首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we have used a square root formulation of the Wheeler-De Witt equation to quantize a minisuperspace model consisting of the Bianchi-I type universe with a radiation field source. We have derived a wavefunction with a conserved current and a positive-definite probability density.

We have also explored the third quantization of the Bianchi type universe using a procedure usual in the quantum field theory of curved space-time. We have given the wave function that satisfies the Wheeler-De Witt equation. By regarding the wave function as the universe field operator in a minisuperspace, we have not only circumvented the difficulty of a probabilistic interpretation in quantum cosmology, we have also reached the conclusion that multiple universes would result. We have estimated the average number of universes produced from ‘nothing’, and have given their distribution, which turned out to be a Planck distribution.  相似文献   


2.
On studying some new models of Robertson-Walker universes with a Brans-Dicke scalar field, it is found that most of these universes contain a dark energy like fluid which confirms the present scenario of the expansion of the universe. In one of the cases, the exact solution of the field equations gives a universe with a false vacuum, while in another it reduces to that of dust distribution in the Brans-Dicke cosmology when the cosmological constant is not in the picture. In one particular model it is found that the universe may undergo a Big Rip in the future, and thus it will be very interesting to investigate such models further.  相似文献   

3.
In a four dimensional manifold formalism we study the evolutionary behavior as well as the ultimate fate of the universe, in the course of which the contribution of dark energy in these phases are investigated. At one stage we get a situation (a condition) where the dark energy contained dominates other types of energies available in this universe. In the model universes we obtain here the dark energy is found to be of ΛCDM and quintessence types-which bear testimony to being real universes. In one of the cases where the equation of state between the fluid pressure and density is of the type of the van der Waals equation, it is found that our universe may end in dust. And, also, it is seen that the behavior of the deceleration parameter is almost compatible with the recent observation.  相似文献   

4.
It has been claimed that the observed magnitude of the vacuum energy density is consistent with the distribution predicted in anthropic models, in which an ensemble of universes is assumed. This calculation is revisited, without making the assumption that the cosmic microwave background (CMB) temperature is known, and considering in detail the possibility of a recollapsing universe. New accurate approximations for the growth of perturbations and the mass function of dark haloes are presented. Structure forms readily in the recollapsing phase of a model with negative Λ, so collapse fraction alone cannot forbid Λ from being large and negative. A negative Λ is disfavoured only if we assume that formation of observers can be neglected once the recollapsing universe has heated to   T ≳ 8   K  . For the case of positive Λ, however, the current universe does occupy an extremely typical position compared to the predicted distribution on the Λ− T plane. Contrasting conclusions can be reached if anthropic arguments are applied to the curvature of the universe, and we discuss the falsifiability of this mode of anthropic reasoning.  相似文献   

5.
The evolution of some vacuum spatially-flat Robertson-Walker universes filled with a massless conformally-invariant quantum field is presented in the energy density-curvature phase plane.  相似文献   

6.
The exterior field of the Robertson-Walker-type metric in the Lyttleton-Bondi universe is studied and exact solutions are obtained for closed and open universes. Only the flat space solution was previously known.  相似文献   

7.
In this paper we study the evolution of the dark energy parameter within the scope of a spatially homogeneous and isotropic FRW universe filled with barotropic fluid and dark energy. The scale factor is considered as a power law function of time which yields a constant deceleration parameter. We consider the case when the dark energy is minimally coupled to the perfect fluid as well as direct interaction with it. The cosmic jerk parameter in our derived models is consistent with the recent data of astrophysical observations. It is concluded that in non-interacting case, all the three open, close and flat universes cross the phantom region whereas in interacting case only open and flat universes cross the phantom region. We find that during the evolution of the universe, the equation of state (EoS) for dark energy ω D changes from ω D >−1 to ω D <−1, which is consistent with recent observations.  相似文献   

8.
In this communication, we studied the aspects of bulk viscous fluid cosmological model with quadratic equation of state in the presence of strings loaded with particles in a higher dimensional (5- dimensional) Bianchi type-III geometry in Lyra’s Manifold (Lyra, 1951). Using physically plausible circumstances, an exact model of the universe is presented by obtaining the solutions of the Einstein’s field equations. Important geometrical and dynamical parameters of the model universes are premeditated and physical significance regarding their prospect in modern cosmology are discussed in details. Interestingly it is seen that both bulk viscosity and quadratic equation of state are acting crucial jobs throughout the evolution of the model which is expanding with acceleration so it represents dark energy model universe. Hence our model can be thought as a realistic universe.  相似文献   

9.
The evolution of adiabatic perturbations has been studied in Friedmann-Lemaître universes containing a mixture of non-interacting matter and radiation. The differential equation governing the growth of infinitely long adiabatic fluctuations has been derived. In the case of the Einstein-de Sitter universe, an exact solution is given to this differential equation.  相似文献   

10.
We have considered the problem of the propagation of nonzero rest-mass neutrinos in the Friedmann dust universes of three types: open, flat, and closed, as well as in the radiation-dominated epoch of thehot universe. The total Lagrangian path of the particle has been calculated, and this is shown to be finite for all the three universes-contrary to the total path of the photon, which is infinite in the open and flat universes.We have found the particle horizon as a function of the relativistic parameter at the emission moment and at the moment of observation. The extreme relativistic and nonrelativistic particle motion and its difference from the photon motion have been investigated.  相似文献   

11.
Einstein field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for Robertson-Walker universe by assuming the cosmological term proportional to the Hubble parameter. This variation law for vacuum density has recently been proposed by Schützhold on the basis of quantum field estimations in the curved and expanding background. The cosmological term tends asymptotically to a genuine cosmological constant and the model tends to a deSitter universe. We obtain that the present universe is accelerating with a large fraction of cosmological density in the form of cosmological term.  相似文献   

12.
More than 2000 years ago, Epicurus taught that there are an infinite number of other worlds, both like and unlike ours, and Aristotle taught that there are none. Neither hypothesis can currently be falsified, and some versions of current multiverses perhaps never can be, which has contributed to occasional claims that “this isn't science!” (a common complaint about cosmology for centuries). Define “cosmos”, or “world”, or “universe” to mean the largest structure of which you and the majority of knowledgeable contemporaries will admit to being a part. This begins with the small, earth‐centered worlds of ancient Egyptian paintings, Greek mythology, and Genesis, which a god could circumnavigate in a day and humans in a generation. These tend to expand and become helio‐rather than geo‐centric (not quite monotonically in time) and are succeeded by various assemblages of sun‐like stars with planets of their own. Finite vs. infinite assemblages are debated and then the issue of whether the Milky Way is unique (so that “island universes” made sense, even if you were against the idea) for a couple of centuries. Today one thinks as a rule of the entire 4‐dimensional space‐time we might in principle communicate with and all its contents. Beyond are the modern multi‐verses, sequential (cyclic or oscillating), hierarchical, or non‐communicating entities in more than four dimensions. Each of these has older analogues, and, in every milieu where the ideas have been discussed, there have been firm supporters and firm opponents, some of whose ideas are explored here. Because astronomical observations have firmly settled some earlier disputes in favor of very many galaxies and very many stars with planets, “other worlds” can now refer only to other planets like Earth or to other universes. The focus is on the latter (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
In this paper, using the energy definition in MØller’s tetrad theory of gravity we calculate the total energy of the universe in Bianchi-type I cosmological models which includes both the matter and gravitational fields. The total energy is found to be zero and this result agrees with a previous works of Banerjee and Sen who investigated this problem using the general relativity version of the Einstein energy-momentum complex and Xulu who investigated same problem using the general relativity versions of the Landau and lifshitz, Papapetrou and Weinberg’s energy-momentum complexes. The result that total energy of the universe in Bianchi-type I universes is zero supports the viewpoint of Tryon.  相似文献   

14.
The most recently celebrated cosmological implications of the cosmic microwave background studies with WMAP (2006), though fascinating by themselves, do, however, create some extremely hard conceptual challenges for the present‐day cosmology. These recent extremely refined WMAP observations seem to reflect a universe which was extremely homogeneous at the recombination age and thus is obviously causally closed at the time of the cosmic recombination era. From the very tiny fluctuations apparent at this early epoch the presently observable nonlinear cosmic density structures can, however, only have grown up, if in addition to a mysteriously high percentage of dark matter an even higher percentage of dark energy is admitted as drivers of the cosmic evolution. The required dark energy density, on the other hand, is nevertheless 120 orders of magnitude smaller then the theoretically calculated value. These are outstanding problems of present day cosmology onto which we are looking here under new auspices. We shall investigate in the following, up to what degree a universe simply abolishes all these outstanding problems in case it reveals itself as an universe of constant total energy. As we shall show basic questions like: How could the gigantic mass of the universe of about 1080 proton masses at all become created? – Why is the presently recognized and obviously indispensable cosmic vacuum energy density so terribly much smaller than is expected from quantum theoretical considerations, but nevertheless terribly important for the cosmic evolution? – Why is the universe within its world horizon a causally closed system? –, can perhaps simply be answered, when the assumption is made that the universe has a constant total energy with the consequence that the total mass density of the universe (matter and vacuum) scales with . Such a scaling of matter and vacuum energy abolishes the horizon problem, and the cosmic vacuum energy density can easily be reconciled with its theoretical expectation values. In this model the mass of the universe increases linearly with the world extension Ru and can grow up from a Planck mass as a vacuum fluctuation. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Einstein field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for Bianchi type-I universe by assuming the cosmological term proportional to the Hubble parameter. This variation law for vacuum density has recently been proposed by Schützhold on the basis of quantum field estimations in the curved and expanding background. The model obtained approaches isotropy. The cosmological term tends asymptotically to a genuine cosmological constant, and the model tends to a deSitter universe. We obtain that the present universe is accelerating with a large fraction of cosmological density in the form of cosmological term.  相似文献   

16.
According to the equivalence between the FRIEDMANN equation of relativistic cosmology and the condition for the time-independence H = o of the HAMILTON ian H of an isotropic particle-system in the NEWTON ian mechanics (which equivalence is proved in the part I of our paper) we construct the corresponding classical HAMILTON ians to the relativistic world-models. Each cosmological model which is resulting from a physically meaningful gravitation theory must give a FRIEDMANN equation as the cosmological formulation of the time-independence condition of the energy H for the corresponding NEWTON ian N-particle system. In general relativity, EINSTEIN's field equations are including EINSTEIN's strong principle of equivalence and are giving the constance f = o and M = o of the gravitation-number f and of the mass M of the universe additional to FRIEDMANN's equation. – In special relativity, we have fM = o and this MILNE -universe is possessing a NEWTON ian and a general relativistic interpretation, too. – However, if the postulate together with the “cosmological principle” other principles about the world structure, too (p. e. MACH'S or DIRAC'S principle or the “perfect cosmological principle” by the steady-state cosmology), then EINSTEIN'S weak principle of equivalence can be fulfilled, only. In these world models the gravity-mass fM becomes a function of the cosmic time t [d/dt(fM) ± o] and this variability of fM is compatible with the constance H = o of the energy H of the NEWTON ian particle-system. For flat three-dimensional cosmological spaces (with H = Ḣ = o) a creation of rest-mass (M > o) is possible. This creation is the pecularity of the steady-state cosmos (with M > o, f = o) and of JORDAN'S cosmos (with M > o, f < o). The MACH -EINSTEIN -doctrine about the perfect determination of the inertia and of the space-time-metric by the cosmic gravitation is founded on the substitution of the NEWTON ian HAMILTON ian by a GAUSS -RIEMANN ian gravitation potential U*(rAB' vAB) (TREDER 1972). Therefore, the FRIEDMANN equation for a universe with MACH'S principle is resulting from the analytical expression of the time-independence of this RIEMANNian potential U* = 0. In the case of such MACH-EINSTEIN's-Universes EINSTEIN'S condition 3fM = c8r between the mass A4 and the radius Y of the universe is valid additional to FRIEDMANN'S equation. For these universes, the EINSTEIN condition determinates the instantaneous value of the gravitation-number f. - The explicite form of the conditions H = o or h' = o gives the equation of motion for the cosmic fundamental particles with attraction and repulsion forces, generally.  相似文献   

17.
In this work, we have discussed the Maxwell’s electrodynamics in non-linear forms in FRW universe. The energy density and pressure for non-linear electrodynamics have been written in the electro-magnetic universe. The Einstein’s field equations for flat FRW model in loop quantum cosmology have been considered if the universe is filled with the matter and electro-magnetic field. We separately assumed the magnetic universe and electric universe. The interaction between matter and magnetic field have been considered in one section and for some particular form of interaction term, we have found the solutions of magnetic field and the energy density of matter. We have also considered the interaction between the matter and electric field and another form of interaction term has been chosen to solve the field equations. The validity of generalized second law of thermodynamics has been investigated on apparent and event horizons using Gibb’s law and the first law of thermodynamics for magnetic and electric universe separately.  相似文献   

18.
Taking up four model universes we study the behaviour and contribution of dark energy to the accelerated expansion of the universe, in the modified scale covariant theory of gravitation. Here, it is seen that though this modified theory may be a cause of the accelerated expansion it cannot totally outcast the contribution of dark energy in causing the accelerated expansion. In one case the dark energy is found to be the sole cause of the accelerated expansion. The dark energy contained in these models come out to be of the ΛCDM type and quintessence type comparable to the modern observations. Some of the models originated with a big bang, the dark energy being prevalent inside the universe before the evolution of this era. One of the models predicts big rip singularity, though at a very distant future. It is interestingly found that the interaction between the dark energy and the other part of the universe containing different matters is enticed and enhanced by the gauge function ϕ(t) here.  相似文献   

19.
The main goal of this work is investigation of NADE in the cyclic universe scenario. Since, cyclic universe is explained by a phantom phase (ω<−1), it is shown when there is no interaction between matter and dark energy, ADE and NADE do not produce a phantom phase, then can not describe cyclic universe. Therefore, we study interacting models of ADE and NADE in the modified Friedmann equation. We find out that, in the high energy regime, which it is a necessary part of cyclic universe evolution, only NADE can describe this phantom phase era for cyclic universe. Considering deceleration parameter tells us that the universe has a deceleration phase after an acceleration phase, and NADE is able to produce a cyclic universe. Also it is found valuable to study generalized second law of thermodynamics. Since the loop quantum correction is taken account in high energy regime, it may not be suitable to use standard treatment of thermodynamics, so we turn our attention to the result of Li et al. (Adv. High Energy Phys. 2009: 905705, 2009), which the authors have studied thermodynamics in loop quantum gravity, and we show that which condition can satisfy generalized second law of thermodynamics.  相似文献   

20.
We investigate the conductivity of warm dense helium under conditions found in the atmospheres of cool white dwarfs using ab initio simulations. The calculations performed consist of quantum molecular dynamics simulations where the electronic wavefunction at each time step is obtained using density functional theory, while the ion trajectories are calculated using the resulting quantum mechanical forces. We use both conventional DFT (PW91) and hybrid (PBE0) functionals to calculate the conductivities that provide an estimate of the ionization fraction. While the calculations are in good agreement with the measurements for the equation of state, a significant discrepancy exists with the recently measured conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号