共查询到20条相似文献,搜索用时 15 毫秒
1.
The daughter to parent (234U/238U) activity ratio in natural waters is often out of secular radioactive equilibrium. The major reason for this disequilibrium is related to the energetic α-decay of 238U and differential release of 234U relative to 238U. This disequilibrium originates from (1) preferential release of more loosely bound 234U from damaged mineral lattice sites or; (2) direct recoil of 234Th into surrounding media from near mineral surface boundaries, however, it is unclear which of the two mechanisms is most important in nature. To better quantify the effects of preferential release of 234U, two continuous laboratory granite leaching experiments conducted over 1100 h were performed. The leachates were characterized by declining U concentrations with time and (234U/238U) initially greater than unity (up to 1.15), which changed to below unity during leaching (∼0.95). The early elevated (234U/238U) suggests that additional 234U is released into solution by preferential release of 234U from mineral phases. However, the excess 234U constitutes a finite pool of easy leachable 234U and the (234U/238U) values become lower than unity when this pool is used up. A model based on first-order kinetics, dissolution rates and preferential release of 234U from damaged lattice sites was developed and is able to quantitatively predict the observed pattern of (234U/238U) values and U concentrations for the two granite leaching experiments. Extending the modeling to longer time scales more comparable to natural systems shows that the production of waters with high (234U/238U) ratios can be achieved in two distinct regimes (1) slow weathering where the rate of directly recoiled 234U near mineral surfaces into waters is high; (2) fast weathering where the role of incipient chemical weathering and preferential release of loosely bound 234U are important. The model is able to explain apparent opposite correlations between physical erosion rates and (234U/238U) in waters and it provides a new framework that will be useful for examining weathering regimes, their timescales and their coupling with physical erosion. 相似文献
2.
南京直立人的U/Th和U/Pa年代 总被引:2,自引:0,他引:2
中国直立人化石的准确定年对于研究人类演化有着极为重要的意义。1993~1994年在南京汤山葫芦洞发现的两个直立人头盖骨化石和一枚牙化石被称为“南京直立人”。其中1号头盖骨化石之上的方解石钙板的U/Th年龄为53.3_(-1.2)~(+1.5)万年;但考虑到定年的准确性,则为53.3_(-3.0)~(+3.5)万年。其~(231)Pa/~(235)U活度比值为0.998±0.006。这表明“南京直立人”的年代应该大于50万年。与”南京直立人”伴生的动物牙化石U/Th年代为18.5~29.0万年;U/Pa年代为13.7~17.2万年。此外,对于同一颗牙化石,牙釉的年龄小于牙本质的年龄。同一样品的U/Pa年龄也显著小于其U/Th年龄。因此,牙化石的U摄取过程并不符合U早期摄取模式。多数牙化石分析点在~(234)U/~(238)U-~(230)Th/~(238)U图上落在位于U早期摄取和线性摄取模式曲线之间,指示牙化石的U摄取过程很可能介于上述两种模式之间。如果这一假设成立,那么牙化石的U/Th和U/Pa线性摄取模式年龄则为其年代的上限。因为不受U摄取过程~(234)U/~(238)U变化的影响,U/Pa线性摄取模式年龄比U/Th较为可靠。最小的U/Pa线性摄取模式年龄为1Ma,这是”南京直立人”上限年龄的估计。从定年结果看,”南京直立人”可能生活在海洋同位素(MIS)16阶段,但这不是最终结论。 相似文献
3.
Barney J Szabo 《Geochimica et cosmochimica acta》1982,46(9):1675-1679
Isotopic fractionation as great as 1600% exists between 234U and 238U in spring waters, sediments, and fossils in the Pomme de Terre Valley, southwestern Missouri. The activity ratios of in five springs range from 7.2 to 16 in water which has been discharged for at least the past 30,000 years. The anomalies in ratio in deep water have potential usefulness in hydrologic investigations in southern Missouri. Clayey units overlying the spring bog sediments of Trolinger Spring are enriched in 230Th relative to their parent 234U by as much as 720%. The results indicate that both preferential displacement via alpha recoil ejection and the preferential emplacement via recoiling and physical entrapment are significant processes that are occurring in the geologic environment. 相似文献
4.
<正> 应用230Th/234U法研究洞穴沉积物年代已取得可靠结果,成功的为距今35万年以来的洞穴沉积物标上时标。近十几年来,为了开展老于35万年洞穴沉积物年代学研究,曾探讨应用234U/238U法和ESR法研究碳酸钙沉积物年代。目前已在234U/238U法研究洞穴沉积物年代方面取得成果。然而,由于样品条件不适合,洞穴采样困难以及样品初始234U/238U放射性比值确定存在问题和争论,这方面的研究尚待进一步深入。本文报道一个石笋五个不同生长层样品的234U/238U年代测定结果。试图对老于35万年的洞穴沉积物年龄研究,提供一个可用方法。并对相应时期的古气候环境进行探讨。 相似文献
5.
Zircon (ZrSiO4) and hafnon (HfSiO4) solubilities in water-saturated granitic melts have been determined as a function of melt composition at 800° and 1035°C at 200 MPa. The solubilities of zircon and hafnon in metaluminous or peraluminous melts are orders of magnitude lower than in strongly peralkaline melt. Moreover, the molar ratio of zircon and hafnon solubility is a function of melt composition. Although the solubilities are nearly identical in peralkaline melts, zircon on a molar basis is up to five times more soluble than hafnon in peraluminous melts. Accordingly, calculated partition coefficients of Zr and Hf between zircon and melt are nearly equal for the peralkaline melts, whereas for metaluminous and peraluminous melts DHf/DZr for zircon is 0.5 to 0.2. Consequently, zircon fractionation will strongly decrease Zr/Hf in some granites, whereas it has little effect on the Zr/Hf ratio in alkaline melts or similar depolymerized melt compositions.The ratio of the molar solubilities of zircon and hafnon for a given melt composition, temperature, and pressure is proportional to the Hf/Zr activity coefficient ratio in the melt. The data imply that this ratio is nearly constant and probably close to unity for a wide range of peralkaline and similar depolymerized melts. However, it changes by a factor of two to five over a relatively small interval of melt compositions when a nearly fully polymerized melt structure is approached. For most ferromagnesian minerals in equilibrium with a depolymerized melt, DHf > DZr. Typical values of DHf/DZr range from 1.5 to 2.5 for clinopyroxene, amphibole, and titanite. Because of the change in the Hf/Zr activity ratio in the melt, the relative fractionation of Zr and Hf by these minerals will disappear or even be reversed when the melt composition approaches that of a metaluminous or peraluminous granite. It is thus not surprising that fractional crystallization of such granitic magmas leads to a decrease in Zr/Hf, whereas fractional crystallization of depolymerized melts tends to increase Zr/Hf. There is no need to invoke fluid metasomatism to explain these effects. Results demonstrate that for ions with identical charge and nearly identical radius, crystal chemistry does not alone determine relative compatibilities. Rather, the effect of changing activity coefficients in the melt may be comparable to or even larger than elastic strain effects in the crystal lattice. 相似文献
6.
Richard A. Mortlock Richard G. Fairbanks Tzu-chien Chiu 《Geochimica et cosmochimica acta》2005,69(3):649-657
The 230Th/234U/238U age dating of corals via alpha counting or mass spectrometry has significantly contributed to our understanding of sea level, radiocarbon calibration, rates of ocean and climate change, and timing of El Nino, among many applications. Age dating of corals by mass spectrometry is remarkably precise, but many samples exposed to freshwater yield inaccurate ages. The first indication of open-system 230Th/234U/238U ages is elevated 234U/238Uinitial values, very common in samples older than 100,000 yr. For samples younger than 100,000 yr that have 234U/238Uinitial values close to seawater, there is a need for age validation. Redundant 230Th/234U/238U and 231Pa/235U ages in a single fossil coral fragment are possible by Multi-Collector Magnetic Sector Inductively Coupled Plasma Mass Spectrometry (MC-MS-ICPMS) and standard anion exchange column chemistry, modified to permit the separation of uranium, thorium, and protactinium isotopes from a single solution. A high-efficiency nebulizer employed for sample introduction permits the determination of both 230Th/234U/238U and 231Pa/235U ages in fragments as small as 500 mg. We have obtained excellent agreement between 230Th/234U/238U and 231Pa/235U ages in Barbados corals (30 ka) and suggest that the methods described in this paper can be used to test the 230Th/234U/238U age accuracy.Separate fractions of U, Th, and Pa are measured by employing a multi-dynamic procedure, whereby 238U is measured on a Faraday cup simultaneously with all minor isotopes measured with a Daly ion counting detector. The multi-dynamic procedure also permits correcting for both the Daly to Faraday gain and for mass discrimination during sample analyses. The analytical precision of 230Th/234U/238U and 231Pa/235U dates is generally better than ±0.3% and ±1.5%, respectively (2 Relative Standard deviation [RSD]). Additional errors resulting from uncertainties in the decay constant for 231Pa and from undetermined sources currently limit the 231Pa/235U age uncertainty to about ±2.5%. U isotope data and 230Th/234U/238U ages agree with National Institute of Standards and Technology (NIST) reference materials and with measurements made by Thermal Ionization Mass Spectrometry (TIMS) in our laboratory. 相似文献
7.
G. P. Zaraisky A. M. Aksyuk V. N. Devyatova O. V. Udoratina V. Yu. Chevychelov 《Petrology》2009,17(1):25-45
The Zr-Hf geochemical indicator, i.e., the Zr/Hf ratio (in wt %) in granitic rocks is proposed to be used as the most reliable indicator of the fractionation and ore potential of rare-metal granites. It was empirically determined that the fractional crystallization of granitic magma according to the scheme granodiorite → biotite granite → leucogranite → Li-F granite is associated with a decrease in the Zr/Hf ratio of the granites. The reason for this is the stronger affinity of Hf than Zr to granitic melt. This was confirmed by experiments on Zr and Hf distribution between granitic melt and crystals of Hf-bearing zircon (T = 800°C, P= 1 kbar). The application of the Zr/Hf indicator was tested at three classic territories of rare-metal granites: eastern Transbaikalia, central Kazakhstan, and the Erzgebirge in the Czech Republic and Germany. The reference Kukul’bei complex of rare-metal granites in eastern Transbaikalia (J3) is characterized by a uniquely high degree of fractionation of the parental granitic melt, with the granites and their vein derivatives forming three intrusive phases. The biotite granites of phase 1 are barren, the leucogranites of phase 2 are accompanied by greisen Sn-W mineral deposits (Spokoininskoe and others), and the final dome-shaped stocks of amazonite Li-F granites of phase 3 host (in their upper parts) Ta deposits of the “apogranite” type: Orlovka, Etyka, and Achikan. The Kukul’bei Complex includes also dikes of ongonites, elvanes, amazonite granites, and miarolitic pegmatites. All granitic rocks of the complex are roughly coeval and have an age of 142±0.6 Ma. The Zr/Hf ratio of the rocks systematically decreases from intrusive phase 1 (40–25) to phases 2 (20–30) and 3 (10–2). Compared to other granite series, the granites of the Kukul’bei Complex are enriched in Rb, Li, Cs, Be, Sn, W, Mo, Ta, Nb, Bi, and F but are depleted in Mg, Ca, Fe, Ti, P, Sr, Ba, V, Co, Ni, Cr, Zr, REE, and Y. From earlier to later intrusive phases, the rocks become progressively more strongly enriched or depleted in these elements, and their Zr/Hf ratio systematically decreases from 40 to 2. This ratio serves as a reliable indicator of genetic links, degree of fractionation, and rare-metal potential of granites. Greisen Sn, W, Mo, and Be deposits are expected to accompany granites with Zr/Hf < 25, whereas granites related to Ta deposits should have Zr/Hf < 5. 相似文献
8.
Marjolijn C. Stam Anniet M. Laverman Philippe Van Cappellen 《Geochimica et cosmochimica acta》2011,75(14):3903-3914
Sulfur isotope fractionation during microbial sulfate reduction in brackish estuarine sediments was studied using an experimental flow-through reactor approach designed to preserve the in situ physical, geochemical and microbial structure of the sediment. Concurrent measurements of potential sulfate reduction rates and 34S/32S fractionations were carried out using intact sediment slices (2 cm thick, 4.2 cm diameter) from unvegetated, intertidal sites adjoining a salt marsh along the Scheldt estuary, The Netherlands. A total of 30 reactor experiments were performed with sediments collected in February, May and October 2006. The effects of incubation temperature (10, 20, 30 and 50 °C) and sediment depth (0-2, 4-6 and 8-10 cm) were investigated. Sulfate was supplied in non-limiting concentrations via the reactor inflow solutions; no external electron donor was supplied. Isotope fractionations (ε values) were calculated from the measured differences in sulfate δ34S between in- and outflow solutions of the reactors, under quasi-steady state conditions. Potential sulfate reduction rates (SRR) varied over one order of magnitude (5-49 nmol cm−3 h−1) and were highest in the 30 °C incubations. They decreased systematically with depth, and were highest in the sediments collected closest to the vegetated marsh. Isotope fractionations ranged from 9‰ to 34‰ and correlated inversely with SRR, as predicted by the standard fractionation model for enzymatic sulfate reduction of Rees (1973). The ε versus SRR relationship, however, varied between sampling times, with higher ε values measured in February, at comparable SRRs, than in May and October. The observed ε versus SRR relationships also deviated from the previously reported inverse trend for sediments collected in a marine lagoon in Denmark (Canfield, 2001b). Thus, isotope fractionation during sulfate reduction is not uniquely determined by SRR, but is site- and time-dependent. Factors that may affect the ε versus SRR relationship include the structure and size of the sulfate-reducing community, and the nature and accessibility of organic substrates. Whole-sediment data such as those presented here provide a link between isotopic fractionations measured with pure cultures of sulfate-reducing prokaryotes and sulfur isotopic signatures recorded in sedimentary deposits. 相似文献
9.
Seasonal changes in D/H fractionation accompanying lipid biosynthesis in Spartina alterniflora 总被引:1,自引:0,他引:1
Alex L. Sessions 《Geochimica et cosmochimica acta》2006,70(9):2153-2162
To investigate potential variability in the biosynthetic fractionation of hydrogen isotopes between environmental water and plant lipids, the cord grass Spartina alterniflora was sampled from a single location in a coastal marsh over a period of 16 months. Values of δD for a variety of lipids were measured by gas chromatography/pyrolysis/isotope ratio mass spectrometry. S. alterniflora grows partially submerged in seawater, so it has a virtually unlimited supply of water with nearly unvarying isotopic composition. Temporal changes in the δD values of lipids can thus be interpreted as representing mainly variations in biosynthetic fractionation. Fatty acids, n-alkanes, and phytol extracted from S. alterniflora have nearly constant δD values from ∼October through May, but exhibit marked decreases of up to 40‰ during summer months. These shifts in lipid δD values are interpreted as representing a change in the source of organic substrates, principally acetate, used for their biosynthesis. Lower summertime δD values for lipids are consistent with an increasing reliance on current photosynthate as feedstock for biosynthesis, whereas stored carbohydrate reserves are utilized more extensively during other times of the year. Regardless of the specific mechanism, the data emphasize that overall fractionations between water and plant lipids depend on biological as well as environmental variables, and that the biosynthetic fractionation is not necessarily constant even for a single plant. Because lipids such as fatty acids are present in all cells and turn over on timescales of weeks to months, measurements of δD values in fatty acids may also provide useful constraints for distinguishing biologic versus environmental controls on cellulose δD values in trees. 相似文献
10.
INGRID U. OLSSON FRANCIS A. N. OSADEBE 《Boreas: An International Journal of Quaternary Research》1974,3(4):139-146
The formulas for correcting 14 C measurements are explained. The expected ranges of the δ13 C values for some types of samples are given. It is pointed out that the corrections are approximate because of the choice of correction formula, and that all samples arc normalized to wood samples instead of to carbon dioxide of the air. Some results from the Uppsala laboratory for plant materials and carbonates are given. 相似文献
11.
A mathematical model to calculate the234U/238U activity ratio (AR) in an aqueous phase in contact with rock/soil is presented. The model relies on the supply of238U by dissolution and that of234U by dissolution and preferential release from radiation damaged regions (recoil tracks). The model predicts that values of234U/238U AR>1 in the aqueous phase can be obtained only from weathering “virgin” surfaces. Thus, to account for the observed steady-state supply of234U excess to the oceans by the preferential leaching model, ‘virgin’ rock/soil surfaces would have to be continually exposed and weathered. The238U concentration and234U/238U AR in continental waters allow us to estimate the exposure rates of “virgin” rock/soil surfaces. 相似文献
12.
Merlin Méheut Michele Lazzeri Etienne Balan Francesco Mauri 《Geochimica et cosmochimica acta》2010,74(14):3874-3882
Hydrogen fractionation laws between selected hydrous minerals (brucite, kaolinite, lizardite, and gibbsite) and perfect water gas have been computed from first-principles quantum-mechanical calculations. The β-factor of each phase was calculated using the harmonic phonon dispersion curves obtained within density functional theory. All the fractionation laws show the same shape, with a minimum between 200 °C (brucite) and 500 °C (gibbsite). At low temperatures, the mineral/liquid water fractionation laws have been obtained using the experimental gas/liquid water fractionation laws. The resulting fractionation laws systematically overestimate measurements by 15‰ at low temperatures to 8‰ at ≈400 °C. Based on this general agreement, all calculated laws were empirically corrected with reference to brucite/water data. These considerations suggest that the experimental or natural calibrations by Xu and Zheng (1999) and Horita et al. (2002) (brucite/water), Gilg and Sheppard (1996) (kaolinite/water), Wenner and Taylor (1973) (lizardite/water), and in some extents Vitali et al. (2001) (gibbsite/water) are representative of equilibrium fractionations. Besides, internal isotopic fractionation of hydrogen between inner-surface and inner hydroxyl groups has been computed for kaolinite and lizardite. The obtained fractionation is large, of opposite sign for the two systems (respectively, −23‰ and +63‰ at 25 °C) and is linear in T-2. Internal fractionation of hydrogen in TO phyllosilicates might thus be used in geothermometry. 相似文献
13.
Hydrogen isotope fractionation in lipids of the methane-oxidizing bacterium Methylococcus capsulatus
Alex L Sessions Linda L JahnkeArndt Schimmelmann John M Hayes 《Geochimica et cosmochimica acta》2002,66(22):3955-3969
Hydrogen isotopic compositions of individual lipids from Methylococcus capsulatus, an aerobic, methane-oxidizing bacterium, were analyzed by hydrogen isotope-ratio-monitoring gas chromatography-mass spectrometry (GC-MS). The purposes of the study were to measure isotopic fractionation factors between methane, water, and lipids and to examine the biochemical processes that determine the hydrogen isotopic composition of lipids. M. capsulatus was grown in six replicate cultures in which the δD values of methane and water were varied independently. Measurement of concomitant changes in δD values of lipids allowed estimation of the proportion of hydrogen derived from each source and the isotopic fractionation associated with the utilization of each source.All lipids examined, including fatty acids, sterols, and hopanols, derived 31.4 ± 1.7% of their hydrogen from methane. This was apparently true whether the cultures were harvested during exponential or stationary phase. Examination of the relevant biochemical pathways indicates that no hydrogen is transferred directly (with C-H bonds intact) from methane to lipids. Accordingly, we hypothesize that all methane H is oxidized to H2O, which then serves as the H source for all biosynthesis, and that a balance between diffusion of oxygen and water across cell membranes controls the concentration of methane-derived H2O at 31%. Values for αl/w, the isotopic fractionation between lipids and water, were 0.95 for fatty acids and 0.85 for isoprenoid lipids. These fractionations are significantly smaller than those measured in higher plants and algae. Values for αl/m, the isotopic fractionation between lipids and methane, were 0.94 for fatty acids and 0.79 for isoprenoid lipids. Based on these results, we predict that methanotrophs living in seawater and consuming methane with typical δD values will produce fatty acids with δD between −50 and −170‰, and sterols and hopanols with δD between −150 and −270‰. 相似文献
14.
The goal of this study is to explain the origin of 234U–238U fractionation in groundwater from sedimentary aquifers of the St. Lawrence Lowlands (Quebec, Canada), and its relationship with 3He/4He ratios, to gain insight regarding the evolution of groundwater in the region. (234U/238U) activity ratios, or (234U/238U)act, were measured in 23 groundwater samples from shallow Quaternary unconsolidated sediments and from the deeper fractured regional aquifer of the Becancour River watershed. The lowest (234U/238U)act, 1.14 ± 0.01, was measured in Ca–HCO3-type freshwater from the Quaternary Shallower Aquifer, where bulk dissolution of the carbonate allows U to migrate into water with little 234U–238U isotopic fractionation. The (234U/238U)act increases to 6.07 ± 0.14 in Na–HCO3–Cl-type groundwater. Preferential migration of 234U into water by α-recoil is the underlying process responsible for this isotopic fractionation. An inverse relationship between (234U/238U)act and 3He/4He ratios has been observed. This relationship reflects the mixing of newly recharged water, with (234U/238U)act close to the secular equilibrium and containing atmospheric/tritiogenic helium, and mildly-mineralized older water (14C ages of 6.6 kyrs), with (234U/238U)act of ≥6.07 and large amounts of radiogenic 4He, in excess of the steady-state amount produced in situ. The simultaneous fractionation of (234U/238U)act and the addition of excess 4He could be locally controlled by stress-induced rock fracturing. This process increases the surface area of the aquifer matrix exposed to pore water, from which produced 4He and 234U can be released by α-recoil and diffusion. This process would also facilitate the release of radiogenic helium at rates greater than those supported by steady-state U–Th production in the rock. Consequently, sources internal to the aquifers could cause the radiogenic 4He excesses measured in groundwater. 相似文献
15.
Daniel J. Condon Noah McLean Samuel A. Bowring 《Geochimica et cosmochimica acta》2010,74(24):7127-7143
We have determined 238U/235U ratios for a suite of commonly used natural (CRM 112a, SRM 950a, and HU-1) and synthetic (IRMM 184 and CRM U500) uranium reference materials by thermal ionisation mass-spectrometry (TIMS) using the IRMM 3636 233U-236U double spike to accurately correct for mass fractionation. Total uncertainty on the 238U/235U determinations is estimated to be <0.02% (2σ). These natural 238U/235U values are different from the widely used ‘consensus’ value (137.88), with each standard having lower 238U/235U values by up to 0.08%. The 238U/235U ratio determined for CRM U500 and IRMM 184 are within error of their certified values; however, the total uncertainty for CRM U500 is substantially reduced (from 0.1% to 0.02%). These reference materials are commonly used to assess mass-spectrometer performance and accuracy, calibrate isotope tracers employed in U, U-Th and U-Pb isotopic studies, and as a reference for terrestrial and meteoritic 238U/235U variations. These new 238U/235U values will thus provide greater accuracy and reduced uncertainty for a wide variety of isotopic determinations. 相似文献
16.
通过对我国西南地区3个洞穴9根大型石笋272个初始234U/238U数据的分析研究,发现石笋初始234U/238U值长尺度变化与海洋沉积SPECMAP曲线δ18O记录有一定的正相关关系,与北纬25°夏季太阳辐射能量变化曲线呈一定的负相关关系,石笋初始234U/238U值的变化在冰期时波动强烈,而在间冰期波动相对平缓,在间冰期和冰期(间冰阶和冰阶)转化阶段该值呈跳跃状态变化。末次冰期及全新世阶段石笋初始234U/238U变化记录了该时段内的BA暖期和YD突变冷事件;全新世8200 a BP、7200 a BP、5200 a BP、4200 a BP、2800 a BP、1400 a BP 发生的几次较强冷事件在石笋初始234U/238U值都有相应记录,并且和长尺度的变化规律一致,冷事件发生时石笋初始234U/238U值偏重,暖期偏轻。封闭系统形成的洞穴石笋初始234U/238U变化类似于同地区洞穴石笋的δ18O对气候变化的记录特征,在我国西南地区两者与夏季风变化的强弱呈现一种负相关的关系,洞穴石笋初始234U/238U值可以作为一个有用的古气候替代指标来研究古降水的变化。 相似文献
17.
Hydrogen isotopic fractionation in lipid biosynthesis by H2-consuming Desulfobacterium autotrophicum
We report hydrogen isotopic fractionations between water and fatty acids of the sulfate-reducing bacterium Desulfobacterium autotrophicum. Pure cultures were grown in waters with deuterium (D) contents that were systematically varied near the level of natural abundance (−37‰ ? δD ? 993‰). H2 of constant hydrogen isotope (D/H) ratio was supplied to the cultures. The D/H ratios of water, H2, and specific fatty acids were measured by isotope-ratio mass spectrometry. The results demonstrate that D. autotrophicum catalyzes hydrogen isotopic exchange between water and H2, and this reaction is conclusively shown to approach isotopic equilibrium. In addition, variation in the D/H ratio of growth water accounts for all variation in the hydrogen isotopic composition of fatty acids. The D/H ratios of fatty acids from cultures grown on H2/CO2 are compared with those from a separate set of cultures grown on D-enriched formate, an alternative electron donor. This comparison rules out H2 as a significant source of fatty acid hydrogen. Grown on either H2/CO2 or formate, D. autotrophicum produces fatty acids in which all hydrogen originates from water. For specific fatty acids, biosynthetic fractionation factors are mostly in the range 0.60 ? αFA-water ? 0.70; the 18:0 fatty acid exhibits a lower fractionation factor of 0.52. The data show that αFA-water generally increases with length of the carbon chain from C14 to C17 among both saturated and unsaturated fatty acids. These results indicate a net fractionation associated with fatty acid biosynthesis in D. autotrophicum that is slightly smaller than in another H2-consuming bacterium (Sporomusa sp.), but much greater than in most photoautotrophs. 相似文献
18.
Chris Yakymchuk Christopher L. Kirkland Chris Clark 《Journal of Metamorphic Geology》2018,36(6):715-737
The Th/U ratios of zircon crystals are routinely used to help understand their growth mechanism. Despite the wide application of Th/U ratios in understanding the geological significance of zircon U–Pb ages, the main controls on the Th/U ratio in metamorphic zircon are poorly understood. Here, phase equilibria modelling coupled with solubility expressions for accessory minerals are used to investigate the controls on the Th/U ratios of suprasolidus metamorphic zircon in an average amphibolite facies metapelite composition. We also present a new database of metamorphic Th/U ratios in zircon from Western Australia. Several factors affecting the Th/U ratio are investigated, including the bulk rock concentrations of Th and U, the amount of monazite in the system, and open v. closed system behaviour. Our modelling predicts that the main controls on the Th/U ratio of suprasolidus metamorphic zircon are the concentrations of Th and U in the system, and the breakdown and growth of monazite in equilibrium with zircon. Furthermore, the relative timing of zircon and monazite growth during cooling and melt crystallization has an important role in the Th/U ratio of zircon. Early grown zircon near the peak of metamorphism is expected to have elevated Th/U ratios whereas zircon that grew near the solidus is predicted to have relatively low Th/U ratios, which reflects the coeval growth of monazite during cooling and melt crystallization. Our modelling approach aims to provide an improved understanding of the main controls of Th/U in metamorphic zircon in migmatites and hence better apply this geochemical ratio as a tool to assist in interpretation of the genesis of metamorphic zircon. 相似文献
19.
20.
The phenocryst cores of the basaltic lavas from Jan Mayen and Hawaii display a range in compositions. The textural features of the phenocrysts also vary, both euhedral and skeletal phenocrysts are present in the same thin section. Apparently the basaltic magmas underwent crystallization within a temperature interval of 50–200° C before they became fractionated. The fractionates of basaltic lavas are therefore average compositions of the phenocryst assemblages rather than liquidus compositions. This type of fractionation is called delayed fractionation. It is considered that most tholeiitic and alkalic basaltic lavas undergo delayed fractionation. 相似文献