首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent results on cosmic ray interactions in lunar samples and meteorites resulting in production of stable and radionuclides, particle tracks and thermoluminescence are reviewed. A critical examination of26A1 depth profiles in lunar rocks and soil cores, together with particle track data, enables us to determine the long term average fluxes of energetic solar protons (>10 MeV) which can be represented by (J s,R o)=(125, 125). The lunar rock data indicate that this flux has remained constant for 5×105 to 2×106 years. Production rates of stable and radionuclides produced by galactic cosmic rays is given as a function of size and depth of the meteoroid. Radionuclide (53Mn,28Al) depth profiles in meteorite cores, whose preatmospheric depths are deduced from track density profiles are used to develop a general procedure for calculating isotope production rates as a function of meteoroid size. Based on the track density and22Ne/21Ne production rates, a criterion is developed to identify meteorites with multiple exposure history.22Ne/21Ne ratio <1·06 is usually indicative of deep shielded exposure. An examination of the available data suggests that the frequency of meteorites with multiple exposure history is high, at least 15% for LL, 27% for L and 31% for H chondrites. The epi-thermal and the thermal neutron density profiles in different meteorites are deduced from60Co and track density data in Dhajala, Kirin and Allende chondrites. The data show that the production profile depends sensitively on the size and the chemical composition of the meteoroid. Cosmic ray-induced thermoluminescence in meteorites of known preatmospheric sizes has been measured which indicates that its production profile is nearly flat and insensitive to the size of the meteoroid. Some new possibilities in studying cosmic ray implanted radionuclides in meteorites and lunar samples using resonance ionisation spectroscopy are discussed.  相似文献   

2.
3.
44 samples of the Jilin meteorite were analyzed by various laboratories for spallogenic, radiogenic, and trapped rare gases. A non-uniform distribution has been found for the rare gases of different origins. There have been found correlations among the spallogenic rare gases, with apparent depth effects. 43 samples were analyzed for their cosmogenic radionuclides60Co,26Al,36Cl,40K,53Mn,54Mn, and22Na. Correlations have been found between60Co and53Mn and between60Co and21Ne. The Jilin meteorite has a complex history of cosmic-ray irradiation. According to the two-stage model and the other fragments have a burying depth two stages,T 1=11 m.y. andT 2=0.3 m.y. The burying depth of all samples in the parent body can be obtained by the content of21Ne. Jilin meteorite No. 1 is located 20–142 cm from the surface, No. 4 ranges from 106–134 cm, and the other fragments have a burying depth between 15 and 150 cm. The equation of the reference plane for the surface of the 1-stage Jilin meteoroid is 0.24x+0.81y+0.53z+0.5=0. Use can also be made of60Co to determine the burying depth of all samples in the 2-stage Jilin meteoroid (under a geometry of 4π), and further to restore the preatmospheric form and size of the parent body. During its atmospheric passage, the Jilin had an ablation rate of ca. 30%. On the basis of the two-stage model and the concentration of21Ne and60Co in the samples, we propose a scheme to restore the relative position of all samples in the parent body. 12 sample-distribution regions can be sketched out. Also can be restored the relative position of all the samples in the parent body during the two stages.  相似文献   

4.
The rates of production of21Ne and22Ne in spallation reactions, both due to solar as well as galactic cosmic rays, in some major meteoritic minerals, e.g. olivines, feldspars and pyroxenes, are calculated using their energy spectra and excitation functions. The production profiles of21Ne and22Ne due to galactic cosmic rays, and the22Ne/21Ne ratio depend upon the size of the meteoroid. The22Ne/21Ne ratio is very sensitive to the abundance of sodium and consequently its depth profile is distinctly different in feldspars, the ratio increasing with depth rather than decreasing as in pyroxenes and olivines. In the near-surface regions, up to a depth of 2cm, production due to solar flare protons dominates, giving rise to a steep gradient in isotopic production as well as in the22Ne/21Ne ratio. Composite production profiles are given and compared with measurements in some meteorites.  相似文献   

5.
Detectable ionization effects in the ionosphericD-region from individual, strong and steady x-ray sources such as Sco X-1 and transient x-ray sources such as Cet X-2 have been reported by us and many others previously based on the field strength and phase variations of the VLF data. As a follow up to these investigations, we have examined the integrated effects of many of the known x-ray sources discovered by UHURU, ANS, Ariel V and SAS-3 satellites, in order to understand the totality of their effects. These effects are examined in the present paper for 0° and +38° geographic latitudes corresponding to midnight conditions and for different times of the year. Such effects are compared, in turn, with those of the known steady sources responsible forD-region ionization such as Lyman-alpha and galactic cosmic radiations. The results are presented as profiles of electron production rates as a function of height. Our study leads to the conclusion that there should be detectable annual variations of the electron density which are pronounced around May-August. Further, the results of the computations on electron production rates corresponding to the spectacular x-ray nova A0620-00 are also included in the present paper.  相似文献   

6.
Five different refraction formulas were applied to SiO2 polymorphs in order to determine the most suitable refractive index-density relation. 13 SiO2 polymorphs with topological different tetrahedral frameworks are used in this study including eight new low density SiO2 polymorphs — so called “guest free porosils”. These SiO2 polymorphs cover a density range from 1.76 to 2.92 g/cm3. The mean refractive indices (ovn) of the porosils have been determined by the immersion method, the densities (ρ) were calculated from the unit cell parameters. Assuming the polarizability (α) of all SiO2 polymorphs to be constant the general refractivity formula $$\{ 2\overline {11} 0\} \langle 0001\rangle $$ turned out to be the most suitable for SiO2 polymorphs. Regression analysis yields an electronic overlap parameter b=1.2(1).  相似文献   

7.
8.
Xinganite is a new REE-Be-rich silicate discovered in China. Its ideal formula is: (Y, Ce)Be SiO4 OH. The mineral is of monoclinic system. The intensity data were collected with a single-crystal four-circle diffractometer. The lattice parameters are: a=4.7681 (± 0.00263) Å,b=7.7657 (± 0.00686) Å, c=9.9301 (± 0.00639) Å; α =90°, β=90.171° (±0.0053°), γ=90° space group p21/c;,Z=4. The crystal structure has been determined by direct methods and electron density synthesis methods. The least squares refinement gave a final discrepancy indexR=0.086. The crystal structural analysis shows that xinganite is of datolite-type structure.  相似文献   

9.
The Central American isthmus hosts a highly variable Moho structure due to the diverse origin and composition of the crustal basement and the influence of large-scale neotectonic processes. Gravity data from the combined geopotential model EGM2008 were interpreted via forward modelling to outline the three-dimensional lithospheric density structure along the Middle American Trench, as well as the segmentation of the oceanic Cocos and Nazca plates and the overriding Caribbean plate. In this work, results for the depth of the Moho obtained from the density model are presented. The Quaternary volcanic arc correlates with a maximum Moho depth of 44 km in western Guatemala. To the south-east of the continental shelf, the Caribbean plate shows Moho depths between 20 and 12 km whereas to the north, values as shallow as 8 km are observed at the Cayman trough. For the oceanic Cocos plate, depths between 16 and 21 km are obtained for the Moho along the Cocos ridge, contrasting with values between 15 and 12 km for the seamount segment and 8 and 11 km for the segments of the crust that are not affected by the Galapagos hot-spot track.  相似文献   

10.
Surface accumulations of foam and flotsam as well as sharp salinity, density, turbidity gradients and regions of acoustic scatter were characteristic of ebb-tidal fronts in Charleston Harbor, South Carolina. Surface convergence velocities at these fronts averaged 0.06 m s?1 into the front at an angle of 30° to 60° with respect to the frontal axis, indicating along-front transport during the ebb. These fronts are tidally-induced, forming on the late flood and ebb along the interfaces of water masses. Horizontal and vertical measurements of density revealed that the upper harbor fronts form along the margin of a freshwater lens produced by riverine input. The hypothesis that these frontal zones have higher densities of phytoplankton and zooplankton than adjacent water masses was tested using chlorophylla measurements and net collections. The fronts did not demonstrate any significant accumulations of phytoplankton or zooplankton during the ebb tide. The results of this study suggest that the physical characteristics of ebb-tidal estuarine fronts in Charleston Harbor are periodic in nature and may indirectly affect plankton transport in this coastal plain estuary.  相似文献   

11.
A relationship between the energy gap (E G) and density (ρ) for pure SiO2 polymorphs is derived from atomic weights and first ionization potentials of free silicon and oxygen atoms. Theoretical considerations are based on the Lorentz electron theory of solids. The eigenfrequency v0 of elementary electron oscillators, in energy units h v0, is identified with the energy gap of a solid. The numerical relation is expressed as \(E_G = \sqrt {139.24 - 13.8327\rho } \) is in eV. For low-quartz with a density of 2.65 g/cm3 and also for stishovite with a density of 4.28 g/cm3, the energy gap E G=10.1 eV and 8.9 eV, respectively. From laboratory measurements for low-quartz E G=10.2 eV. The energy gap-density relation suggests a critical density value of ρx ≈ 10.1 g/cm3 for an SiO2 phase when the energy gap vanishes (E G=0), which is consistent with estimated densities for a high pressure silica polymorph with the fluorite structure.  相似文献   

12.
An integrated study of the cosmic ray exposure history of the San Juan Capistrano meteorite was carried out using measurements of rare gas isotopic abundances, particle track densities and radioisotope concentrations. Spallation systematics determined for Kr isotopes in lunar samples are shown to be valid also for the San Juan Capistrano and St. Severin meteorites, thus allowing us to determine a reliable 81Kr/83Kr production ratio as needed for applying the 81Kr-Kr dating method. The 81Kr-Kr age of SJC is 28.7 ± 2.0 Myr, about 35% longer than ages determined by spallation He or Ne. The minimum observed track production rate (2.6 × 105 tracks/cm2 · Myr) sets a minimum of 8 cm for the preatmospheric radius of an assumed spherical body. Track density gradients and the low 60Co activity (<2.9 dpm/g Co) both set an upper limit of 10 cm to the radius. Track results show that ablation losses have averaged 6cm. The relative spallation yields of 78Kr and 83Kr, and the ratios 3He/21Ne and 22Ne/21Ne are all compatible with a hard irradiation as would be experienced by a sample depth of about 6 cm in a body of 8–10 cm. The low activities of 54Mn, 22Na and 26Al are also consistent with these irradiation conditions.  相似文献   

13.
Rapid population growth in sub-Saharan West Africa and related cropland expansion were shown in some places to have increased focused recharge through ponds, raising the water table. To estimate changes in diffuse recharge, the water content and matric potential were monitored during 2009 and 2010, and modeling was performed using the Hydrus-1D code for two field sites in southwest Niger: (1) fallow land and (2) rainfed millet cropland. Monitoring results of the upper 10 m showed increased water content and matric potential to greater depth under rainfed cropland (>2.5 m) than under fallow land (≤1.0 m). Model simulations indicate that conversion from fallow land to rainfed cropland (1) increases vadose-zone water storage and (2) should increase drainage flux (~25 mm year?1) at 10-m depth after a 30–60 year lag. Therefore, observed regional increases in groundwater storage may increasingly result from diffuse recharge, which could compensate, at least in part, groundwater withdrawal due to observed expansion in irrigated surfaces; and hence, contribute to mitigate food crises in the Sahel.  相似文献   

14.
The ferromanganese precipitates existing in deep-sea waters of the Pacific consist of two types of deposits: (1) nodules mainly are distributed in pelagic basins beneath the CCD (Calcite Compensation Depth) where the rate of sedimentation is low; (2) polymetallic encrustations are formed on exposed seamount rocks where currents prevent normal sediment accumulation. Nodules, being formed in areas bordering the equatorial zone of high biological productivity, grow by two different processes: (A) early diagenetic growth by supply of metals and metal compounds from pore water and (B) hydrogenetic growth by supply of colloidal particles from near-bottom seawater. These processes lead to different kinds of oxide and different metal contents. The diagenetic growth process takes place under oxidizing to suboxidizing conditions and is supplied by an ionic solution of Mn2+ and other divalent metal ions. The mobilization of Mn is caused by the decomposition of organic matter. The growth features of the early diagenetic nodules show alternating laminae of crystalline and amorphous material. These rhythmic sequences of different microlayers are explained by physico-chemical changes (variation of pH) in the microenvironment of the accreting nodule surface. The hydrogenetic crust growth on seamounts leads to ferromanganese precipitates which are in particular rich in Co. The Co concentration is inversely related to the water depth. Co is positively correlated to Mn which can be derived from the oxygen minimum zone. Contrary to the diagenetic nodule growth, the crust accretion is also a colloidal precipitation process. In the water column below the oxygen minimum zone, a mixture of particles of Mn-Fe-oxyhydroxide and silicate accrete together on the surface of substratum rocks. Surface chemical mechanisms control the enrichment of Ni, Co, Pb, and other metals from the seawater; for Pt, a coprecipitation with MnO2 caused by a redox reaction is proposed. Distinct oceanographical and geological conditions enable or promote, respectively, the ferromanganese crust formation on seamounts.  相似文献   

15.
A pyralspite garnet from an anomalously magnetic concentrate of a pegmatitic cassiterite ore has been investigated using 57Fe nuclear gamma-ray resonance spectroscopy. The quadrupole splitting and isomer shift values of 3.6 mm/s and 1.4 mm/s, respectively, are among the largest observed for Fe2+ ions and indicate a very low covalency of the dodecahedral Fe2+ — O2-bonds. These data support the more recent and lower value (10.2–10.1 kcal/ mole) of White and Moore (1972) for the CFSE of the dodecahedral Fe2+ ion and suggest that the CFSE should be a useful approximation to the site preference energy of Fe2+ for this site.  相似文献   

16.
Molar elastic strain energy arising from dislocations in andalusite and sillimanite were calculated using equations derived from a non-core, linear elasticity model. For perfect (unit) c screw dislocations in these polymorphs, minimum dislocation densities of about 1010/cm2 are necessary to significantly perturb the andalusite=sillimanite equilibrium boundary in P-T space. Compared to unit c dislocations, smaller energy perturbations arise from dissociated c screw dislocations, which are commonly observed in kyanite and sillimanite. A low computed value of stacking fault energy (~30 ergs/cm2) in these polymorphs is compatible with the large separations of dissociated dislocations in these phases. Dislocation densities in naturally occurring Al2SiO5 polymorphs are typically <108/cm2. Assuming that these densities are representative of those existing during metamorphism, as is supported by the lack of microtextures indicative of strong recovery, it is concluded that molar strain energies corresponding to observed dislocation densities (<108/cm2) result in insignificant perturbation of P-T phase equilibrium boundaries of the Al2SiO5 polymorphs.  相似文献   

17.
The crystal structure and site preference of Co2+ in a synthetic Co1.10Mg0.90SiO4 olivine have been determined from single crystal X-ray diffraction data collected on an automatic diffractometer. The R factor is 0.044 for 612 reflections. The site occupancies are: Ml site: Co 0.730±0.006; Mg 0.270; M2 site: Co 0.370, Mg 0.630. The Gibbs free energy change, ΔG° for the ion-exchange reaction between M1 and M2 sites is ?4.06 kcals/mole, assuming ideal mixing at each set of sites. This energy may be called ‘site preference energy’ of Co2+ in olivine. The strong preference of Co2+ for the M1 site can be quantitatively explained by two competing forces: preference of ions larger than Mg2+ for the M2 site and stronger covalent bonding of transition metal ions at the M1 site. For Fe2+, Mg2+, these two effects nearly neutralize each other, explaining the lack of considerable cation-ordering in Fe-Mg olivines.  相似文献   

18.
If carbon is to be analyzed by secondary ion mass spectroscopy (SIMS) in an oxide such as MgO, one has to know how the carbon is incorporated in the oxide host structure, before a successful experiment can be planned. If the carbon impurities derive from dissolved CO2 component which form a solid solution while the crystal grew from a melt in equilibrium with CO2, upon cooling, the solid solution becomes supersaturated with respect to the volatile CO2 component. This creates a thermodynamic driving force for exsolution leading to carbon segregation towards the surface. At the surface rapid degassing occurs in vacuum, enhanced by ion bombardment and electron irradiation. Using freshly cleaved synthetic MgO single crystals it can be shown by SIMS (i) that contamination during short exposure to air and during evacuation remains slight, (ii) that rapid surface/subsurface segregation of solute carbon seems to compete with rapid degassing so that, while no extended segregation profile builds up, the carbon concentration in the bulk beneath the surface decreases to a constant level, (iii) that electron irradiation speeds up degassing, (iv) that heating speeds up carbon diffusion, hence its segregation from the bulk, and (v) that Ar+ ion sputtering for the purpose of removing possible contaminants reduces the driving force for carbon surface segregation to the point that no segregation profile can be observed. By placing freshly cleaved MgO crystals under isotopically 99 percent pure 13CO2 for various periods of time subsequent SIMS analysis reveals extended 12C profiles, probably about 1 μm wide, which can only have formed by 12C segregation from the bulk. These results confirm earlier reports that solute carbon exists as mobile impurity in synthetic MgO and natural olivine, probably due to dissolved CO2 component.  相似文献   

19.
Ti-andradites were synthesized at a pressure of P(H2O)=3 kbar and temperatures of 700–800° C. Oxygen fugacities were controlled by solid state buffers (Ni/NiO; SiO2 + Fe/Fe2SiO4). The Fe2+-and Fe3+-distribution was determined by low temperature Mössbauer spectroscopy. The water content was measured by a solid's moisture analyzer. The chemical composition of the synthetic and the natural sample has been determined by electron microprobe. Ti-andradites from runs at high oxygen fugacities have Fe3+ on octahedral and tetrahedral sites; Ti-andradites from runs at low oxygen fugacities have tetrahedrally and octahedrally coordinated Fe2+ as well. These “reduced” garnets must also contain Ti3+ on octahedral sites. Charge balance is maintained due to substitution of O2? by (OH)? by two mechanisms: (SiO4)4? ? (O4H4)4? and (Fe3+O6)9? ? (Fe2+O5OH)9?. FTIR spectra of the synthetic samples do show the presence of structurally bound (OH)?. In a natural sample tetrahedrally and octahedrally coordinated Fe3+ are observed together with Fe2+ on all three cation sites of the garnet structure.  相似文献   

20.
In the lattice energy expression of forsterite, based on a Born-Mayer (electrostatic+repulsive+dispersive) potential, the oxygen charge z o, the hardness parameter ρ and the repulsive radii r Mg and r Si appear as unknown parameters. These were determined by calculating the first and second partial derivatives of the energy with respect to the cell edges, and equalizing them to quantities related to the crystal elastic constants; the overdetermined system of equations was solved numerically, minimizing the root-mean-square deviation. To test the results obtained, the SiO 4 4? ion was assumed to move in the unit-cell, and the least-energy configuration was sought and compared with the experimental one. By combining the two methods, the optimum set of parameters was: z o=?1.34, ρ=0.27 Å, r Mg=0.72 Å, r Si=0.64 Å. The values ?8565.12 and ?8927.28 kJ mol?1 were obtained, respectively, for the lattice energy E Land for its ionic component E L 0 ,which accounts for interactions between Mg2+ and SiO 4 4? ions only. The charge distribution calculated on the SiO 4 4? ion was discussed and compared with other results. Using appropriate thermochemical cycles, the formation enthalpy and the binding energy of SiO 4 4? were estimated to be: ΔH f(SiO 4 4? )=2117.6 and E(SiO 4 4? )=708.6 kJ mol?1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号