of smectitic clay or of precipitation from alkaline pore water under arid to semiarid climatic conditions. The occurrence of late‐stage diagenetic minerals largely depended on the distribution of early diagenetic minerals, which was controlled initially by the sediment composition and paleoclimate.  相似文献   

10.
The use of isotopic tracers for sediment source apportionment is gaining interest with recent introduction of compound‐specific stable isotope tracers. The method relies on linear mixing of source isotopic tracers, and deconvolution of a sediment mixture initially quantifies the contribution of sources to the mixture's tracer signature. Therefore, a correction to obtain real sediment source proportions is subsequently required. As far as we are aware, all published studies to date have used total isotopic tracer content or a proxy (e.g., soil carbon content) for this post‐unmixing correction. However, as the relationship between the isotopic tracer mixture and the source mixture is different for each isotopic tracer, post‐unmixing corrections cannot be carried out with one single factor. This contribution presents an isotopic tracer model structure—the concentration‐dependent isotope mixing model (CD‐IMM)—to overcome this limitation. Herein, we aim to clarify why the “conventional” approach to converting isotopic tracer proportions to source proportions using a single factor is wrong. In an initial mathematical assessment, error incurred by not using CD‐IMM (NCD‐IMM) in unmixing two sources with two isotopic tracers showed a complex relation as a function of relative tracer contents. Next, three artificial mixtures with different proportions of three soil sources were prepared and deconvoluted using 13C of fatty acids using CD‐IMM and NCD‐IMM. Using NCD‐IMM affected both accuracy (mean average error increased up to a threefold compared with the CD‐IMM output) and precision (interquartile range was up to 2.5 times larger). Finally, as an illustrative example, the proportional source contribution reported in a published study was recalculated using CD‐IMM. This resulted in changes in estimated source proportions and associated uncertainties. Content of isotopic tracers is seldom reported in published work concerning use of isotopic tracers for sediment source partitioning. The magnitude of errors made by miscalculation in former studies is therefore difficult to assess. With this contribution, we hope the community will acknowledge the limitations of prior approaches and use a CD‐IMM in future studies.  相似文献   

11.
The oxygen isotopic composition of modern soil carbonate is well correlated with the isotopic composition of local meteoric water. The carbon isotopic cycle for CO2 in soils can be described in terms of the proportion of biomass using the C4 photosynthetic pathway and the CO2 respiration rate of the soil; at low soil respiration rates significant atmospheric CO2 mixing can occur. In general, the carbon isotopic composition of soil carbonate is related to the proportion of C4 biomass present in soil, but soils that freeze to the depth of carbonate formation often have a significant atmospheric component. This suggests that freezing of the soil solution should be considered as another important mechanism for soil carbonate formation. Because of these relationships, the isotopic composition of soil carbonate may be a paleoclimatic and paleoecologic indicator in cases in which diagenetic alteration has not occurred.  相似文献   

12.
Abstract Interstitial pore waters from Ocean Drilling Program Site 1150, where ~1200 m of sub‐sea‐floor sediment from the upper Japan Trench forearc were recovered, were analyzed for element concentrations and Cl, Sr and B isotopes. Although chlorinity showed profound down‐hole freshening to values as low as ~310 mm (0.55 × seawater) in the deeper part of the claystone‐dominated succession, both Sr and B concentrations showed an overall increase. Sr reached concentrations of up to >250 µm (~3.00 × seawater), whereas B‐enrichment was even stronger (3920 µm; i.e. 9.30 × seawater). The strong variations in concentration correspond to fractionation reactions in the deep, tectonically deformed part of the forearc. The heavily fractured portion of Site 1150 (from ~700 m to the total depth of the hole) has two shear zones that very likely act as conduits that expel deep‐seated fluids to the sea floor. These fluids not only showed the strongest freshening of Cl, but were also characterized by low δ37Cl measurements (down to ?1.1‰), the heaviest δ11B measurements (~40–46‰) and the least radiogenic 87Sr/ 86Sr measurements. The profound isotope anomalies together with the excursions in element concentrations suggest that diagenetic processes operate at that depth. These include clay mineral diagenesis, alteration of tephra from the Japan and Izu Arcs, and possibly transformation of biogenic silica from abundant diatoms. Given the strong enrichment of some mobile elements (e.g. Sr, B, Li), enhanced fluid flow through permeable penetrative faults through the forearc (like the shear zones at Site 1150) could be an efficient mechanism for back‐flux of those elements from the deep forearc into the hydrosphere.  相似文献   

13.
Hydrological processes of lakes in the Tibetan Plateau are an important indicator of climate change. Due to the high elevation, inaccessibility and limited availability of historical observations, water budget evaluation of typical lake basins has been inadequate. In this study, stable isotopes are used to trace the multiple water sources contributing to two adjacent lakes on the north slope of the Himalayas, Gongmo‐tso and Drem‐tso. The two lakes have nearly the same elevation, lake area and climatic condition. However, the isotopic composition of the two lakes presents significant differences. Qualitative observations attribute the differences to hydrological discrepancies: Gongmo‐tso is a through‐flow lake, whereas Drem‐tso is a terminal lake. Quantitative analyses, including water and isotope mass balance modelling, clarify the fluxes and isotopic compositions among the various hydrological elements. The isotopic composition of input water, calculated as the summation of rainfall and upstream runoff, is estimated using the local meteoric water line (LMWL) combined with the time series of lake water isotope values. The isotopic composition of evaporation is calculated with a linear resistance model using local meteorological data. The results show that Drem‐tso is a closed lake in a hydrological steady state with relatively more enriched lake water isotope values resulting mainly from evaporation. In contrast, through‐flow accounts for more than 88% of the water input into Gongmo‐tso. The large amount of upstream runoff with lower isotopic composition and enrichment due to evaporation are the major contributions to the observed lake water isotope values. Isotopic modelling of the two neighbouring lakes is effective for isotopic and hydrological research in this region with limited in situ observations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Coexisting fine-grained (0.1–20 μm) authigenic silicate minerals separated from altered tuffs in Miocene and Plio-Pleistocene lacustrine deposits were characterized petrographically and using X-ray powder diffraction. The authigenic minerals are dominated by clinoptilolite, erionite, phillipsite, K-feldspar, silica, calcite, smectite, and randomly interstratified illite/smectite. Minor accessories of opal-CT, cristobalite, and barite are present with the major alteration minerals. Authigenic minerals from altered tuffs were dated using the K/Ar method to evaluate the utility of these minerals for determining the time of alteration in low-temperature diagenetic environments. The eruption ages of some of these zeolite-rich tuffs were determined using the 40Ar/39Ar method on single sanidine and plagioclase minerals. The K/Ar isotopic ages of the fine-grained K-feldspar show minimal variation compared with results from the clinoptilolite separates. The isotopic ages from the authigenic K-feldspar (15-13.8 Ma) and some of the zeolites (16.-6.7 Ma) are similar to the eruption ages of the tuffs and indicate early alteration. Despite their open-framework structure, zeolites apparently can retain part or all of their radiogenic argon under favorable conditions (e.g., saturated environment). How much of the radiogenic argon is retained is estimated from the isotopic ages of other coexisting secondary minerals that are commonly dated by the K/Ar method. Although zeolite isotopic ages should be interpreted with caution, they may be useful to constrain temporal relations of low-temperature diagenetic processes when used in conjunction with other dateable minerals.  相似文献   

15.
The study reports and discusses the differences in δ13C and δ18O values of shells between several species of freshwater snails. Shells were derived from sediment samples collected from depths of 0.5, 1, 2 and 3 m along transects in two shallow eutrophic lakes located in mid-western Poland. Mean δ13C values of the shells ranged between −7.5 and −3.8‰ in Lake Jarosławieckie and between −8.1 and −5.2‰ in Lake Rosnowskie Duże, whereas mean δ18O values ranged between −2.2 and −0.2‰ and between −2.2 and 0.4‰ respectively in the studied lakes. A similar order of species in terms of shell isotope values, from least to most 13C and 18O-depleted was observed in both lakes and seems to indicate constancy of the factors controlling the stable isotope compositions of snail shells. We postulate that the nearly 4‰ difference in the mean carbon stable isotope values between the species was primarily controlled by the amount of metabolic carbon incorporated into the shells and the δ13C values of the snail food. Different growth cessation temperatures and microhabitats of the species studied result in temporally and spatially varied DIC δ13C values, water δ18O values and water temperature of shell precipitation, and may thus differentiate the δ13C and δ18O values of shells. The range of δ13C and δ18O values of individual shells from a sediment sample (mean 2.35 and 2.15‰, respectively) is interpreted as reflecting an intraspecific variability of isotope compositions in shells from a population and changes of the ambient conditions during the accumulation of the sediment layer. The species-specificity and intraspecific variability in C and O isotopic compositions of shells allow concluding that in palaeolimnological studies, stable isotope analyses should be performed on a set of mono-specific shells representing mean isotope compositions of the species for the interval studied rather than single shells or multispecific bulk shell material.  相似文献   

16.
Belemnite guards of Cretaceous and Jurassic age were found to contain varying amounts of quartz deposited both on the external surface and inside the rostrum. The oxygen isotopic composition of coexisting carbonate, quartz and phosphate from the same rostrum was measured according to well-established techniques. None of these compounds showed isotopic values in equilibrium with one another. Assuming δ18O values of the diagenetic water within the range of meteoric waters, the δ18O(SiO2) yield temperatures in agreement with the apparent secondary origin of this phase. The δ18O(CO32−) range, with a certain continuity, between −10.8 and +0.97 PDB-1 with most of the intermediate values being within the range of the carbonate isotopic values of Mesozoic fossils. The most positive isotopic results obtained from phosphate are close to +23/+24‰ (V-SMOW). They can hardly be related to a secondary origin of the phosphate, or to the presence of diagenetic effects, since these results are among the most positive ever measured on phosphate. As far as we know there is no widespread diagenetic process determining an 18O enrichment of phosphate. The very low concentration of phosphate did not allow the determination of its mineralogical composition. All the available δ18O(PO43−) values from belemnite and non-belemnite fossils of marine origin of Tertiary and Mesozoic age are reported along with the newly measured belemnites. The following conclusions may be drawn from the data reported: (1) the pristine oxygen isotope composition of fossil marine organisms (either carbonate or phosphate) may easily undergo fairly large changes because of oxygen isotope exchange processes with diagenetic water; this process is apparent even in the case of geologically recent fossils; (2) the δ18O(PO43−) of belemnite rostra seems to be, at least in the case of the most positive results, in isotopic equilibrium with environmental water because of the similarity between the results from Cretaceous belemnites and the results from Cretaceous and Lower Tertiary pelecypods and fish teeth; 3) if so, the only feasible interpretation that can be suggested for the 18O enriched data is the possibility of a relatively large variation of the oxygen isotopic composition of ocean paleowater from Jurassic to recent time.  相似文献   

17.
A yearly cycle of carbon and oxygen isotope composition of shells of the Israeli land snailXeropicta vestalis is presented. The18O/16O values indicate that the snails use water from the land-air boundary zone. The18O/16O ratio of the shells is in isotopic equilibrium with the water condensate from the vapour during the winter months. During the summer months a contribution to the above water from soil water migrating upwards due to evaporation is noticeable. The δ13C values indicate that as in marine molluscs, the carbon isotopic composition in land snails is controlled mainly by the aqueous carbonate compound which is in equilibrium with the land-air boundary CO2.  相似文献   

18.
We examined rainfall anomalies associated with the El Niño–Southern Oscillation (ENSO) in northern Sarawak, Malaysia, using the oxygen isotopic composition of rainfall. Two precipitation‐sampling campaigns were conducted for isotope analysis: (a) at the Lambir Hill National Park (4.2° N, 114.0° E) from July 2004 to October 2006 and (b) at the Gunung Mulu National Park (3.9° N, 114.8° E) from January 2006 to July 2008. The records from these campaigns were merged with a previously published rainfall isotope dataset from Gunung Mulu site to create a 7‐year‐long record of the oxygen isotopic composition of Sarawak rainfall. The record exhibits clear intraseasonal variations (ISVs) with periods ranging from 10 to 70 days. The ISVs of 10‐ to 90‐day band‐pass filtered oxygen isotopic composition are linked to the synoptic‐scale precipitation anomalies over the southern South China Sea (SCS). The lead–lag correlation map of precipitation with the filtered oxygen isotope anomalies shows that an anomalous wet condition responsible for the decrease in oxygen isotopic composition appears over the SCS in association with the passage of north‐eastward propagation of the boreal summer intraseasonal oscillation (BSISO) in the summer monsoon season. The anomalous wet condition in spring is connected with eastward‐propagating Madden–Julian oscillation (MJO), whereas the sustained wet condition in winter is responsible for the occurrence of the Borneo vortex (BV) over the SCS. ENSO modulates the frequency of these synoptic conditions on a seasonal and longer time scale, showing a strong correlation between the seasonal isotopic anomalies and the Southern Oscillation index. We therefore discern, from the significant correlation between the isotope anomalies and area‐averaged Sarawak rainfall anomalies (R = ?0.65, p < 0.01), that ENSO‐related precipitation anomalies are linked to the seasonal modulation of the BSISO and MJO activity and BV genesis.  相似文献   

19.
B. Abou Zakhem  R. Hafez 《水文研究》2010,24(18):2641-2654
The chemical and isotopic composition of monthly composite rain samples collected at 13 meteoric stations in Syria during two hydrological cycles from 1991 to 1993 have been measured. The chemical analysis of the samples revealed at a number of stations pollution due to industry and sand storms. The temporal and spatial variation of the isotopic composition has been found to be comparable with one of the neighbouring countries such as Jordan and others. The average weighted oxygen‐18 and deuterium values are − 7·5 and − 39·11‰, respectively, and the deuterium excess is 21‰ . The individual isotope values can be divided into two groups. One group is represented by winter precipitation and fits closely the Mediterranean Meteorological Water Line (MMWL). Thus, for winter precipitation, condensation of Mediterranean water vapour appears to be the dominating isotope fractionation process. The other group represents spring precipitation and is spread along an evaporation line below the MMWL, thus indicating the influence of sub‐cloud evaporation. The d‐excess has been found to be lower in the north of Syria (19·9‰ at Tartous, 18·1‰ at Jarablous) than in the south of the country (23·4‰ at Sweida, 24·1‰ at Izra) where Mediterranean air mass dominates. The d‐excess of precipitation in neighbouring countries is also close to the average value of the eastern Mediterranean basin of 22‰ , e.g. for Jordan the value is 23‰ , which signifies that Mediterranean water vapour is, for all these countries, the dominant source of precipitation. The tritium content of precipitation was found to increase with distance from the coast (5·3 TU at coastal station Tartous, 8·8 TU at continental station Palmyra). Low tritium content and high d‐excess at coastal stations clearly indicate a Mediterranean air moisture source. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Organic matter (OM) such as organic nitrogen plays a substantial role in the global biogeochemical cycling of bio‐reactive components—amino acids (AA) in aquatic environments. Spatial and temporal variations in source, diagenesis, and fate of organic nitrogen such as AA in sediments of small tropical rivers and the role of oxbow/meandering loops under changing climatic conditions are poorly investigated. This study assessed the spatial and seasonal variations in OM composition, source, and diagenesis of a tropical small mountainous river—Netravati River, India, for 1 year. Water samples were determined for suspended particulate matter, and surface sediments were examined for bulk parameters, surface area (SA), and the L‐ and D‐enantiomers of AA. The L‐ and D‐enantiomers of AA displayed subtle seasonal variations in composition and depicted varying degrees of diagenesis. The concentration of D‐enantiomer of AA was high and showed substantial contributions from bacteria, terrestrial source, and in situ production. The D‐arginine was the most abundant D‐enantiomer of AA in the study area, possibly due to extracellular secretion by bacterial species and adsorption onto sediments, and thus, it was protected from degradation. Degradation index was more negative at the oxbow and meandering loop stations during the dry season suggesting that local geomorphologic settings steer the diagenesis of OM within the river. A negative relationship between gamma‐aminobutyric acid and organic carbon:surface area (OC:SA) ratio and a positive correlation between tyrosine and OC:SA ratio suggested accelerated loss of OM. Furthermore, the concentrations of most bulk parameters were higher in the lower reaches during monsoon and premonsoon seasons. Taken together, changes in seasons have an operational control in distinguishing the composition, source, and diagenesis of spatial OM distribution. Moreover, oxbows and river meandering loops influence the diagenetic processes in small tropical river systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号