首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper firstly analyses the hydrologic characteristics of the major rivers around the Taklimakan Desert with the method of mathematical statistics. Secondly, structure features of annual runoff series of these rivers are discussed both in time domain and in frequency domain with the method of time series analysis. From the analysis, it can be learnt that the nature quantity of water in the rivers in this area is generally steady and the annual runoff series of rivers is mostly independent stationary random sequence. Therefore, this paper can provide scientific basis for runoff variation law research and reasonal exploitation and utilization of water resource in this area.  相似文献   

2.
This paper applied an integrated method combining grey relation analysis, wavelet analysis and statistical analysis to study climate change and its effects on runoff of the Kaidu River at multi-time scales. Maj or findings are as follows: 1) Climatic factors were ranked in the order of importance to annual runoff as average annual temperature, average temperature in autumn, average temperature in winter, annual precipitation, precipitation in flood season, av- erage temperature in summer, and average temperature in spring. The average annual temperature and annual precipitation were selected as the two representative factors that impact the annual runoff. 2) From the 32-year time scale, the annual runoff and the average annual temperature presented a significantly rising trend, whereas the annual precipitation showed little increase over the period of 1957-2002. By changing the time scale from 32-year to 4-year, we observed nonlinear trends with increasingly obvious oscillations for annual runoff, average annual temperature, and annual precipitation. 3) The changes of the runoff and the regional climate are closely related, indicating that the runoff change is the result of the regional climate changes. With time scales ranging from 32-year, 16-year, 8-year and to 4-year, there are highly significant linear correlations between the annual runoff and the average annual temperature and the annual precipitation.  相似文献   

3.
针对川中丘陵区紫色土坡耕地严重水土流失,选取典型代表李子溪流域为研究区,构建了其SWAT的模型数据库,包括地形、土壤、气象和土地利用数据库。并利用赵家祠水文站1970-1979年的实测径流和泥沙资料,对该流域的SWAT模型参数进行率定再采用1980-1986年的实测资料,对模型的适用性进行验证,同时用相对误差Re和Nash确定性系数Ens评价模拟效果。结果显示,径流和泥沙模拟相对误差均在±15%范围以内,Nash确定性系数均大于等于0.70,说明SWAT模型对李子溪流域年、月径流和年泥沙量的模拟精度较高。同时模拟值与实测值和降雨量的变化趋于一致。可见,用SWAT模型模拟和预测雨量较为丰沛、土壤侵蚀较严重的紫色丘陵地区的产流产沙是实用、可行的。  相似文献   

4.
I.IN~crIOXLocatedinthecoddlepatofTallmBasin,withanareaof33.76X104klnZ,theTaldirnakan~isinthehinterlandofEurasia.Blockedbythehighmountainsaround,vapourofoceancanhardlyreachthedesert.APartfromthis,asthedeSertisinthesinkingcompensationareaoftheascensionalaircurrentaamstheQinghal-XIZangPlateau,itSprecipitationisrareandtheevaporationcapacityisintensealltheyearround.Allthesecontributetotheformationsofthetypifydrydesertclimate.Theacidityindexofthedesertandthearoundregionisashighasmorethan50,w…  相似文献   

5.
Anthropogenic activities have become more and more important in characterizing the landscape, but their impacts are still restricted by natural environments. This paper discusses the interactions of anthropogenic activity, vegetation activity and topography through describing the spatial distribution of land cover and vegetation activity (represented by Normalized Difference Vegetation Index, NDVI) along topographic gradient in a mountainous area of southwestern China. Our results indicate that the existing landscape pattern is controlled by anthropogenic activities as well as topographic factors. Intensive anthropogenic activities mainly occur in areas with relatively low elevation, gentle and concave slopes, as these areas are easy and convenient to attain for human. Because of the destruction by human, some land cover types (mainly grassland and shrub) are only found in relatively harsher environments. This study also finds that topographic wetness index (W) used in other places only reflects runoff generation capacity, but not indicate the real spatial pattern of soil water content in this area. The relationships between NDVI and W, and NDVI and length slope factor (LSF) show that runoff and erosion have complex effects on vegetation activity. Greater values of W and LSF will lead to stronger capacity to produce runoff and transport sediment, and thereby increase soil water content and soil deposition, whereas beyond a certain threshold runoff and erosion are so strong that they would destruct vegetation growth. This study provides information needed to successfully restore native vegetation, improve land management, and promote sustainable development in mountainous areas, especially for developing regions.  相似文献   

6.
Based on annual runoff data collected from several hydrological stations in the Nen River Basin from 1956 to 2004,the cumulative filter method,Mann-Kendall method and Morlet wavelet analysis were used to analyze variations in the characteristics and factors influencing runoff.Specifically,the general characteristics list as:The distribution of runoff was found to be uneven within a year,and the annual variation showed an overall decreasing trend.The abrupt change points of runoff were found to be in the early 1960s,middle 1980s and late 1990s.Multiple time scales analysis revealed three time-scale cycles,a long-term cycle of about 20-35 years with a scale center of 25 years,another cycle of about 8-15 years with a scale center of 11 years and a short-term cycle of about 5 years.Based on the Morlet wavelet transform coefficients figure of the 25-year time scale,it is preliminarily estimated that the Nen River Basin will enter a high flow period in 2013.The results obtained using various methods were consistent with each other.The physical causes of the results were also analyzed to confirm their accuracy.  相似文献   

7.
The water quality of lakes can be degraded by excessive riverine nutrients.Riverine water quality generally varies depending on region and season because of the spatiotemporal variations in natural factors and anthropogenic activities.Monthly water quality measurements of eight water quality variables were analyzed for two years at 16 sites of the Tianmuhu watershed.The variables were examined using hierarchical cluster analysis(HCA) and factor analysis/principal component analysis(FA/PCA) to reveal the spatiotemporal variations in riverine nutrients and to identify their potential sources.HCA revealed three geographical groups and three periods.Two drainages comprising towns and large villages were the most polluted, six drainages comprising widely distributed tea plantations and orchards were moderately polluted, and eight drainages without the factors were the least polluted.The river was most polluted in June when the first heavy rain(daily rainfall 50 mm) occurs after fertilization and the number of rainy days is most(monthly number of rainy days 20 days).Moderate pollution was observed from October to May, during which morethan 60% of the total nitrogen fertilizer and all of the phosphorus fertilizer are applied to the cropland, the total manure is applied to tea plantations and orchards, and a monthly rainfall ranging from 0 mm to 164 mm occurs.The remaining months were characterized by frequent raining(i.e., number of rainy days per month ranged from 5 to 24) and little use of fertilizers, and were thus least polluted.FA/PCA identified that the greatest pollution sources were the runoff from tea plantations and orchards,domestic pollution and the surface runoff from towns and villages, and rural sewage, which had extremely high contributions of riverine nitrogen, phosphorus,and chemical oxygen demand, respectively.The tea plantations and orchards promoted by the agricultural comprehensive development(ACD) were not environmentally friendly.Riverine nitrogen is a major water pollution parameter in hilly watersheds affected by ACD, and this parameter would not be reduced unless its loss load through the runoff from tea plantations and orchards is effectively controlled.  相似文献   

8.
Debris flows often occur in landslide deposits during heavy rainstorms. Debris flows are initiated by surface water runoff and unsaturated seepage under rainfall conditions. A physical model based on an infinitely long, uniform and void-rich sediment layer was applied to analyze the triggering of debris-flow introduced in landslide deposits. To determine the initiation condition for rainfall-induced debris flows, we conducted a surface water runoff and saturated-unsaturated seepage numerical program to model rainfall infiltration and runoff on a slope. This program was combined with physical modeling and stability analysis to make certain the initiation condition for rainfall-introduced debris flows. Taking the landslide deposits at Wenjiagou gully as an example, the initiation conditions for debris flow were computed. The results show that increase height of surface-water runoff and the decrease of saturated sediment shear strength of are the main reasons for triggering debris-flows under heavy rainfall conditions. The debris-flow triggering is affected by the depth of surface-water runoff, the slope saturation and shear strength of the sediment.  相似文献   

9.
A model to derive direct runoff hydrograph for an ungauged basin using the physical properties of the basin is presented. The basin is divided into grid cells and canal elements. Overland flow is generated from each grid cell of the basin by application of continuous effective rainfall of 1 mm/hr to the basin. The flow generated is routed through downstream grid cells and the canal elements using the kinematic wave approach. The travel time for direct runoff from each grid cell to the basin outlet is calculated and the S-curve is derived for the basin. The S-curve is used to derive the unit hydrograph of a given duration for the basin. The model, referred as Cell-basin model was applied to the Upper Kotmale Basin in Sri Lanka and the model predictions of direct runoff hydrographs for rainfall events agreed with the observations to a reasonable accuracy. Comparison of the unit hydrographs obtained from the model and from the conventional Snyder’s synthetic unit hydrograph using regionalized parameters assuming the basin as an ungauged basin, with the unit hydrograph derived from the observations showed that the model predicted unit hydrograph was more suitable than that obtained by Snyder’s method for Sri Lankan up country basins. Thus, the present model is a useful tool to obtain direct runoff hydrograph for ungauged basins.  相似文献   

10.
国内流域产汇流模型与应用分析   总被引:1,自引:0,他引:1  
本文对国内流域产汇流研究与应用进行了分析、比较和综述。重点是对流域产流模型结构建立的理论基础分析,流域汇流的单位线方法和流域的实际物理特性和水流运动的内部机制之间的对应关系的分析。流域产汇流模型和遥感技术相结合应用到具体工程实践所产生的新的理论技术和研究方向作了分析。最后应用系统论、控制论和反问题对上述问题进行了系统的归纳和总结。  相似文献   

11.
本文应用“形状贴近度”概念来刻划地下水水位与其影响因素间曲线形状的变化规律,并建立一个优先比f_(x_j)(x_i:x_0)来表达在因素集合中任一因素x_i相对另一因素x_i与地下水位x_0的相似程度,从而对影响地下水水位的诸因素作出定量排序。最后给出了应用本方法的两个实例。  相似文献   

12.
Soil Conservation Service (SCS) model, developed by U. S. Soil Conservation Service in 1972, has been widely applied in the estimation of runoff from an small watershed. In this paper, based on the remote sensing geo-information data of land use and soil classification all obtained from Landsat images in 1996 and 1997 and conventional data of hydrology and meteorology, the SCS model was investigated for simulating the surface runoff for single rainstorm in Wangdonggou watershed, a typical small watershed in the Loess Plateau, located in Changwu County of Shaanxi Province of China. Wangdonggou watershed was compartmentalized into 28 sub-units according to natural draining division, and the table of curve number (CN) values fitting for Wangdonggou watershed was also presented. During the flood period from 1996 to 1997, the hydrograph of calculated runoff process using the SCS model and the hydrograph of observed runoff process coincided very well in height as well as shape, and the model was of high precision above 75%. It is indicated that the SCS model is legitimate and can be successfully used to simulate the runoff generation and the runoff process of typical small watershed based on the remote sensing geo-information in the Loess Plateau.  相似文献   

13.
All characteristics of vegetation,runoff and sediment from 1960 to 2010 in the Xiliu Gully Watershed,which is a representative watershed in wind-water erosion crisscross region in the upper reaches of the Yellow River of China,have been analyzed in this study.Based on the remote sensing image data,and used multi-spectral interpretation method,the characteristics of vegetation variation in the Xiliu Gully Watershed have been analyzed.And the rules of precipitation,runoff and sediment's changes have been illuminated by using mathematical statistics method.What′s more,the influence mechanism of vegetation on runoff and sediment has been discussed by using the data obtained from artificial rainfall simulation test.The results showed that the main vegetation type was given priority to low coverage,and the area of the low vegetation coverage type was reducing year by year.On the country,the area of the high vegetation coverage type was gradually increasing.In a word,vegetation conditions had got better improved since 2000 when the watershed management project started.The average annual precipitation of the river basin also got slightly increase in 2000–2010.The average annual runoff reduced by 37.5%,and the average annual sediment reduced by 73.9% in the same period.The results of artificial rainfall simulation tests showed that the improvement of vegetation coverage could increase not only soil infiltration but also vegetation evapotranspiration,and then made the rainfall-induced runoff production decrease.Vegetation root system could increases the resistance ability of soil to erosion,and vegetation aboveground part could reduce raindrop kinetic energy and splash soil erosion.Therefore,with the increase of vegetation coverage,the rainfall-induced sediment could decrease.  相似文献   

14.
Taking the nonlinear nature of runoff system into account,and combining auto-regression method and multi-regression method,a Nonlinear Mixed Regression Model (NMR) was established to analyze the impact of temperature and precipitation changes on annual river runoff process. The model was calibrated and verified by using BP neural network with observed meteorological and runoff data from Daiying Hydrological Station in the Chaohe River of Hebei Province in 1956–2000. Compared with auto-regression model,linear multi-regression model and linear mixed regression model,NMR can improve forecasting precision remarkably. Therefore,the simulation of climate change scenarios was carried out by NMR. The results show that the nonlinear mixed regression model can simulate annual river runoff well.  相似文献   

15.
Accurate assessment of soil erosion is an important prerequisite for controlling soil erosion.The engineering-control(E)and tillage(T)factors are the keys for Chinese Soil Loss Equation(CSLE)to accurately evaluate water erosion in China.Besides,the E and T factors can reflect the water and soil conservation effects of engineering-control and tillage practices.But in the current full coverage of soil erosion surveys in China(such as soil erosion dynamic monitoring),for the same practice,the E or T factors are assigned the same value across the country.We selected 469 E and T factors data based on runoff plots from 73 publications,and they came from six soil and water conservation regions.Correlation analysis,regression analysis,and nonparametric tests were used to determine the comparability of the data,and it was proved that the runoff plots dimensions are consistent with the local topography.The results of one-way ANOVA and nonparametric tests for E and T factors in different regions showed that the engineering-control practices have good soil and water conservation effects and weaken the regional differences of other environmental factors,so there were no significant differences in E factors between different regions.However,there were significant differences in T factors between different regions,and the geodetector was applied to explore the intrinsic driving force of the spatial distribution of T factors.The results of the geodetector showed that the dominant driving forces of the spatial distribution of different types of tillage practices were not completely the same.When using CSLE to calculate water erosion,the E factor of the same practice can be used uniformly throughout the country,and the T factor needs to be considered and selected according to regional differences.At the same time,when choosing tillage practices in each water and soil conservation region,practices with better sediment reduction benefits should also be selected according to the regional environmental conditions.  相似文献   

16.
The proper determination of the curve number(CN) in the SCS-CN method reduces errors in predicting runoff volume. In this paper the variability of CN was studied for 5 Slovak and 5 Polish Carpathian catchments. Empirical curve numbers were applied to the distribution fitting. Next, theoretical characteristics of CN were estimated. For 100-CN the Generalized Extreme Value(GEV) distribution was identified as the best fit in most of the catchments. An assessment of the differences between the characteristics estimated from theoretical distributions and the tabulated values of CN was performed. The comparison between the antecedent runoff conditions(ARC) of Hawkins and Hjelmfelt was also completed. The analysis was done for various magnitudes of rainfall. Confidence intervals(CI) were helpful in this evaluation. The studies revealed discordances between the tabulated and estimated CNs. The tabulated CNs were usually lower than estimated values; therefore, an application of the median value and the probabilistic ARC of Hjelmfelt for wet runoff conditions is advisable. For dry conditions the ARC of Hjelmfelt usually better estimated CN than ARC of Hawkins did, but in several catchments neither the ARC of Hawkins nor Hjelmfelt sufficiently depicted the variability in CN.  相似文献   

17.
Runoff series of the Yangtze River presents an intricate variation tendency under the reinforced influence of human activities.The Morlet Wavelet Transform method has been applied to analyze the annual runoff data from 1950 to 2011 at the Yangtze River Estuary.It can clearly reveal the multi-time scales structure,break point,change and distribution of periodic variation in the different time scales of the runoff series.The main conclusions are that:1) Repeated periodic oscillations accompanied by an extremely large fluctuation are presented in the runoff series with an obvious difference between wet and dry years,and the major periods of the time series are about 3,8,16 and 23 years respectively.Among them,the presented maximum periodic oscillation is 23 years scale.2) In the 23-year time scale,the wet periods are 1950-1958,1969-1980 and 1992-2003,and the dry periods are 1959-1968,1981-1991 and 2004-2011.3) It can be predicted from the view of long time scales that the low annual runoff will likely occur in the near future.  相似文献   

18.
The circulations off the Changjiang mouth in May and November were simulatedby a three dimension numerical model with monthly averaged parameters of dynamic factors in this paper. The area covers the East China Sea (ECS), Yellow Sea and Bohai Sea. Simulated results show that the circulation off the Changjiang mouth in spring and autumn is mainly the Changjiang runoff and Taiwan Warm Current (TWC). The Changjlang discharge is much larger in May than in November, and the wind is westward in May, and southward in November offthe Changjiang mouth. The runoff in May branches in three parts, one eastward flows, the other two flow northward and southward along the Subei and Zhejiang coast respectively. The Changjiang diluted water expands eastward off the mouth, and forms a strong salinity front near the mouth. Surface circulation in autumn is similar to that in winter, the runoff southward flows along the coast, and the northward flowing TWC becomes weaker compared to that in spring and summer. The bottom circulations in May and November are mainly the runoff near the mouth and the TWC off the mouth, and the runoff and TWC are greater in May than in November.  相似文献   

19.
The Loess Plateau of China has experienced a lengthy drought and severe soil erosion.Changes in precipitation and land use largely determine the dynamics of runoff and sediment yield in this region. Trend and mutation analyses were performed on hydrological data(1981–2012) from the Yanwachuan watershed in the Loess Plateau Gully Region to study the evolution characteristics of runoff and sediment yield. A time-series contrasting method also was used to evaluate the effects of precipitation and soil and water conservation(SWC) on runoff and sediment yield. Annual sediment yield declined markedly from 1981 to 2012 although there was no significant change in annual precipitation and annual runoff. Change points of annual runoff and annual sediment yield occurred in 1996 and 1997,respectively. Compared with that in the baseline period(1981–1996), annual runoff and annual sediment yield in the change period(1997–2012)decreased by 17.0% and 76.0%, respectively, but annual precipitation increased by 6.3%. Runoff decreased in the flood season and normal season, but increased in the dry season, while sediment yield significantly declined in the whole study period. The SWC measures contributed significantly to the reduction of annual runoff(137.9%) and annual sediment yield(135%) and were more important than precipitation. Biological measures(forestland and grassland) accounted for 61.04% of total runoff reduction, while engineering measures(terraces and dams) accounted for 102.84% of total sediment yield reduction. Furthermore, SWC measures had positive ecological effects. This study provides a scientific basis for soil erosion control on the Loess Plateau.  相似文献   

20.
针对多项式拟合模型系数矩阵中部分元素是某一自变量的函数的特点,根据Partial EIV模型的解算思想,将系数矩阵中自变量的函数作为随机元素提取,顾及泰勒展开的二阶项,由协方差传播律计算自变量函数的协因数阵进行平差解算。实验结果表明,系数矩阵的元素不再是单独的自变量时,使用该算法可以得到与已有非线性总体最小二乘方法相近的参数结果,从构造随机向量权阵的角度提供了一种新的解算方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号