首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We report on the petrography and geochemistry of the newly discovered olivine-phyric shergottite Larkman Nunatak (LAR) 06319. The meteorite is porphyritic, consisting of megacrysts of olivine (?2.5 mm in length, Fo77-52) and prismatic zoned pyroxene crystals with Wo3En71 in the cores to Wo8-30En23-45 at the rims. The groundmass is composed of finer grained olivine (<0.25 mm, Fo62-46), Fe-rich augite and pigeonite, maskelynite and minor quantities of chromite, ulvöspinel, magnetite, ilmenite, phosphates, sulfides and glass. Oxygen fugacity estimates, derived from the olivine-pyroxene-spinel geo-barometer, indicate that LAR 06319 formed under more oxidizing conditions (QFM -1.7) than for depleted shergottites. The whole-rock composition of LAR 06319 is also enriched in incompatible trace elements relative to depleted shergottites, with a trace-element pattern that is nearly identical to that of olivine-phyric shergottite NWA 1068. The oxygen isotope composition of LAR 06319 (Δ17O = 0.29 ±0.03) confirms its martian origin.Olivine megacrysts in LAR 06319 are phenocrystic, with the most Mg-rich megacryst olivine being close to equilibrium with the bulk rock. A notable feature of LAR 06319 is that its olivine megacryst grains contain abundant melt inclusions hosted within the forsterite cores. These early-trapped melt inclusions have similar trace element abundances and patterns to that of the whole-rock, providing powerful evidence for closed-system magmatic behavior for LAR 06319. Calculation of the parental melt trace element composition indicates a whole-rock composition for LAR 06319 that was controlled by pigeonite and augite during the earliest stages of crystallization and by apatite in the latest stages. Crystal size distribution and spatial distribution pattern analyses of olivine indicate at least two different crystal populations. This is most simply interpreted as crystallization of megacryst olivine in magma conduits, followed by eruption and subsequent crystallization of groundmass olivine.LAR 06319 shows close affinity in mineral and whole-rock chemistry to olivine-phyric shergottite, NWA 1068 and the basaltic shergottite NWA 4468. The remarkable features of these meteorites are that they have relatively similar quantities of mafic minerals compared with olivine-phyric shergottites (e.g., Y-980459, Dho 019), but flat and elevated rare earth element patterns more consistent with the LREE-enriched basaltic shergottites (e.g., Shergotty, Los Angeles). This relationship can be interpreted as arising from partial melting of an enriched mantle source and subsequent crystal-liquid fractionation to form the enriched olivine-phyric and basaltic shergottites, or by assimilation of incompatible-element enriched martian crust. The similarity in the composition of early-trapped melt inclusions and the whole-rock for LAR 06319 indicates that any crustal assimilation must have occurred prior to crystallization of megacryst olivine, restricting such processes to the deeper portions of the crust. Thus, we favor LAR06319 forming from partial melting of an “enriched” and oxidized mantle reservoir, with fractional crystallization of the parent melt upon leaving the mantle.  相似文献   

2.
The basaltic Martian meteorite Yamato 980459 consists of large olivine phenocrysts and often prismatic pyroxenes set into a fine-grained groundmass of smaller more Fe-rich olivine, chromite, and an interstitial residual material displaying quenching textures of dendritic olivine, chain-like augite and sulfide droplets in a glassy matrix. Yamato 980459 is, thus, the only Martian meteorite without plagioclase/maskelynite. Olivine is compositionally zoned from a Mg-rich core to a Fe-rich rim with the outer few micrometers being especially rich in iron. With Fo84 the cores are the most magnesian olivines found in Martian meteorites so far. Pyroxenes are also mostly composite crystals of large orthopyroxene cores and thin Ca-rich overgrowths. Separate pigeonite and augites are rare. On basis of the mineral compositions, the cooling rates determined from crystal morphologies, and crystal grain size distributions it is deduced that the parent magma of Yamato 980459 initially cooled under near equilibrium conditions e.g., in a magma chamber allowing chromite and the Mg-rich silicates to form as cumulus phases. Fractional crystallization at higher cooling rates and a low degree of undercooling let to the formation of the Ca-, Al-, and Fe-rich overgrowths on olivine and orthopyroxene while the magma was ascending towards the Martian surface. Finally and before plagioclase and also phosphates could precipitate, the magma was very quickly erupted quenching the remaining melt to glass, dendritic silicates and sulfide droplets. The shape preferred orientation of olivine and pyroxene suggests a quick, thin outflow of lava. According to the shock effects found in the minerals of Yamato 980459, the meteorite experienced an equilibration shock pressure of about 20-25 GPa. Its near surface position allowed the ejection from the planet’s surface already by a single impact event and at relatively low shock pressures.  相似文献   

3.
Larkman Nunatak (LAR) 06319 is an olivine-phyric shergottite whose olivine crystals contain abundant crystallized melt inclusions. In this study, three types of melt inclusion were distinguished, based on their occurrence and the composition of their olivine host: Type-I inclusions occur in phenocryst cores (Fo77-73); Type-II inclusions occur in phenocryst mantles (Fo71-66); Type-III inclusions occur in phenocryst rims (Fo61-51) and within groundmass olivine. The sizes of the melt inclusions decrease significantly from Type-I (∼150-250 μm diameter) to Type-II (∼100 μm diameter) to Type-III (∼25-75 μm diameter). Present bulk compositions (PBC) of the crystallized melt inclusions were calculated for each of the three melt inclusion types based on average modal abundances and analyzed compositions of constituent phases. Primary trapped liquid compositions were then reconstructed by addition of olivine and adjustment of the Fe/Mg ratio to equilibrium with the host olivine (to account for crystallization of wall olivine and the effects of Fe/Mg re-equilibration). The present bulk composition of Type-I inclusions (PBC1) plots on a tie-line that passes through olivine and the LAR 06319 whole-rock composition. The parent magma composition can be reconstructed by addition of 29 mol% olivine to PBC1, and adjustment of Fe/Mg for equilibrium with olivine of Fo77 composition. The resulting parent magma composition has a predicted crystallization sequence that is consistent with that determined from petrographic observations, and differs significantly from the whole-rock only in an accumulated olivine component (∼10 wt%). This is consistent with a calculation indicating that ∼10 wt% magnesian (Fo77-73) olivine must be subtracted from the whole-rock to yield a melt in equilibrium with Fo77. Thus, two independent estimates indicate that LAR 06319 contains ∼10 wt% cumulate olivine.The rare earth element (REE) patterns of Type-I melt inclusions are similar to that of the LAR 06319 whole-rock. The REE patterns of Type-II and Type-III melt inclusions are also broadly parallel to that of the whole-rock, but at higher absolute abundances. These results are consistent with an LAR 06319 parent magma that crystallized as a closed-system, with its incompatible-element enrichment being inherited from its mantle source region. However, fractional crystallization of the reconstructed LAR 06319 parent magma cannot reproduce the major and trace element characteristics of all enriched basaltic shergottites, indicating local-to-large scale major- and trace-element variations in the mantle source of enriched shergottites. Therefore, LAR 06319 cannot be parental to the enriched basaltic shergottites.  相似文献   

4.
The Larkman Nunatak (LAR) 06319 olivine-phyric shergottite is composed of zoned megacrysts of olivine (Fo76-55 from core to rim), pyroxene (from core to rim En70Fs25Wo5, En50Fs25Wo25, and En45Fs45Wo10), and Cr-rich spinel in a matrix of maskelynite (An52Ab45), pyroxene (En30-40Fs40-55Wo10-25,), olivine (Fo50), Fe-Ti oxides, sulfides, phosphates, Si-rich glass, and baddeleyite. LAR 06319 experienced equilibration shock pressures of 30-35 GPa based on the presence of localized shock melts, mechanical deformation of olivine and pyroxene, and complete transformation of plagioclase to maskelynite with no relict birefringence. The various phases and textures of this picritic basalt can be explained by closed system differentiation of a shergottitic melt. Recalculated parent melt compositions obtained from melt inclusions located in the core of the olivine megacrysts (Fo>72) resemble those of other shergottite parent melts and whole-rock compositions, albeit with a lower Ca content. These compositions were used in the MELTS software to reproduce the crystallization sequence. Four types of spinel and two types of ilmenite reflect changes in oxygen fugacity during igneous differentiation. Detailed oxybarometry using olivine-pyroxene-spinel and ilmenite-titanomagnetite assemblages indicates initial crystallization of the megacrysts at 2 log units below the Fayalite-Magnetite-Quartz buffer (FMQ - 2), followed by crystallization of the groundmass over a range of FMQ - 1 to FMQ + 0.3. Variation is nearly continuous throughout the differentiation sequence.LAR 06319 is the first member of the enriched shergottite subgroup whose bulk composition, and that of melt inclusions in its most primitive olivines, approximates that of the parental melt. The study of this picritic basalt indicates that oxidation of more than two log units of FMQ can occur during magmatic fractional crystallization and ascent. Some part of the wide range of oxygen fugacities recorded in shergottites may consequently be due to this process. The relatively reduced conditions at the beginning of the crystallization sequence of LAR 06319 may imply that the enriched shergottite mantle reservoir is slightly more reduced than previously thought. As a result, the total range of Martian mantle oxygen fugacities is probably limited to FMQ − 4 to − 2. This narrow range could have been generated during the slow crystallization of a magma ocean, a process favored to explain the origin of shergottite mantle reservoirs.  相似文献   

5.
The olivine phenocrysts of four basalts (12004, 12008, 12009 and 12022) are concentrically zoned and have core compositions about as magnesian as experimentally produced liquidas olivines, features which suggest fractional crystallization and absence of Fe-Mg reequilibration. In the magnesium- and olivine-rich granular basalt 12035, the olivines are either unzoned or are zoned toward adjacent grains and have compositions more iron-rich than either cumulus olivines or liquidus olivines (should the rock represent the composition of a melt), features which suggest extensive Fe-Mg re-equilibration.  相似文献   

6.
Shergottites sampled two distinct geochemical reservoirs on Mars. Basaltic and olivine-phyric shergottites individually sampled both geochemically enriched and depleted reservoirs, whereas lherzolitic shergottites are previously known only to exhibit a relatively limited intermediate geochemical signature that may have resulted from the mixing of the two geochemical end-member reservoirs. Here we show that recently discovered shergottites Robert Massif (RBT) 04261 and RBT 04262 are the first examples of lherzolitic shergottites originating from the enriched reservoir.RBT 04261 and RBT 04262, initially identified as olivine-phyric shergottites, are actually lherzolitic shergottites. Both meteorites exhibit nearly identical textures and mineral compositions, suggesting that they should be paired. Each consists of two distinct textures: poikilitic and non-poikilitic. The poikilitic areas are composed of pyroxene oikocrysts enclosing olivine grains; all pyroxene oikocrysts have pigeonite cores mantled by augite. The non-poikilitic areas are composed of olivine, pyroxene, maskelynite and minor amounts of merrillite, chromite and ilmenite. Olivine and pyroxene show the lowest Mg-number, and maskelynite has the lowest anorthite component among the lherzolitic shergottites. Moreover, the modal abundances of maskelynite in these two meteorites are distinctly higher than the other lherzolitic shergottites.The rare earth element (REE) budgets of RBT 04261 and RBT 04262 are dominated by merrillite. The slightly light rare earth element (LREE)-enriched pattern of this mineral is similar to that of merrillite in the geochemically enriched basaltic shergottites Shergotty and Zagami, and unlike the LREE-depleted pattern of merrillite in the other lherzolitic shergottites. The REE patterns of both high- and low-Ca pyroxenes are also similar to those in Shergotty and Zagami. The REE pattern of a melt calculated to be in equilibrium with the core of a pyroxene oikocryst is parallel to that of the RBT 04262 whole-rock as well as whole-rock compositions of other geochemically enriched basaltic shergottites. These observations imply that RBT 04262 sampled an enriched and oxidized reservoir similar to that sampled by some of the basaltic shergottites and are consistent with an oxidizing condition for the formation of RBT 04262 (log fO2 = QFM-1.6).The petrographic and geochemical observations presented here suggest that RBT 04261 and RBT 04262 represent the most evolved magma among the lherzolitic shergottites and that this magma originated from a geochemically enriched reservoir on Mars. Based on an evaluation of the relationship between petrographic, geochemical and chronological signatures for shergottites including RBT 04261 and RBT 04262, we propose that both geochemically enriched and depleted shergottites were ejected from the same launch site on Mars.  相似文献   

7.
Many carbonaceous chondrites contain discrete olivine fragments that have been considered to be primitive material, i.e. direct condensates from the solar nebula or pre-solar system material. Olivine occurring in chondrules and as isolated grains in C3(0) chondrites has been characterized chemically and petrographically. Type I chondrules contain homogeneous forsterite grains that exhibit a negative correlation between FeO and CaO. Type II chondrules contain zoned fayalite olivines in which FeO is positively correlated with CaO and MnO. The isolated olivines in C3(0) chondrites form two compositional populations identical to olivines in the two types of porphyritic olivine chondrules in the same meteorites. Isolated olivines contain trapped melt inclusions similar in composition to glassy mesostasis between olivines in chondrules. Such glasses can be produced by fractional crystallization of olivine and minor spinel in the parent chondrule melts if plagioclase does not nucleate. The isolated olivine grains are apparently clastic fragments of chondrules. Some similarities between olivines in C3(0), C2, and Cl chondrites may suggest that olivine grains in all these meteorites crystallized from chondrule melts.  相似文献   

8.
The chemical composition of the pyroxenes and olivines of 12 basaltic rocks and 5 lherzolite nodules was determined quantitatively by electron micro-probe analysis. The composition of the pyroxenes depends on the type of basalt in which they occur. Tholeiitic basalts with normative quartz contain three pyroxenes: orthorombic pyroxenes, pigeonites and augites. All pyroxene phases are zoned and do not show any exsolution. Their Ti and Al contents (Ca-Tschermaks and Ti-augite molecules) are small. All pyroxene phases were formed under disequilibrium with each other and with the melt because of rapid quenching. The sequence of crystallization: orthopyroxene—pigeonite—augite could be established by their Cr content.The alkali olivine basalts undersatured in SiO2 and the olivine nephelinites are characterized by Ti and Al-rich clinopyroxenes. The distribution of Ti and Al in the pyroxenes of the alkali olivine basalts shows a differentiation trend from the cores of the phenocrysts to their outer zones and to the crystals of the ground mass. Thereby the Ca-Tschermaks molecule is being replaced more and more by the Ti-augite molecule. The Ti content of the pyroxenes of the olivine nephelinites decreases in the last stage of differentiation because simultaneously increasing amounts of titaniferous magnetite crystallize.The pyroxenes of lherzolite peridotite nodules are characterized by high Al and low Ti contents which differ according to the type of basalt (alkali olivine basalt or olivine nephelinite) in which the nodules occur. The homogeneous distribution of the elements within the single grains indicates crystallization under equlibrium conditions. The conditions of their formation are comparable to those of Al-pyroxene peridotites in the upper mantle. The composition of pyroxenes of early accumulates of alkali basaltic melts differ from those of peridotite nodules. Therefore lherzolite nodules can be taken as residues of deeper peridotite masses.  相似文献   

9.
A technique is described for determining the cooling historyof olivine phenocrysts. The technique is based on the analysisof the diffusive re-equilibration of melt inclusions trappedby olivine phenocrysts during crystallization. The mechanismof re-equilibration involves diffusion of Fe from and Mg intothe initial volume of the inclusion. The technique applies toa single crystal, and thus the cooling history of differentphenocrysts in a single erupted magma can be established. Weshow that melt inclusions in high-Fo olivine phenocrysts frommantle-derived magmas are typically partially re-equilibratedwith their hosts at temperatures below trapping. Our analysisdemonstrates that at a reasonable combination of factors suchas (1) cooling interval before eruption (<350°C), (2)eruption temperatures (>1000°C), and (3) inclusion size(<70 µm in radius), partial re-equilibration of upto 85% occurs within 3–5 months, corresponding to coolingrates faster than 1–2°/day. Short residence timesof high-Fo phenocrysts suggest that if eruption does not happenwithin a few months after a primitive magma begins cooling andcrystallization, olivines that crystallize from it are unlikelyto be erupted as phenocrysts. This can be explained by efficientseparation of olivine crystals from the melt, and their rapidincorporation into the cumulate layer of the chamber. Theseresults also suggest that in most cases erupted high-Fo olivinephenocrysts retain their original composition, and thus compositionsof melt inclusions in erupted high-Fo olivine phenocrysts donot suffer changes that cannot be reversed. Short residencetimes also imply that large unzoned cores of high-Fo phenocrystscannot reflect diffusive re-equilibration of originally zonedphenocrysts. The unzoned cores are a result of fast efficientaccumulation of olivines from the crystallizing magma, i.e.olivines are separated from the magma faster than melt changesits composition. Thus, the main source of high-Fo crystals inthe erupted magmas is the cumulate layers of the magmatic system.In other words, olivine-phyric rocks represent mixtures of anevolved transporting magma (which forms the groundmass of therock) with crystals that were formed during crystallizationof more primitive melt(s). Unlike high-Fo olivine phenocrysts,the evolved magma may reside in the magmatic system for a longtime. This reconciles long magma residence times estimated fromthe compositions of rocks with short residence times of high-Foolivine phenocrysts. KEY WORDS: melt inclusions; olivine; picrites; residence time; diffusion  相似文献   

10.
The chemical compositions of melt inclusions in a primitive and an evolved basalt recovered from the mid-Atlantic ridge south of the Kane Fracture Zone (23°–24°N) are determined. The melt inclusions are primitive in composition (0.633–0.747 molar Mg/(Mg+Fe2+), 1.01–0.68 wt% TiO2) and are comparable to other proposed parental magmas except in having higher Al2O3 and lower CaO. The primitive melt inclusion compositions indicate that the most primitive magmas erupted in this region are not near primary magma compositions. Olivine and plagioclase microphenocrysts are close to exchange equilibrium with their respective basalt glasses, whose compositions are displaced toward olivine from 1 atm three phase saturation. The most primitive melt inclusion compositions are close to exchange equilibrium with the anorthitic cores of zoned plagioclases (An78.3-An83.1; the hosts for the melt inclusions in plagioclase) and with olivines more forsteritic (Fo89-Fo91) than the olivine microphenocrysts (the hosts for the melt inclusions in olivine). Xenocrystic olivine analyzed is Fo89 but contains no melt inclusions. These observations indicate that olivines have exchanged components with the melt after melt inclusion entrapment, whereas plagioclase compositions have remained the same since melt inclusion entrapment. Common denominator element ratio diagrams and oxide versus oxide variation diagrams show that the melt inclusion compositions, which represent liquids higher along the liquid line of descent, are related to the glass compositions by the fractionation of olivine, plagioclase and clinopyroxene (absent from the mincral assemblage), probably occurring at elevated pressures. A model is proposed whereby clinopyroxene segregates from the melt at elevated pressures (to account for its absence in the erupted lavas that have the chemical imprint of clinopyroxene fractionation). Zoned plagioclases in the erupted lavas are thought to be survivors of decompressional melting during magma ascent. Since similar primitive melt inclusions occur in olivine microphenocrysts and in the cores of zoned plagioclases, any model must account for all phases present.  相似文献   

11.
In situ Sr-isotope and microchemical studies were used to determine the provenance of K-feldspar megacrysts hosted in mafic alkaline potassic, ultrapotassic rocks and in differentiated rocks from two nearby volcanic apparatus in central Italy.

At Monte Cimino volcanic complex, mafic leucite-free ultrapotassic megacryst-bearing rocks of olivine latitic composition are associated with evolved latite and trachyte. Here, latites and trachytes straddle the sub-alkaline field. Age-corrected 87Sr/86Sr values (Sri) of the analysed Cimino olivine latites vary from 0.71330 and 0.71578 and strongly increase at constant Mg value. Latite and trachyte have lower Sri than olivine latites ranging between 0.71331 and 0.71361. Sri of K-feldspar megacrysts from olivine latites are between 0.71352 and 0.71397, but core and rim 87Sr/86Sr ratios within individual megacryst are indistinguishable. In all the mafic rocks, the megacrysts are not in isotopic equilibrium with the hosts. K-feldspar megacrysts from both the latite and trachyte have similar Sr-isotope compositions (Sri=0.71357–0.71401) to those in the olivine latites. However, Sri of megacryst in the trachyte vary significantly from core to rim (Sri from 0.71401 to 0.71383). As with the olivine latites, the K-feldspar megacrysts are not in isotopic equilibrium with bulk rock compositions of the latite or trachyte.

At Vico volcano, megacryst-bearing rocks are mafic leucite-free potassic rocks, mafic leucite-bearing ultrapotassic rocks and old trachytic rocks. The mafic leucite-bearing and leucite-free rocks are a tephri-phonolite and an olivine latite, respectively. A megacryst in Vico trachyte is isotopically homogeneous (Sri CORE=0.71129, RIM=0.71128) and in equilibrium with the host rock (Sri bulk ROCK=0.71125). Sri of megacryst from tephri-phonolite is clearly not in isotopic equilibrium with its host (Sri bulk ROCK=0.71158), and it increases from core (Sri=0.71063) to rim (Sri=0.71077). A megacryst in Vico olivine latite is isotopically homogeneous (Sri CORE=0.71066, RIM=0.71065), but not in equilibrium with the host rock (Sri bulk ROCK=0.71013).

The Sr isotope microdrilling technique reveals that Cimino megacrysts were crystallised in a Cimino trachytic magma and were subsequently incorporated by mixing/mingling processes in the latitic and olivine latitic melts. A model invoking the presence of a mafic sub-alkaline magma, which was mixed with the olivine latite, is proposed to justify the lack of simple geochemical mixing relation between Cimino trachytes and olivine latites. This magmatological model is able to explain the geochemical characteristics of Cimino olivine latites, otherwise ascribed to mantle heterogeneity.

The similarity of core Sri of megacrysts hosted in Vico tephri-phonolite and olivine latite suggests that the K-feldspar megacrysts are co-genetic. Isotopic equilibrium between megacryst and Vico host trachyte indicates that the trachyte is the parent of this megacryst. On the contrary, the megacrysts hosted in tephri-phonolite and olivine latite do not derive from the old trachytic magma because no diffusion process may explain the core to rim Sr isotope increase of the xenocryst hosted in the tephri-phonolite. The megacrysts hosted in the Vico mafic rocks might derive from a trachytic melt similar in composition to the old Vico trachytes.  相似文献   


12.
This work considers petrogenesis of the largest Holocene basaltic fissure eruptions of Iceland, which are also the largest in the world: Laki (1783-84 AD, 15 km3), Eldgjá (934 AD, 18 km3), Veidivötn (900, 1480 AD, multiple eruptions, >2 km3), Núpahraun (ca. 4000 BP, >1 km3) and Thjórsárhraun (ca 8000 BP, >20 km3). We present oxygen isotope laser fluorination analyses of 55 individual and bulk olivine crystals, coexisting individual and bulk plagioclase phenocrysts, and their host basaltic glasses with average precision of better than 0.1‰ (1SD). We also report O isotope analyses of cores and rims of 61 olivine crystals by SIMS with average precision on single spots of 0.24‰ (1SD) in 13 samples coupled with electron microprobe data for major and trace elements in these olivines. Within each individual sample, we have found that basaltic glass is relatively homogeneous with respect to oxygen isotopes, plagioclase phenocrysts exhibit crystal to crystal variability, while individual olivines span from the values in equilibrium with the low-δ18O matrix glass to those being three permil higher in δ18O than the equilibrium. Olivine cores with maximum value of 5.2‰ are found in many of these basalts and suggest that the initial magma was equilibrated with normal-δ18O mantle. No olivines or their intracrystalline domains are found with bulk or spot value higher than those found in MORB olivines. The δ18O variability of 0.3-3‰ exists for olivine grains from different lavas, and variable core-to-rim oxygen isotopic zoning is present in selected olivine grains. Many olivines in the same sample are not zoned, while a few grains are zoned with respect to oxygen isotopes and exhibit small core-to-core variations in Fe-Mg, Ni, Mn, Ca. Grains that are zoned in both Mg# and δ18O exhibit positive correlation of these two parameters. Electron microprobe analysis shows that most olivines equilibrated with the transporting melt, and thin Fe-richer rim is present around many grains, regardless of the degree of olivine-melt oxygen isotope disequilibrium.The preservation of isotopic and compositional zoning in selected grains, and subtle to severe Δ18O (melt-olivine) and Δ18O (plagioclase-olivine) disequilibria suggests rather short crystal residence times of years to centuries. Synglacially-altered upper crustal, tufaceous hyaloclastites of Pleistocene age serve as a viable source for low-δ18O values in Holocene basalts through assimilation, mechanical and thermal erosion, and devolatilization of stoped blocks. Cumulates formed in response to cooling during assimilation, and xenocrysts derived from hyaloclastites, contribute to the diverse δ18O crystalline cargo. The magma plumbing systems under each fissure are likely to include a network of interconnected dikes and sills with high magma flow rates that contribute to the efficacy of magmatic erosion of large quantities (10-60% mass) of hyaloclastites required by isotopic mass balance.Olivine diversity and the pervasive lack of phenocryst-melt oxygen isotopic equilibrium suggest that a common approach of analyzing bulk olivine for oxygen isotopes, as a proxy for the basaltic melt or to infer mantle δ18O value, needs to proceed with caution. The best approach is to analyze olivine crystals individually and demonstrate their equilibrium with matrix.  相似文献   

13.
Shock veins and melt pockets in Lithology A of Martian meteorite Elephant Moraine (EETA) 79001 have been investigated using electron microprobe (EM) analysis, petrography and X-ray Absorption Near Edge Structure (XANES) spectroscopy to determine elemental abundances and sulfur speciation (S2− versus S6+). The results constrain the materials that melted to form the shock glasses and identify the source of their high sulfur abundances. The XANES spectra for EETA79001 glasses show a sharp peak at 2.471 keV characteristic of crystalline sulfides and a broad peak centered at 2.477 keV similar to that obtained for sulfide-saturated glass standards analyzed in this study. Sulfate peaks at 2.482 keV were not observed. Bulk compositions of EETA79001 shock melts were estimated by averaging defocused EM analyses. Vein and melt pocket glasses are enriched in Al, Ca, Na and S, and depleted in Fe, Mg and Cr compared to the whole rock. Petrographic observations show preferential melting and mobilization of plagioclase and pyrrhotite associated with melt pocket and vein margins, contributing to the enrichments. Estimates of shock melt bulk compositions obtained from glass analyses are biased towards Fe- and Mg- depletions because, in general, basaltic melts produced from groundmass minerals (plagioclase and clinopyroxene) will quench to a glass, whereas ultramafic melts produced from olivine and low-Ca pyroxene megacrysts crystallize during the quench. We also note that the bulk composition of the shock melt pocket cannot be determined from the average composition of the glass but must also include the crystals that grew from the melt - pyroxene (En72-75Fs20-21Wo5-7) and olivine (Fo75-80). Reconstruction of glass + crystal analyses gives a bulk composition for the melt pocket that approaches that of lithology A of the meteorite, reflecting bulk melting of everything except xenolith chromite.Our results show that EETA79001 shock veins and melt pockets represent local mineral melts formed by shock impedance contrasts, which can account for the observed compositional anomalies compared to the whole rock sample. The observation that melts produced during shock commonly deviate from the bulk composition of the host rock has been well documented from chondrites, rocks from terrestrial impact structures and other Martian meteorites. The bulk composition of shock melts reflects the proportions of minerals melted; large melt pockets encompass more minerals and approach the whole rock whereas small melt pockets and thin veins reflect local mineralogy. In the latter, the modal abundance of sulfide globules may reach up to 15 vol%. We conclude the shock melt pockets in EETA79001 lithology A contain no significant proportion of Martian regolith.  相似文献   

14.
Spinel is widespread in the ultramafic core rocks of zoned late Precambrian mafic–ultramafic complexes from the Eastern Desert of Egypt. These complexes; Gabbro Akarem, Genina Gharbia and Abu Hamamid are Precambrian analogues of Alaskan-type complexes, they are not metamorphosed although weakly altered. Each intrusion is composed of a predotite core enveloped by pyroxenites and gabbros at the margin. Silicate mineralogy and chemistry suggest formation by crystal fractionation from a hydrous magma. Relatively high Cr2O3 contents are recorded in pyroxenes (up to 1.1 wt.%) and amphiboles (up to 1.4 wt.%) from the three plutons. The chrome spinel crystallized at different stages of melt evolution; as early cumulus inclusions in olivine, inclusions in pyroxenes and amphiboles and late-magmatic intercumulus phase. The intercumulus chrome spinel is homogenous with narrow-range of chemical composition, mainly Fe3+-rich spinel. Spinel inclusions in clinopyroxene and amphibole reveal a wide range of Al (27–44 wt.% Al2O3) and Mg (6–13 wt.% MgO) contents and are commonly zoned. The different chemistries of those spinels reflect various stages of melt evolution and re-equilibration with the host minerals. The early cumulus chrome spinel reveals a complex unmixing structures and compositions. Three types of unmixed spinels are recognized; crystallographically oriented, irregular and complete separation. Unmixing products are Al-rich (Type I) and Fe3+-rich (Type II) spinels with an extensive solid solution between the two end members. The compositions of the unmixed spinels define a miscibility gap with respect to Cr–Al–Fe3+, extending from the Fe3+–Al join towards the Cr corner. Spinel unmixing occurs in response to cooling and the increase in oxidation state. The chemistry and grain size of the initial spinel and the cooling rate control the type of unmixing and the chemistry of the final products. Causes of spinel unmixing during late-magmatic stage are analogous to those in metamorphosed complexes. The chemistry of the unmixed spinels is completely different from the initial spinel composition and is not useful in petrogenetic interpretations. Spinels from oxidized magmas are likely to re-equilibrate during cooling and are not good tools for genetic considerations.  相似文献   

15.
Ultramafic inclusions and megacrysts are unusually abundant in a nephelinite sill in the Nandewar Mountains in north-eastern New South Wales. The inclusions are divisible into a Cr-diopside group and a Ti-augite group, the former being dominated by Cr-spinel Iherzolites of restricted modal composition, the latter by olivine and titaniferous Al-rich clinopyroxene assemblages which vary widely in their modal proportions. The principal megacryst species are olivine and black, titaniferous Al-rich clinopyroxene; additional but comparatively rare megacrysts include titanphlogopite, kaersutitic amphibole, and deep green, relatively Fe-rich clinopyroxene. The Cr-spinel Iherzolites conform closely in mineralogy and chemistry with the spinel lherzolites which dominate upper mantle xenolith assemblages in alkaline mafic volcanic rocks from other provinces. Megacrysts and Ti-augite inclusion mineral assemblages are consistently more Fe-rich than analogous phases in the Cr-diopside xenoliths and also display more extensive cryptic variation. The available experimental data on the high pressure liquidus or near-liquidus phases in olivine nephelinite and related compositions indicate that the olivine and black clinopyroxene megacrysts were precipitated at pressures in the vicinity of 15–20 kb. The similarity in the nature and compositions of the principal megacryst species to analogous phases in the Tiaugite group of inclusions indicates that the latter also represent cognate cumulates derived from the olivine nephelinite at broadly comparable pressures. High pressure fractionation of the host olivine nephelinite liquid, controlled mainly by the separation of olivine and aluminous clinopyroxene, produced only comparatively minor compositional changes in the derivative liquid. The hiatus in olivine compositions at approximately Fo86–88, apparently characteristic of the olivines in coexisting Cr-diopside and Ti-augite inclusions, is assessed in terms of the compositions of olivine in equilibrium with alkali basaltic liquids at high pressures.  相似文献   

16.
Megacrysts from the Grib kimberlite pipe (Arkhangelsk Province, Russia)   总被引:3,自引:0,他引:3  
The megacryst suite of the Grib kimberlite pipe (Arkhangelsk province, Russia) comprises garnet, clinopyroxene, magnesian ilmenite, phlogopite and garnet-clinopyroxene intergrowths. Crystalline inclusions, mainly of clinopyroxene and picroilmenite, occur in garnet megacrysts. Ilmenite is characterized by a wide range in the contents of MgO (10.6–15.5 wt.%) and Cr2O3 (0.7–8.3 wt.%). Megacryst garnets show wide variations in Cr2O3 (1.3–9.6 wt.%) and CaO (3.6–11.0 wt.%) but relatively constant MgO (15.4–22.3 wt.%) and FeO (5.2–9.9 wt.%). The pyroxenes also show wide variations in such oxides as Cr2O3, Al2O3 and Na2O (0.56–2.95; 0.86–3.25; 1.3–3.0 wt.%, respectively). The high magnesium and chromium content of all these minerals puts them together in one paragenetic group. This conclusion was confirmed by studies of the crystalline inclusions in megacrysts, which demonstrate similar variations in composition. Low concentration of hematite in ilmenite suggests reducing conditions during crystallization. PT estimates based on the clinopyroxene geothermobarometer (Contrib. Mineral. Petrol. 139 (2000) 541) show wide variations (624–1208 °C and 28.8–68.0 kbars), corresponding to a 40–45 mW/m2 conductive geotherm. The majority of Gar-Cpx intergrowths differ from the corresponding monomineralic megacrysts in having higher Mg contents and relatively low TiO2. The minerals from the megacryst association, as a rule, differ from the minerals of mantle xenoliths, but garnets in ilmenite-bearing peridotite xenoliths are compositionally similar to garnet megacrysts. The common features of trace element composition of megacryst minerals and kimberlite (they are poor in Zr group elements) suggest a genetic relationship. The origin of the megacrysts is proposed to be genetically connected with kimberlite magma-chamber evolution on the one hand and with associated mantle metasomatism on the other. We suggest that, depending on the primary melt composition, different paragenetic associations of macro/megacrysts can be crystallized in kimberlites. They include: (1) Fe–Ti (Mir, Udachnaya pipes); (2) high-Mg, Cr (Zagadochna, Kusova pipes); (3) high-Mg, Cr, Ti (Grib pipe).  相似文献   

17.
Fourier transform infrared spectrometry (FTIR) analyses of olivines from peridotite xenoliths found in southern African kimberlites indicate 0 to 80 ppm H2O concentrations. OH absorbance profiles across olivine grains show homogeneous H contents from core to edge for most samples. In one sample the olivines are H-free, while another has olivines characterized by lower H contents at the grain edges compared to the cores, indicating H loss during transport of the xenolith to the surface. Flat or near-flat H profiles place severe constraints on the duration of H loss from olivine grains, with implications for kimberlite magma ascent rates. Diffusion equations were used to estimate times of H loss of about 4 h for the sample with heterogeneous olivine H contents. Resulting kimberlite ascent rates are calculated to be 5-37 m s−1 minimum, although these estimates are highly dependent on volatile contents and degassing behavior of the host kimberlite magma. Xenolithic olivines from alkali basalts generally have lower H contents and more pronounced H diffusion profiles than do those from kimberlites. This difference is likely caused by higher magma temperatures and lower ascent rates of alkali basalts compared to kimberlites.  相似文献   

18.
FTIR spectroscopy of OH in olivine: A new tool in kimberlite exploration   总被引:1,自引:0,他引:1  
Our study of olivines from Canadian kimberlites shows that the application of FTIR spectroscopy significantly improves the reliability of olivine as a kimberlite indicator mineral (KIM). We have developed an algorithm that yields the water concentration and the normalized intensity of the OH IR absorption band at 3572 cm−1 from unpolished olivine grains of unknown thickness. For 80% of kimberlitic olivines these two parameters are significantly higher than those for olivines from non-kimberlitic magmas and consequently, olivines with water concentrations >60 ppm and a strong absorption band at 3572 cm−1 can be reliably classified as being kimberlitic.We have identified two major spectral features in the OH absorption bands of kimberlitic olivines that allow for a more detailed classification: (a) the presence of three types of high-requency OH absorption bands (Group 1A, 1B and 1C) and (b) the proportion of low-frequency OH absorption bands (Group 2) relative to high-frequency bands (Group 1). Comparison of our results with experimental studies suggests that differences within Group 1 OH absorption bands are due to different pressures of crystallization or hydrogenation. The three identified types of Group 1 OH absorption bands approximately correspond to high (P > 2 GPa, Group 1A), moderate (2-1 GPa, Group 1B), and low (<1 GPa, Group 1C) pressures of hydrogenation. Group 2 OH IR absorption bands in olivines with NiO > 3500 ppm are interpreted to reflect olivine-orthopyroxene equilibria and hence are indicative of xenocrystic olivine derived from lherzolitic or harzburgitic mantle sources. Interaction of xenocrystic olivine with hydrous kimberlitic melts with low silica activity likely will cause a gradual increase in Group 1 absorption bands. Therefore, FTIR spectra of olivine can be used to obtain qualitative estimates of the duration of interaction between mantle material and a kimberlitic melt.In addition to applications in kimberlite and diamond exploration, FTIR spectra of olivine phenocrysts, combined with mineral chemical data, may also provide insights into kimberlite evolution. Our data suggest that in some instances the ascent of kimberlitic magmas could have been interrupted at or near the Moho, followed by olivine crystallization and exsolution of aqueous fluids.  相似文献   

19.
Summary Alkali feldspar megacrysts from the porphyritic Karkonosze granite (Western Sudetes, Poland) were formed during magma mixing. Barium concentrations in zoned crystals, a sensitive indicator of feldspar migration between coeval magmas, serve to reconstruct the crystallization path of the megacrysts. Based on geochemical data, a double mixing model for the formation of the porphyritic granite and for megacryst growth is constructed. The feldspar growth model supports megacryst nucleation and early crystallization in a hybridized crustal magma of granodioritic composition. The growth model gives credibility of the choice of partition coefficients used in the modelling. Insights gained from mixing models based on whole rock composition and mineral zonation allow the recognition of various hybridization events that are reflected in a variety of megacryst crystallization paths within the pluton.  相似文献   

20.
Northeast Africa 003 (NEA 003) is a lunar meteorite found as a two paired stones (6 and 118 g) in Libya, 2000 and 2001. The main portion (∼75 vol%) of the 118 g meteorite, used for this study, (NEA 003-A) consists of mare-basalt and a smaller adjacent portion (∼25 vol%) is a basaltic breccia (NEA 003-B). NEA 003-A has a coarse-grained magmatic texture consisting mainly of olivine, pyroxene and plagioclase. The late-stage mineral association is composed mainly of elongated plagioclase, ilmenite, troilite, fayalite, Si-K-rich glass, apatite, and a rare SiO2 phase. Other accessory minerals include ulvöspinel, chromite, and trace Fe-Ni metal. Olivine and pyroxene contain shock-induced fractures, and plagioclase is completely converted into maskelynite.The Fe/Mn values of the whole rock, olivines and pyroxenes, and the bulk-rock oxygen isotopic composition provide evidence for the lunar origin of NEA 003-A meteorite. This is further supported by the presence of Fe-Ni metal and the anhydrous mineral association.NEA 003-A is geochemically and petrographically distinct from previously described mare-basalt meteorites and is not paired with any of them. The petrography and major element composition of NEA 003-A is similar to the composition of low-Ti olivine mare basalts from Apollo 12 and olivine-normative basalts from Apollo 15. The NEA 003-A meteorite shows obvious geochemical similarities in trace elements contents with Apollo 15 olivine-normative basalts and could represent a yet unknown geochemically primitive member of the olivine-normative basalt series. The meteorite is depleted in rare earth elements (REE) and incompatible trace elements indicating a primitive character of the parental magma. The bulk-rock chemical composition demonstrates that the parent melt of NEA 003-A was not contaminated with KREEP components as a result of magma mixing or assimilation processes. Results of crystallization modelling and low minimum cooling rate estimates (∼0.07 °C/h) suggest that the parent melt of NEA 003-A crystallized in the lower part of a lava flow containing cumulate olivine (∼10%) and was probably derived from more primitive picritic magma by fractional crystallization processes.Sm-Nd dating yields an age of 3.09 ± 0.06 Ga which corresponds to the period of lower Eratosthenian lunar volcanic activity, and the near-chondritic εNd value of −0.4 ± 0.3 indicates that the meteorite could be derived from a slightly enriched mantle source similar to the Apollo 15 green glasses. Ar-Ar step release results are inconsistent with Sm-Nd ages suggesting that NEA 003-A was exposed to one or more impact events. The most extensive event took place at 1.8 Ga and the shock intensity was likely between 28 and 45 GPa. The absence of solar Ar suggests that NEA 003-A has not been directly exposed at the lunar surface but the cosmic ray exposure age of 209 ± 6 Ma suggests that NEA 003-A resided in the upper regolith for part of its history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号