首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We explore Fe/Mn and Nb/Ta ratios of basalts as potential tracers for differentiating melts of recycled mafic crustal lithologies from peridotitic melts. Trace elements and Fe/Mn ratios of the Mesozoic and Cenozoic basalts from East China were analyzed by ICP-MS. Low Nb/Ta ratios (15.4 ± 0.3 (2σ, n = 45)), high Nb and Ta contents (60.1 and 4.01 ppm) and high Fe/Mn ratios (64.7 ± 1.5 (2σ, n = 45)) characterize the <110 Ma basalts. Mesozoic basalts with ages >110 Ma are characterized by superchondritic Nb/Ta ratios (20.1 ± 0.3 (2σ, n = 25)), low Nb and Ta contents (10.8 and 0.54 ppm) and slightly lower Fe/Mn ratios (60.0 ± 1.1 (2σ, n = 25)). Both the Mesozoic and Cenozoic basalts have Fe/Mn ratios higher than basaltic melt formed by partial melting of peridotite at the same MgO and CaO levels. Although both the Mesozoic and Cenozoic basalts are characterized by highly fractionated REE patterns, the >110 Ma basalts have island arc-type trace element patterns (i.e., depletion in Nb and Ta), whereas OIB-type trace element patterns (e.g., no depletion in Nb and Ta) are characteristic of the <110 Ma basalts. Based on DFe/Mn values for olivine, clinopyroxene, orthopyroxene and garnet, high Fe/Mn ratios and negative correlations of Fe/Mn with Yb (Y) of the <110 Ma basalts suggest clinopyroxene/garnet-rich mantle sources. The lower Fe/Mn ratios and positive correlations of Fe/Mn with Y and Yb in the >110 Ma basalts suggest orthopyroxene/garnet-rich mantle sources. Combining these data with Sr-Nd isotopes, we present a conceptual model to explain the Nb/Ta ratios and PM-normalized trace element patterns of the >110 and <110 Ma basalts. Preferential melting of recycled ancient lower continental crust during Mesozoic lithospheric thinning resulted in (1) peridotite-melt/fluid reaction that formed the orthopyroxene/garnet-rich mantle sources for the >110 Ma basalts, and (2) peridotite + rutile-bearing eclogite mixing that formed the clinopyroxene/garnet-rich mantle sources for the <110 Ma basalts. The choice of models may indeed be arbitrary and non-unique, but the goal is to seek relatively simple forward models that explain the characteristics of the lavas, and the differences between the >110 and <110 Ma basalts, in a relatively consistent geodynamic framework.  相似文献   

2.
Oxygen and iron isotope analyses of low-Ti and high-Ti mare basalts are presented to constrain their petrogenesis and to assess stable isotope variations within lunar mantle sources. An internally-consistent dataset of oxygen isotope compositions of mare basalts encompasses five types of low-Ti basalts from the Apollo 12 and 15 missions and eight types of high-Ti basalts from the Apollo 11 and 17 missions. High-precision whole-rock δ18O values (referenced to VSMOW) of low-Ti and high-Ti basalts correlate with major-element compositions (Mg#, TiO2, Al2O3). The observed oxygen isotope variations within low-Ti and high-Ti basalts are consistent with crystal fractionation and match the results of mass-balance models assuming equilibrium crystallization. Whole-rock δ56Fe values (referenced to IRMM-014) of high-Ti and low-Ti basalts range from 0.134‰ to 0.217‰ and 0.038‰ to 0.104‰, respectively. Iron isotope compositions of both low-Ti and high-Ti basalts do not correlate with indices of crystal fractionation, possibly owing to small mineral-melt iron fractionation factors anticipated under lunar reducing conditions.The δ18O and δ56Fe values of low-Ti and the least differentiated high-Ti mare basalts are negatively correlated, which reflects their different mantle source characteristics (e.g., the presence or absence of ilmenite). The average δ56Fe values of low-Ti basalts (0.073 ± 0.018‰, n = 8) and high-Ti basalts (0.191 ± 0.020‰, n = 7) may directly record that of their parent mantle sources. Oxygen isotope compositions of mantle sources of low-Ti and high-Ti basalts are calculated using existing models of lunar magma ocean crystallization and mixing, the estimated equilibrium mantle olivine δ18O value, and equilibrium oxygen-fractionation between olivine and other mineral phases. The differences between the calculated whole-rock δ18O values for source regions, 5.57‰ for low-Ti and 5.30‰ for high-Ti mare basalt mantle source regions, are solely a function of the assumed source mineralogy. The oxygen and iron isotope compositions of lunar upper mantle can be approximated using these mantle source values. The δ18O and δ56Fe values of the lunar upper mantle are estimated to be 5.5 ± 0.2‰ (2σ) and 0.085 ± 0.040‰ (2σ), respectively. The oxygen isotope composition of lunar upper mantle is identical to the current estimate of Earth’s upper mantle (5.5 ± 0.2‰), and the iron isotope composition of the lunar upper mantle overlaps within uncertainty of estimates for the terrestrial upper mantle (0.044 ± 0.030‰).  相似文献   

3.
High-precision Pt-Re-Os and Sm-Nd isotope and highly siderophile element (HSE) and rare earth element (REE) abundance data are reported for two 2.7 b.y. old komatiite lava flows, Tony’s flow (TN) from the Belingwe greenstone belt, Zimbabwe, and the PH-II flow (PH) from Munro Township in the Abitibi greenstone belt, Canada. The emplaced lavas are calculated to have contained ∼25% (TN) and ∼28% (PH) MgO. These lavas were derived from mantle sources characterized by strong depletions in highly incompatible lithophile trace elements, such as light REE (Ce/SmN = 0.64 ± 0.02 (TN) and 0.52 ± 0.01 (PH), ε143Nd(T) = +2.9 ± 0.2 in both sources). 190Pt-186Os and 187Re-187Os isochrons generated for each flow yield ages consistent with respective emplacement ages obtained using other chronometers. The calculated precise initial 186Os/188Os = 0.1198318 ± 3 (TN) and 0.1198316 ± 5 (PH) and 187Os/188Os = 0.10875 ± 17 (TN) and 0.10873 ± 15 (PH) require time-integrated 190Pt/188Os and 187Re/188Os of 0.00178 ± 11 and 0.407 ± 8 (TN) and 0.00174 ± 18 and 0.415 ± 5 (PH). These parameters, which by far represent the most precise and accurate estimates of time-integrated Pt/Os and Re/Os of the Archean mantle, are best matched by those of enstatite chondrites. The data also provide evidence for a remarkable similarity in the composition of the sources of these komatiites with respect to both REE and HSE. The calculated absolute HSE abundances in the TN and PH komatiite sources are within or slightly below the range of estimates for the terrestrial Primitive Upper Mantle (PUM). Assuming a chondritic composition of the bulk silicate Earth, the strong depletions in LREE, yet chondritic Re/Os in the komatiite sources are apparently problematic because early Earth processes capable of fractionating the LREE might also be expected to fractionate Re/Os. This apparent discrepancy could be reconciled via a two-stage model, whereby the moderate LREE depletion in the sources of the komatiites initially occurred within the first 100 Ma of Earth’s history as a result of either global magma ocean differentiation or extraction and subsequent long-term isolation of early crust, whereas HSE were largely added subsequently via late accretion. The komatiite formation, preceded by derivation of basaltic magmas, was a result of second-stage, large-degree dynamic melting in mantle plumes.  相似文献   

4.
High-pressure, low-temperature (HP-LT) rocks from a Cretaceous age subduction complex occur as tectonic blocks in serpentinite mélange along the Motagua Fault (MF) in central Guatemala. Eclogite and jadeitite among these are characterized by trace element patterns with enrichments in fluid mobile elements, similar to arc lavas. Eclogite is recrystallized from MORB-like altered oceanic crust, presumably at the boundary between the down-going plate and overlying mantle wedge. Eclogite geochemistry, mineralogy and petrography suggest a two step petrogenesis of (1) dehydration during prograde metamorphism at low temperatures (<500 °C) followed by (2) partial rehydration/fertilization at even lower T during exhumation. In contrast, Guatemalan jadeitites are crystallized directly from low-T aqueous fluid as veins in serpentinizing mantle during both subduction and exhumation. The overall chemistry and mineralogy of Guatemalan eclogites are similar to those from the Franciscan Complex, California, implying similar P-T-x paths.Li concentrations (?90 ppm) in mineral separates and whole rocks (WR) from Guatemalan and Franciscan HP-LT rocks are significantly higher than MORB (4-6 ppm), but similar to HP-LT rocks globally. Li isotopic compositions range from −5‰ to +5‰ for Guatemalan HP-LT rocks, and −4‰ to +1‰ for Franciscan eclogites, overlapping previous findings for other HP-LT suites. The combination of Li concentrations greater than MORB, and Li isotopic values lighter than MORB are inconsistent with a simple dehydration model. We prefer a model in which Li systematics in Guatemalan and Franciscan eclogites reflect reequilibration with subduction fluids during exhumation. Roughly 5-10% of the Li in these fluids is derived from sediments.Model results predict that the dehydrated bulk ocean crust is isotopically lighter (δ7Li ? +1 ± 3‰) than the depleted mantle (∼+3.5 ± 0.5‰), while the mantle wedge beneath the arc is the isotopic complement of the bulk crust. A subduction fluid with an AOC-GLOSS composition over the full range of model temperatures (50-600 °C) gives an average fluid δ7Li (∼+7 ± 5‰ 1σ) that is isotopically heavier than the depleted mantle. If the lowest temperature steps are excluded (50-260 °C) as too cold to participate in circulation of the mantle wedge, then the average subduction fluid (δ7Li = +4 ± 2.3‰ 1σ, is indistinguishable from depleted mantle. Because of the relatively compatible nature of Li in metamorphic minerals, the most altered part of the crust (uppermost extrusives), may retain a Li isotopic signature (∼+5 ± 3‰) heavier than the bulk crust. The range of Li isotopic values for OIB, IAB and MORB overlap, making it is difficult to resolve which of these components may contribute to the recycled component in the mantle using δ7Li alone.  相似文献   

5.
Concentrations of tungsten (W) and uranium (U), which represent two of the most highly incompatible elements during mantle melting, have been measured in a suite of Hawaiian picrites and primitive tholeiites from nine main-stage shield volcanoes. Tungsten abundances in the parental melts are estimated from correlations between sample W abundances and MgO contents, and/or by olivine correction calculations. From these parental melt determinations, along with independent estimates for the degree of partial melting at each volcanic center, we extrapolate the W content of the mantle sources for each shield volcano. The mantle sources of Hualalai, Mauna Loa, Kohala, Kilauea, Mauna Kea, Koolau and Loihi contain 9 ± 2 (2σ), 11 ± 5, 10 ± 4, 12 ± 4, 10 ± 5, 8 ± 7 and 11 ± 5 ng/g, respectively. When combined, the mean Hawaiian source has an average of 10 ± 3 ng/g W, which is three-times as enriched as the Depleted MORB Mantle (DMM; 3.0 ± 2.3 ng/g).The relatively high abundances of W in the mantle sources that contribute to Hawaiian lavas may be explained as a consequence of the recycling of W-rich oceanic crust and sediment into a depleted mantle source, such as the depleted MORB mantle (DMM). However, this scenario requires varying proportions of recycled materials with different mean ages to account for the diversity of radiogenic isotope compositions observed between Kea- and Loa-trend volcanoes. Alternatively, the modeled W enrichments may also reflect a primary source component that is less depleted in incompatible trace elements than the DMM. Such a source would not necessarily require the addition of recycled materials, although the presence of some recycled crust is permitted within our model parameters and likely accounts for some of the isotopic variations between volcanic centers.The physical admixture of ?0.5 wt.% outer core material with the Hawaiian source region would not be resolvable via W source abundances or W/U ratios; however, W isotopes may provide a more sensitive to this mixing process. Recent W isotopic studies show no indication of core-mantle interaction, indicating that either such a process does not occur, or that mechanisms other than physical mixing may operate at the core-mantle boundary.  相似文献   

6.
Picrites from the neovolcanic zones in Iceland display a range in 187Os/188Os from 0.1297 to 0.1381 (γOs = + 2.1 to +8.7) and uniform 186Os/188Os of 0.1198375 ± 32 (2σ). The value for 186Os/188Os is within uncertainty of the present-day value for the primitive upper mantle of 0.1198398 ± 16. These Os isotope systematics are best explained by ancient recycled crust or melt enrichment in the mantle source region. If so, then the coupled enrichments displayed in 186Os/188Os and 187Os/188Os from lavas of other plume systems must result from an independent process, the most viable candidate at present remains core-mantle interaction. While some plumes with high 3He/4He, such as Hawaii, appear to have been subjected to detectable addition of Os (and possibly He) from the outer core, others such as Iceland do not.A positive correlation between 187Os/188Os and 3He/4He from 9.6 to 19 Ra in Iceland picrites is best modeled as mixtures of 1 Ga or older ancient recycled crust mixed with primitive mantle or incompletely degassed depleted mantle isolated since 1-1.5 Ga, which preserves the high 3He/4He of the depleted mantle at the time. These mixtures create a hybrid source region that subsequently mixes with the present-day convecting MORB mantle during ascent and melting. This multistage mixing scenario requires convective isolation in the deep mantle for hundreds of million years or more to maintain these compositionally distinct hybrid sources. The 3He/4He of lavas derived from the Iceland plume changed over time, from a maximum of 50 Ra at 60 Ma, to approximately 25-27 Ra at present. The changes are coupled with distinct compositional gaps between the different aged lavas when 3He/4He is plotted versus various geochemical parameters such as 143Nd/144Nd and La/Sm. These relationships can be interpreted as an increase in the proportion of ancient recycled crust in the upwelling plume over this time period.The positive correlation between 187Os/188Os and 3He/4He demonstrates that the Iceland lava He isotopic compositions do not result from simple melt depletion histories and consequent removal of U and Th in their mantle sources. Instead their He isotopic compositions reflect mixtures of heterogeneous materials formed at different times with different U and Th concentrations. This hybridization is likely prevalent in all ocean island lavas derived from deep mantle sources.  相似文献   

7.
Greenstone basalts and komatiites provide a means to track both mantle composition and magma generation temperature with time.Four types of mantle are characterized from incompatible element distributions in basalts and komatiites:depleted,hydrated,enriched and mantle from which komatiites are derived.Our most important observation is the recognition for the first time of what we refer to as a Great Thermal Divergence within the mantle beginning near the end of the Archean,which we ascribe to thermal and convective evolution.Prior to 2.5 Ga,depleted and enriched mantle have indistinguishable thermal histories,whereas at 2.5-2.0 Ga a divergence in mantle magma generation temperature begins between these two types of mantle.Major and incompatible element distributions and calculated magma generation temperatures suggest that Archean enriched mantle did not come from mantle plumes,but was part of an undifferentiated or well-mixed mantle similar in composition to calculated primitive mantle.During this time,however,high-temperature mantle plumes from dominantly depleted sources gave rise to komatiites and associated basalts.Recycling of oceanic crust into the deep mantle after the Archean may have contributed to enrichment of Ti,Al,Ca and Na in basalts derived from enriched mantle sources.After 2.5 Ga,increases in Mg~# in basalts from depleted mantle and decreases in Fe and Mn reflect some combination of growing depletion and cooling of depleted mantle with time.A delay in cooling of depleted mantle until after the Archean probably reflects a combination of greater radiogenic heat sources in the Archean mantle and the propagation of plate tectonics after 3 Ga.  相似文献   

8.
We present high-precision measurements of Mg and Fe isotopic compositions of olivine, orthopyroxene (opx), and clinopyroxene (cpx) for 18 lherzolite xenoliths from east central China and provide the first combined Fe and Mg isotopic study of the upper mantle. δ56Fe in olivines varies from 0.18‰ to −0.22‰ with an average of −0.01 ± 0.18‰ (2SD, n = 18), opx from 0.24‰ to −0.22‰ with an average of 0.04 ± 0.20‰, and cpx from 0.24‰ to −0.16‰ with an average of 0.10 ± 0.19‰. δ26Mg of olivines varies from −0.25‰ to −0.42‰ with an average of −0.34 ± 0.10‰ (2SD, n = 18), opx from −0.19‰ to −0.34‰ with an average of −0.25 ± 0.10‰, and cpx from −0.09‰ to −0.43‰ with an average of −0.24 ± 0.18‰. Although current precision (∼±0.06‰ for δ56Fe; ±0.10‰ for δ26Mg, 2SD) limits the ability to analytically distinguish inter-mineral isotopic fractionations, systematic behavior of inter-mineral fractionation for both Fe and Mg is statistically observed: Δ56Feol-cpx = −0.10 ± 0.12‰ (2SD, n = 18); Δ56Feol-opx = −0.05 ± 0.11‰; Δ26Mgol-opx = −0.09 ± 0.12‰; Δ26Mgol-cpx = −0.10 ± 0.15‰. Fe and Mg isotopic composition of bulk rocks were calculated based on the modes of olivine, opx, and cpx. The average δ56Fe of peridotites in this study is 0.01 ± 0.17‰ (2SD, n = 18), similar to the values of chondrites but slightly lower than mid-ocean ridge basalts (MORB) and oceanic island basalts (OIB). The average δ26Mg is −0.30 ± 0.09‰, indistinguishable from chondrites, MORB, and OIB. Our data support the conclusion that the bulk silicate Earth (BSE) has chondritic δ56Fe and δ26Mg.The origin of inter-mineral fractionations of Fe and Mg isotopic ratios remains debated. δ56Fe between the main peridotite minerals shows positive linear correlations with slopes within error of unity, strongly suggesting intra-sample mineral-mineral Fe and Mg isotopic equilibrium. Because inter-mineral isotopic equilibrium should be reached earlier than major element equilibrium via chemical diffusion at mantle temperatures, Fe and Mg isotope ratios of coexisting minerals could be useful tools for justifying mineral thermometry and barometry on the basis of chemical equilibrium between minerals. Although most peridotites in this study exhibit a narrow range in δ56Fe, the larger deviations from average δ56Fe for three samples likely indicate changes due to metasomatic processes. Two samples show heavy δ56Fe relative to the average and they also have high La/Yb and total Fe content, consistent with metasomatic reaction between peridotite and Fe-rich and isotopically heavy melt. The other sample has light δ56Fe and slightly heavy δ26Mg, which may reflect Fe-Mg inter-diffusion between peridotite and percolating melt.  相似文献   

9.
The evolution of the mantle''s chemical structure   总被引:10,自引:0,他引:10  
I.H. Campbell  R.W. Griffiths 《Lithos》1993,30(3-4):389-399
The geochemistry of flood basalts and their associated picrites, and of komatiites and their associated basalts, combined with a theoretical model for the structure of mantle starting plumes, can be used to decipher key elements of the geochemical structure of the deep mantle and show how it has varied through time. We argue that the thermal boundary layer above the core consisted mainly of depleted mantle similar to the present MORB source during the Archaean and this was largely replaced between 2.7 and 2.0 billion years ago by enriched mantle to form the OIB source. We suggest that this change in the nature of the hotspot source reflects a fundamental change in the dominant component of downward convection: from cold plumes breaking away from beneath a stable lithosphere during the pre-Archaean to subduction of lithosphere in the Archaean and post-Archaean mantles.  相似文献   

10.
The Mafic and Ultramafic Lavas of the Belingwe Greenstone Belt, Rhodesia   总被引:3,自引:3,他引:3  
The Belingwe Greenstone Belt (2.8 x 109 yrs old) contains a7 km succession of mafic and ultramafic lavas and high-levelintrusions which overlie a thin sedimentary formation, itselfunconformable on a granitic basement. The lavas range in compositionfrom andesites (4 per cent MgO) to peridotitic komatiites (32per cent MgO). The mineralogy and textures of the most magnesianlavas demonstrate that they were extruded in a completely liquidstate. If the source mantle had an MgO content around 40 percent, then partial melts in the range 35 per cent to 55 percent would be required to produce the most magnesian liquidsobserved. Chemical constraints on the petrogenesis of the ultramafic lavasallow estimates of source mantle composition. In particular,if the source had an MgO content around 40 per cent, then theoverall source composition would be similar to that of garnetIherzolite nodules in kimberlites. The calculated REE contentsof the source are close to chondritic. If all the ultramaficlavas were derived from the same source then the variation inliquid composition may have been controlled by orthopyroxeneas well as olivine during partial melting at depth. The evolutionof the less magnesian komatiites, basalts, and andesites canbe explained by lower degrees of partial melting of a commonsource, and by high-level fractionation of parent liquids similarto those extruded as ultramafic lavas. Physical constraints on the origin of the lavas imply derivationfrom a depth of 150 km or more, at temperatures of 1600–2000°C.  相似文献   

11.
Compositionally, high-Nb basalts are similar to HIMU (high U/Pb) ocean island basalts, continental alkaline basalts and alkaline lavas formed above slab windows. Tertiary alkaline basaltic lavas from eastern Jamaica, West Indies, known as the Halberstadt Volcanic Formation have compositions similar to high-Nb basalts (Nb > 20 ppm). The Halberstadt high-Nb basalts are divided into two compositional sub-groups where Group 1 lavas have more enriched incompatible element concentrations relative to Group 2. Both groups are derived from isotopically different spinel peridotite mantle source regions, which both require garnet and amphibole as metasomatic residual phases. The Halberstadt geochemistry demonstrates that the lavas cannot be derived by partial melting of lower crustal ultramafic complexes, metasomatised mantle lithosphere, subducting slabs, continental crust, mantle plume source regions or an upper mantle source region composed of enriched and depleted components. Instead, their composition, particularly the negative Ce anomalies, the high Th/Nb ratios and the similar isotopic ratios to nearby adakite lavas, suggests that the Halberstadt magmas are derived from a compositionally variable spinel peridotite source region(s) metasomatised by slab melts that precipitated garnet, amphibole, apatite and zircon. It is suggested that high-Nb basalts may be classified as a distinct rock type with Nb > 20 ppm, intraplate alkaline basalt compositions, but that are generated in subduction zones by magmatic processes distinct from those that generate other intraplate lavas.  相似文献   

12.
Lithium isotopes in global mid-ocean ridge basalts   总被引:1,自引:0,他引:1  
The lithium isotope compositions of 30 well-characterized samples of glassy lavas from the three major mid-ocean ridge segments of the world, spanning a wide range in radiogenic isotope and elemental content and sea floor physical parameters, have been measured. The overall data set shows a significant range in δ7Li (+1.6 to +5.6), with no global correlation between Li isotopes and other geochemical or tectonic parameters. The samples with the greatest lithophile element depletion (N-MORB: K2O/TiO2 < 0.09) display an isotopic range consistent with the extant database. Samples with greater trace element enrichment display a greater degree of isotopic variability and trend toward heavier compositions (δ7Li = +2.4 to +5.6), but are not distinct on average from N-MORB. Together with published data, N-MORB is estimated to have mean δ7Li = +3.4 ± 1.4‰ (2σ), consistent with the estimate for an uncontaminated MORB source based on pristine peridotite xenoliths. Locally, where sampling density permits, sources of Li isotope heterogeneity may be evaluated. Sample sets from the East Pacific Rise show correlation of δ7Li with halogen concentration ratios. This is interpreted at 15.5°N latitude to represent incorporation of <5 weight percent recycled subduction-modified mantle in the MORB source. At 9.5°N latitude the data are more consistent with shallow level magma chamber contamination by seawater-derived components (<0.5 wt.%).  相似文献   

13.
The Re — Os isotopic systematics of komatiites and spatially associated basalts from Gorgona Island, Colombia, indicate that they were produced at 155±43 Ma. Subsequent episodes of volcanism produced basalts at 88.1±3.8 Ma and picritic and basaltic lavas at ca. 58 Ma. The age for the ultramafic rocks is important because it coincides with the late-Jurassic, early-Cretaceous disassembly of Pangea, when the North- and South-American plates began to pull apart. Deep-seated mantle upwelling possibly precipitated the break-up of these continental plates and caused a tear in the subducting slab west of Gorgona, providing a rare, late-Phanerozoic conduit for the komatiitic melts.Mantle sources for the komatiites were heterogeneous with respect to Os and Pb isotopic compositions, but had homogeneous Nd isotopic compositions (Nd+9±1). Initial 187Os/186Os normalized to carbonaceous chondrites at 155 Ma (Os) ranged from 0 to +22, and model-initial values ranged from 8.17 to 8.39. The excess radiogenic Os, compared with an assumed bulk-mantle evolution similar to carbonaceous chondrites, was likely produced in portions of the mantle with long-term elevated Re concentrations. The Os, Pb and Nd isotopic compositions, together with major-element constraints, suggest that the sources of the komatiites were enriched more than 1 Ga ago by low (<20%) and variable amounts of a basalt or komatiite component. This component was added as either subducted oceanic crust or melt derived from greater depths in the mantle. These results suggest that the Re — Os isotope system may be a highly sensitive indicator of the presence of ancient subducted oceanic crust in mantle-source regions.  相似文献   

14.
Shield-stage high-MgO alkalic lavas from La Palma and El Hierro (Canary Islands) have been characterized for their O-Sr-Nd-Os-Pb isotope compositions and major-, trace-, and highly siderophile-element (HSE: Os, Ir, Ru, Pt, Pd, Re) abundances. New data are also reported for associated evolved rocks, and entrained xenoliths. Clear differences in Pd/Ir and isotopic ratios for high Os (>50 ppt) lavas from El Hierro (δ18Oolivine = 5.17 ± 0.08‰; 87Sr/86Sr = 0.7029 to 0.7031; εNd = +5.7 to +7.1; 187Os/188Os = 0.1481 to 0.1750; 206Pb/204Pb = 19.1 to 19.7; Pd/Ir = 6 ± 3) versus those from La Palma (δ18Oolivine = 4.87 ± 0.18‰; 87Sr/86Sr = 0.7031 to 0.7032; εNd = +5.0 to +6.4; 187Os/188Os = 0.1421 to 0.1460; 206Pb/204Pb = 19.5 to 20.2; Pd/Ir = 11 ± 4) are revealed from the dataset.Crustal or lithospheric assimilation during magma transport cannot explain variations in isotopic ratios or element abundances of the lavas. Shallow-level crystal-liquid fractionation of olivine, clinopyroxene and associated early-crystallizing minerals (e.g., spinel and HSE-rich phases) controlled compatible element and HSE abundances; there is also evidence for sub-aerial degassing of rhenium. High-MgO lavas are enriched in light rare earth elements, Nb, Ta, U, Th, and depleted in K and Pb, relative to primitive mantle abundance estimates, typical of HIMU-type oceanic island basalts. Trace element abundances and ratios are consistent with low degrees (2-6%) of partial melting of an enriched mantle source, commencing in the garnet stability field (?110 km). Western Canary Island lavas were sulphur undersaturated with estimated parental melt HSE abundances (in ppb) of 0.07 ± 0.05 Os, 0.17 ± 0.16 Ir, 0.34 ± 0.32 Ru, 2.6 ± 2.5 Pt, 1.4 ± 1.2 Pd, 0.39 ± 0.30 Re. These estimates indicate that Canary Island alkali basalts have lower Os, Ir and Ru, but similar Pt, Pd and Re contents to Hawai’ian tholeiites.The HIMU affinities of the lavas, in conjunction with the low δ18Oolivine and high 206Pb/204Pb for La Palma, and elevated 187Os/188Os for El Hierro implies melting of different proportions of recycled oceanic crust and lithosphere. Our preferred model to explain isotopic differences between the islands is generation from peridotitic mantle metasomatised by <10% pyroxenite/eclogite made from variable portions of similar aged recycled oceanic crust and lithosphere. The correspondence of radiogenic 206Pb/204Pb, 187Os/188Os, elevated Re/Os and Pt/Os, and low-δ18O in western Canary Island lavas provides powerful support for recycled oceanic crust and lithosphere to generate the spectrum of HIMU-type ocean island basalt signatures. Persistence of geochemical heterogeneities throughout the stratigraphies of El Hierro and La Palma demonstrate long-term preservation of these recycled components in their mantle sources over relatively short-length scales (∼50 km).  相似文献   

15.
Precise Fe/Mn ratios and MnO contents have been determined for basalts from the Hawaiian shields of Ko’olau and Kilauea by inductively coupled plasma mass spectrometry. It is well known that the youngest Ko’olau (Makapu’u-stage) shield lavas define a geochemical endmember for Hawaiian lavas in terms of CaO and SiO2 contents and isotopic ratios of O, Sr, Nd, Hf, Pb, and Os. We find that their MnO content is also distinct. Despite the small range in MnO, 0.146 to 0.176 wt%, the precision of our data is sufficient to show that among unaltered Ko’olau lavas MnO content is correlated with Nd-Hf-Pb isotopic ratios, La/Nb and Al2O3/CaO elemental ratios, and contents of SiO2, MgO and Na2O + K2O adjusted for olivine fractionation. These trends are consistent with two-component mixing; one endmember is a SiO2-rich, MnO-, and MgO-poor dacite or andesite melt, generated by low degree (10-20%) partial melting of eclogite. Since this low-MgO endmember (dacite or andesite melt) has very low FeO and MnO contents, mixing of high Fe/Mn dacite or andesite melt with a MgO-rich picritic melt, the other endmember, does not significantly increase the Fe/Mn in mixed magmas; consequently, Ko’olau and Kilauea lavas have similar Fe/Mn. We conclude that the high Fe/Mn in Hawaiian lavas relative to mid-ocean ridge basalt originates from the high MgO endmember in Hawaiian lavas.  相似文献   

16.
Oceanic basalts, such as mid-ocean ridge basalts (MORB) and ocean island basalts (OIB), are characterized by large isotopic and trace element variability that is hard to reconcile with partial melting of a peridotitic mantle alone. Their variability has been attributed to the presence of heterogeneities within the mantle, such as recycled crust, metasomatized material or outer core contribution. There have been few attempts to constrain the major element composition of those heterogeneities, most studies focusing on incompatible trace elements and radiogenic isotopes. Here, we report Zn, Mn and Fe systematics in mafic and ultramafic systems (whole-rocks and minerals) and we explore their use for detecting lithological heterogeneities that deviate from peridotitic mantle dominated by olivine and orthopyroxene. We suggest that Zn/Fe ratio is a particularly promising proxy. Zn/Fe fractionates equally between olivine, orthopyroxene and melt (e.g. the inter-mineral exchange coefficients  ∼  is ∼0.9-1), and the distribution of Zn/Fe between minerals appears to be temperature-independent within error. In contrast, clinopyroxene and garnet are characterized by low Zn/Fe ratios compared to co-existing melt, olivine and orthopyroxene, that is, and are both <<1. These partitioning behaviors imply that Zn/Fe ratios are minimally fractionated during partial melting of peridotite and differentiation of primitive basalts, if differentiation is dominated by olivine control. Thus, the Zn/Fe ratios of primitive basalts preserve the Zn/Fe ratio of the primary parental magma, providing insight into the signature of the mantle source region. We also infer that Zn/Fe ratios in melts are unlikely to be fractionated by modal variations in peridotitic material but are highly fractionated if garnet and/or clinopyroxene are the main phases in the source during melting. Similar Zn/Fe ratios between MORB and average upper mantle confirm the lack of fractionation during peridotite melting. However, high Zn/Fe ratios of some OIB cannot be explained by peridotite melting alone, but instead require the presence of high Zn/Fe lithologies or lithologies that have bulk exchange coefficients  < 1. All garnet-bearing or clinopyroxene-bearing lithologies, such as eclogites and garnet pyroxenites, fit the latter requirement.  相似文献   

17.
Concentrations of the platinum-group elements have been determined in several suites of southern African flood-type basalts and mid-ocean ridge basalt (MORB), covering some 3 Ga of geologic evolution and including the Etendeka, Karoo, Soutpansberg, Machadodorp, Hekpoort, Ventersdorp and Dominion magmas. The magmas cover a compositional range from 3.7 to 18.7% MgO, 26–720 ppm Ni, 16–250 ppm Cu, and <1–255 ppb total platinum-group elements (PGE). The younger basalts (Etendeka, Karoo) tend to be depleted in PGE relative to Cu, while most of the older basalts (Hekpoort, Machadodorp, Ventersdorp, Dominion) show no PGE depletion relative to Cu. Further, the younger basalts tend to have lower average Pt/Pd ratios than the older basalts, and the MORBs have lower average Pt/Pd than the continental basalts within the broad groupings of "old" and "young" basalts. This may reflect (1) a decreasing degree of mantle melting through geologic time, and (2) source heterogeneity, in that the MORBs are derived from predominantly asthenospheric mantle, whereas the continental basalts also contain a lithospheric mantle component enriched in Pt. In addition to these factors, some PGE fractionation also occurred during differentiation of the magmas, with Pd showing incompatible behaviour and the other PGE variably compatible behaviour. The examined southern African flood-type basalts and MORB appear to offer limited prospects for magmatic sulfide ores, largely because they show little evidence for significant chalcophile metal depletion that could be the result of sulphide extraction during ascent and crystallization.Editorial responsibility: I. Parsons  相似文献   

18.
The Re-Os isotopic systematics of two ca. 2.7-Ga komatiite flows from Belingwe, Zimbabwe are examined. Rhenium and Os concentrations in these rocks are similar to concentrations in other Archean, Proterozoic, and Phanerozoic komatiites. Despite the excellent preservation of primary magmatic minerals, the Re-Os systematics of whole-rock samples of the komatiites show open-system behavior. Consistent model ages for several whole-rock samples suggest a disturbance to the system during the Proterozoic. Despite the open-system behavior in the whole rocks, Re-Os systematics for concentrates of primary magmatic olivine and spinel indicate generally closed-system behavior since the magmatic event that produced the rocks. Regression of the data for the mineral concentrates yields an age of 2721 ± 21 Ga, which is consistent with Pb-Pb and Sm-Nd ages that have been previously reported for the komatiites (Chauvel et al., 1993), and an initial 187Os/188Os ratio of 0.11140 ± 84 (γOs = +2.8 ± 0.8).The 2 to 3% enrichment in 187Os/188Os ratio of the mantle source of the komatiites, relative to the chondritic composition of the contemporaneous convecting upper mantle, most likely reflects either the incorporation of substantially older (≥ 4.2 Ga), Re-rich recycled mafic crust into the mantle source of the komatiites or the contribution of suprachondritic Os to the source from the putative 187Os-enriched outer core. The former interpretation would indicate the Hadean formation and recycling of mafic crust. The latter interpretation would require early formation of a substantial inner core followed by upwelling of a mantle plume from the core-mantle boundary, at least as far back as the Late Archean. Either interpretation requires large-scale mantle convection during the first half of Earth history.  相似文献   

19.
Separation of a metal-rich core strongly depleted the silicate portion of the Earth in highly siderophile elements (HSE), including Pt, Re, and Os. To address the issues of how early differentiation, partial melting, and enrichment processes may have affected the relative abundances of the HSE in the upper mantle, 187Os/188Os and 186Os/188Os data for chondrites are compared with data for Os-rich alloys from upper mantle peridotites. Given that 187Os and 186Os are decay products of 187Re and 190Pt, respectively, these ratios can be used to constrain the long-term Re/Os and Pt/Os of mantle reservoirs in comparison to chondrites. Because of isotopic homogeneity, H-group ordinary and other equilibrated chondrites may be most suitable for defining the initial 186Os/188Os of the solar system. The 186Os/188Os ratios for five H-group ordinary chondrites range only from 0.1198384 to 0.1198408, with an average of 0.1198398 ± 0.0000016 (2σ). Using the measured Pt/Os and 186Os/188Os for each chondrite, the calculated initial 186Os/188Os at 4.567 Ga is 0.1198269 ± 0.0000014 (2σ). This is the current best estimate for the initial 186Os/188Os of the bulk solar system. The mantle evolution of 186Os/188Os can be defined via examination of mantle-derived materials with well-constrained ages and low Pt/Os. Two types of mantle-derived materials that can be used for this task are komatiites and Os-rich alloys. The alloys are particularly valuable in that they have little or no Re or Pt, thus, when formed, evolution of both 187Os/188Os and 186Os/188Os ceases. Previously published results for an Archean komatiite and new results for Os-rich alloys indicate that the terrestrial mantle evolved with Pt-Os isotopic systematics that were indistinguishable from the H-group ordinary and some enstatite chondrites. This corresponds to a Pt/Os of 2.0 ± 0.2 for the primitive upper mantle evolution curve. This similarity is consistent with previous arguments, based on the 187Os/188Os systematics and HSE abundances in the mantle, for a late veneer of materials with chondritic bulk compositions controlling the HSE budget of the upper mantle. It is very unlikely that high pressure metal-silicate segregation leading to core formation can account for the elemental and isotopic compositions of HSE in the upper mantle.  相似文献   

20.
The Xinjie mafic-ultramafic layered intrusion in the Emeishan large igneous province (ELIP) hosts Cu-Ni-platinum group element (PGE) sulfide ore layers within the lower part and Fe-Ti-V oxide-bearing horizons within the middle part. The major magmatic Cu-Ni-PGE sulfide ores and spatially associated cumulate rocks are examined for their PGE contents and Re-Os isotopic systematics. The samples yielded a Re-Os isochron with an age of 262 ± 27 Ma and an initial 187Os/188Os of 0.12460 ± 0.00011 (γOs(t) = −0.5 ± 0.1). The age is in good agreement with the previously reported U-Pb zircon age, indicating that the Re-Os system remained closed for most samples since the intrusion emplacement. They have near-chondritic γOs(t) values ranging from −0.7 to −0.2, similar to those of the Lijiang picrites and Song Da komatiites. Exceptionally, two samples from the roof zone and one from upper sequence exhibit radiogenic γOs(t) values (+0.6 to +8.6), showing minor contamination by the overlying Emeishan basalts.The PGE-rich ores contain relatively high PGE and small amounts of sulfides (generally less than 2%) and the abundance of Cu and PGE correlate well with S, implying that the distribution of these elements is controlled by the segregation and accumulation of a sulfide liquid. Some ore samples are poor in S (mostly <800 ppm), which may due to late-stage S loss caused by the dissolution of FeS from pre-existing sulfides through their interaction with sulfide-unsaturated flowing magma. The combined study shows that the Xinjie intrusion may be derived from ferropicritic magmas. The sharp reversals in Mg#, Cr/FeOT and Cr/TiO2 ratios immediately below Units 2-4, together with high Cu/Zr ratios decreasing from each PGE ore layer within these cyclic units, are consistent with multiple magma replenishment episodes. The sulfides in the cumulate rocks show little evidence of PGE depletion with height and thus appear to have segregated from successive inputs of fertile magma. This suggests that the Xinjie intrusion crystallized from in an open magma system, e.g., a magma conduit. The compositions of the disseminated sulfides in most samples can be modeled by applying an R factor (silicate-sulfide mass ratio) of between 1000 and 8000, indicating the segregation of only small amounts of sulfide liquid in the parental ferropicritic magmas. Thus, continuous mixing between primitive ferropicritic magma and differentiated resident magma could lead to crystallization of chromite, Cr-bearing magnetite and subsequently abundant Fe-Ti oxides, thereby the segregation of PGE-rich Cu-sulfide.When considered in the light of previous studies on plume-derived komatiites and picrites worldwide, the close-to-chondritic Os isotopic composition for most Xinjie samples, Lijiang picrites and Song Da komatiites suggest that the ferropicritic magma in the ELIP were generated from a plume. This comprised recycled Neoproterozic oceanic lithosphere, including depleted peridotite mantle embedded with geochemically enriched domains. The ascending magmas thereafter interacted with minor (possibly <10%) subducted/altered oceanic crust. This comparison suggests that the komatiitic melts in the ELIP originated from a greater-than normal degree of melting of incompatible trace element depleted, refractory mantle components in the plume source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号