首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This paper deals with the existence and stability of the non-collinear libration points in the restricted three-body problem when both the primaries are ellipsoid with equal mass and identical in shape. We have determined the equations of motion of the infinitesimal mass which involves elliptic integrals and then we have investigated the existence and stability of the non-collinear libration points. This is observed that the non-collinear libration points exist only in the interval 52°<φ<90° and form an isosceles triangle with the primaries. Further we observed that the non collinear libration points are unstable in 52°<φ<90°.  相似文献   

3.
This paper studies the existence and stability of non-collinear equilibrium points in the elliptic restricted four body problem with bigger primary as a source of radiation and other two primaries having equal masses as oblate spheroid. In the elliptic restricted four body problem, three of the bodies are moving in elliptical orbit around their common centre of mass fixed at the origin of the coordinate system, while the fourth one is infinitesimal. Three pairs of non-collinear points are obtained symmetric with respect to x-axis. We found the equilibrium points are stable in linear sense. We also investigate the pulsating zero velocity surfaces and basin of attraction for varying value of oblateness coefficient and radiation pressure parameter.  相似文献   

4.
The non-linear stability of the triangular libration point L4 of the restricted three-body problem is studied under the presence of third- and fourth-order resonances, when the more massive primary is a triaxial rigid body and source of radiation. In this study, Markeev's theorems are applied with the help of Moser's theorem. It is found that the stability of the triangular libration point is unstable in the third-order resonance case and in the fourth-order resonance case, this is stable or unstable depending on A1 and A2, and a source of radiation parameter α, where A1, A2 depend upon the lengths of the semi-axes of the triaxial rigid body.  相似文献   

5.
We have examined the effects of oblateness up to J 4 of the less massive primary and gravitational potential from a circum-binary belt on the linear stability of triangular equilibrium points in the circular restricted three-body problem, when the more massive primary emits electromagnetic radiation impinging on the other bodies of the system. Using analytical and numerical methods, we have found the triangular equilibrium points and examined their linear stability. The triangular equilibrium points move towards the line joining the primaries in the presence of any of these perturbations, except in the presence of oblateness up to J 4 where the points move away from the line joining the primaries. It is observed that the triangular points are stable for 0 < μ < μ c and unstable for \(\mu_{\mathrm{c}} \le \mu \le \frac {1}{2},\) where μ c is the critical mass ratio affected by the oblateness up to J 4 of the less massive primary, electromagnetic radiation of the more massive primary and potential from the belt, all of which have destabilizing tendencies, except the coefficient J4 and the potential from the belt. A practical application of this model could be the study of motion of a dust particle near a radiating star and an oblate body surrounded by a belt.  相似文献   

6.
The existence and linear stability of the planar equilibrium points for photogravitational elliptical restricted three body problem is investigated in this paper. Assuming that the primaries, one of which is radiating are rotating in an elliptical orbit around their common center of mass. The effect of the radiation pressure, forces due to stellar wind and Poynting–Robertson drag on the dust particles are considered. The location of the five equilibrium points are found using analytical methods. It is observed that the collinear equilibrium points L1, L2 and L3 do not lie on the line joining the primaries but are shifted along the y-coordinate. The instability of the libration points due to the presence of the drag forces is demonstrated by Lyapunov’s first method of stability.  相似文献   

7.
This paper deals with the existence of libration points and their linear stability when the more massive primary is radiating and the smaller is an oblate spheroid. Our study includes the effects of oblateness of $\bar{J}_{2i}$ (i=1,2) with respect to the smaller primary in the restricted three-body problem. Under combining the perturbed forces that were mentioned before, the collinear points remain unstable and the triangular points are stable for 0<μ<μ c , and unstable in the range $\mu_{c} \le\mu\le\frac{1}{2}$ , where $\mu_{c} \in(0,\frac{1}{2})$ , it is also observed that for these points the range of stability will decrease. The relations for periodic orbits around five libration points with their semimajor, semiminor axes, eccentricities, the frequencies of orbits and periods are found, furthermore for the orbits around the triangular points the orientation and the coefficients of long and short periodic terms also are found in the range 0<μ<μ c .  相似文献   

8.
This paper deals with the existence and stability of libration points in linear sense in the central-body square configuration of restricted six-body problem. It is found that there exist twelve libration points, four collinear and eight non-collinear. All libration points lie on the concentric circles C1, C2 and C3 centered at origin. The libration points L1,3,5,7 lie on circle C1, L9,10,11,12 on C2 and L2,4,6,8 on C3. This is also observed that the eight libration points are on the axes and four are off the axes, i.e., L1,2,3,4 are on x-axis, L5,6,7,8 on y-axis and rest are off the axes. The libration points on circles C1 and C3 are unstable for all values of mass parameter µ while the libration points on circle C2 are stable for the critical mass parameter µc = 0.00910065.  相似文献   

9.
The equilibrium points and their linear stability has been discussed in the generalized photogravitational Chermnykh’s problem. The bigger primary is being considered as a source of radiation and small primary as an oblate spheroid. The effect of radiation pressure has been discussed numerically. The collinear points are linearly unstable and triangular points are stable in the sense of Lyapunov stability provided μ<μ Routh =0.0385201. The effect of gravitational potential from the belt is also examined. The mathematical properties of this system are different from the classical restricted three body problem.  相似文献   

10.
This paper deals with the existence and the stability of the libration points in the restricted three-body problem when the smaller primary is an ellipsoid. We have determined the equations of motion of the infinitesimal mass which involves elliptic integrals and then we have investigated the collinear and non collinear libration points and their stability. This is observed that there exist five collinear libration points and the non collinear libration points are lying on the arc of the unit circle whose centre is the bigger primary. Further observed that the libration points either collinear or non-collinear all are unstable.  相似文献   

11.
This paper studies the stability of Triangular Lagrangian points in the model of elliptical restricted three body problem, under the assumption that both the primaries are radiating. The model proposed is applicable to the well known binary systems Achird, Luyten, αCen AB, Kruger-60, Xi-Bootis. Conditional stability of the motion around the triangular points exists for 0≤μμ ?, where μ is the mass ratio. The method of averaging due to Grebenikov has been exploited throughout the analysis of stability of the system. The critical mass ratio depends on the combined effects of radiation of both the primaries and eccentricity of this orbit. It is found by adopting the simulation technique that the range of stability decreases as the radiation pressure parameter increases.  相似文献   

12.
We consider the motion of a test particle around a triaxial primary and an oblate companion orbiting each other in elliptic orbits about their common barycenter in the neighborhood of triangular libration points. The positions and stability of these points are influenced by the triaxiality and oblateness of the primary and secondary, and by the semi-major axis and eccentricity of the orbits. The triangular points are stable for 0<μ<μ c ; where μ is the mass ratio (μ≤1/2) and μ c is the critical mass value influenced by the eccentricity, oblateness, semi major axis and triaxiality factors. The size of the region of stability increases with decreasing values of triaxiality and oblateness. An application of the results obtain to double neutron star binaries results show that the positions and stability of the triangular points of PSR J1518+4904, PSR B1534+12, PSR B1914+16 and PSR B2127+11c are affected by the parameters in the systems’ dynamics.  相似文献   

13.
In this paper, we extend the basic model of the restricted four-body problem introducing two bigger dominant primaries m 1 and m 2 as oblate spheroids when masses of the two primary bodies (m 2 and m 3) are equal. The aim of this study is to investigate the use of zero velocity surfaces and the Poincaré surfaces of section to determine the possible allowed boundary regions and the stability orbit of the equilibrium points. According to different values of Jacobi constant C, we can determine boundary region where the particle can move in possible permitted zones. The stability regions of the equilibrium points expanded due to presence of oblateness coefficient and various values of C, whereas for certain range of t (100≤t≤200), orbits form a shape of cote’s spiral. For different values of oblateness parameters A 1 (0<A 1<1) and A 2 (0<A 2<1), we obtain two collinear and six non-collinear equilibrium points. The non-collinear equilibrium points are stable when the mass parameter μ lies in the interval (0.0190637,0.647603). However, basins of attraction are constructed with the help of Newton Raphson method to demonstrate the convergence as well as divergence region of the equilibrium points. The nature of basins of attraction of the equilibrium points are less effected in presence and absence of oblateness coefficients A 1 and A 2 respectively in the proposed model.  相似文献   

14.
We study numerically the photogravitational version of the problem of four bodies, where an infinitesimal particle is moving under the Newtonian gravitational attraction of three bodies which are finite, moving in circles around their center of mass fixed at the origin of the coordinate system, according to the solution of Lagrange where they are always at the vertices of an equilateral triangle. The fourth body does not affect the motion of the three bodies (primaries). We consider that the primary body m 1 is dominant and is a source of radiation while the other two small primaries m 2 and m 3 are equal. In this case (photogravitational) we examine the linear stability of the Lagrange triangle solution. The allowed regions of motion as determined by the zero-velocity surface and corresponding equipotential curves, as well as the positions of the equilibrium points on the orbital plane are given. The existence and the number of the collinear and the non-collinear equilibrium points of the problem depends on the mass parameters of the primaries and the radiation factor q 1. Critical masses m 3 and radiation q 1 associated with the existence and the number of the equilibrium points are given. The stability of the relative equilibrium solutions in all cases are also studied. In the last section we investigate the existence and location of the out of orbital plane equilibrium points of the problem. We found that such critical points exist. These points lie in the (x,z) plane in symmetrical positions with respect to (x,y) plane. The stability of these points are also examined.  相似文献   

15.
The stability of triangular equilibrium points in the framework of the circular restricted three-body problem (CR3BP) is investigated for a test particle of infinitesimal mass in the vicinity of two massive bodies (primaries), when the bigger primary is a source of radiation and the smaller one is a triaxial rigid body with one of the axes as the axis of symmetry and its equatorial plane coinciding with the plane of motion, under the Poynting-Robertson (P-R) drag effect as a result of the radiating primary. It is found that the involved parameters influence the position of triangular points and their linear stability. It is noted that these points are unstable in the presence of Poynting-Robertson drag effect and conditionally stable in the absence of it.  相似文献   

16.
In this paper we have examined the stability of triangular libration points in the restricted problem of three bodies when the bigger primary is an oblate spheroid. Here we followed the time limit and computational process of Tuckness (Celest. Mech. Dyn. Mech. 61, 1–19, 1995) on the stability criteria given by McKenzie and Szebehely (Celest. Mech. 23, 223–229, 1981). In this study it was found that in comparison to other studies the value of the critical mass μ c has been reduced due to oblateness of the bigger primary, i.e. the range of stability of the equilateral triangular libration points reduced with the increase of the oblateness parameter I and hence the order of commensurability was increased.  相似文献   

17.
The location and the stability in the linear sense of the libration points in the restricted problem have been studied when there are perturbations in the potentials between the bodies. It is seen that if the perturbing functions satisfy certain conditions, there are five libration points, two triangular and three collinear. It is further observed that the collinear points are unstable and for the triangular points, the range of stability increases or decreases depending upon whetherP> or <0 wherep depends upon the perturbing functions. The theory is verified in the following four cases:
  1. There are no perturbations in the potentials (classical problem).
  2. Only the bigger primary is an oblate spheroid whose axis of symmetry is perpendicular to the plane of relative motion (circular) of the primaries.
  3. Both the primaries are oblate spheroids whose axes of symmetry are perpendicular to the plane of relative motion (circular) of the primaries.
  4. The primaries are spherical in shape and the bigger is a source of radiation.
  相似文献   

18.
The present work deals with the recently introduced restricted six body-problem with square configuration. We have computed and verified the position of libration points with the help of Newton-Raphson method. It is observed that the total number of libration points are either twelve or twenty depends upon the mass parameter μ ∈ (0, 0.25). The multivariate form of Newton-Raphson scheme is used to discuss the basins of attraction. Different aspects of the basins of attraction are investigated and explained in detail. The complex combination of the different basins is found along the boundaries. The concept of basin entropy is used to unveil the nature of the boundaries. For μ ∈ (0.215, 0.238), the basins of attraction are unpredictable throughout. It is observed that for all values of the mass parameter μ, the basin boundaries are highly unpredictable. Moreover, we have investigated the presence of Wada basin boundary in the basin of attraction.  相似文献   

19.
The non-linear stability of the triangular libration points of the restricted three-body problem is studied under the presence of third and fourth order resonance's, when the more massive primary is an oblate spheroid. In this study Markeev's theorem are utilised with the help of KAM theorem. It is found that the stability of the triangular libration points are unstable in the third order resonance case and stable in the fourth order resonance case, for all the values of oblateness factor A1. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
This paper examines the motion of a test particle in the vicinity of the triangular points L 4,5 by considering the more massive primary as a source of radiation in the framework of the relativistic restricted three-body problem (R3BP). It is found that the position and stability of the triangular point are affected by both the relativistic factor and radiation pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号