首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The signature of 11 X-class solar flares that occurred during the ascending half of the present subdued solar cycle 24 from 2009 to 2013 on the ionosphere over the low- and mid-latitude station, Dibrugarh (27.5°N, 95°E; magnetic latitude 17.6°N), are examined. Total electron content (TEC) data derived from Global Positioning System satellite transmissions are used to study the effect of the flares on the ionosphere. A nonlinear significant correlation (R2 = 0.86) has been observed between EUV enhancement (ΔEUV) and corresponding enhancement in TEC (ΔTEC). This nonlinearity is triggered by a rapid increase in ΔTEC beyond the threshold value ~1.5 (×1010 ph cm?2 s?1) in ΔEUV. It is also found that this nonlinear relationship between TEC and EUV flux is driven by a similar nonlinear relationship between flare induced enhancement in X-ray and EUV fluxes. The local time of occurrence of the flares determines the magnitude of enhancement in TEC for flares originating from nearly similar longitudes on the solar disc, and hence proximity to the central meridian alone may not play the dominating role. Further, the X-ray peak flux, when corrected for the earth zenith angle effect, did not improve the correlation between ΔX-ray and ΔTEC.  相似文献   

2.
3.
In recent years, measurements of total electron content (TEC) have gained importance with increasing demand for the GPS-based navigation applications in trans-ionospheric communications. To study the variation in ionospheric TEC, we used the data obtained from GPS Ionospheric Scintillation and TEC monitoring (GISTM) system which is in operation at SVNIT, Surat, India (21.16°N, 72.78°E) located at the northern crest of equatorial anomaly region. The data collected (for the low sunspot activity period from August 2008–December 2009) were used to study the diurnal, monthly, seasonal semi-annual and annual variations of TEC at Surat. It was observed that the diurnal variation at the region reaches its maximum value between 13:00 and 16:00 IST. The monthly average diurnal variations showed that the TEC maximizes during the equinox months followed by the winter months, and are lowest during the summer months. The ionospheric range delay to TEC for the primary GPS signal is 0.162 m per TECU. The diurnal variation in TEC shows a minimum to maximum variation of about 5 to 50 TECU (in current low sunspot activity periods). These TEC values correspond to range delay variations of about 1 to 9 m at Surat. These variations in the range delay will certainly increase in high sunspot activity periods. Detected TEC variations are also closely related to space weather characterizing quantities such as solar wind and geomagnetic activity indices.  相似文献   

4.
Data on the spatial distributions of turbulence characteristics in the inner solar wind are reported. Spectral indices for the outer and inner turbulence scales have been obtained in radio occultation experiments using signals from several spacecraft at different phases of the solar cycle. The characteristics of turbulence in the slow, low-latitude solar wind remain, on average, constant during the solar cycle. The outer turbulence scale in the fast, high-latitude solar wind appreciably exceeds that of the slow, low-latitude wind at the solar minimum. The new data confirm that the transition from the acceleration region to the steady-flow region is accompanied by a change in the turbulence regime. This change in the turbulence regime takes place at greater distances from the Sun for the fast than for the slow solar wind.  相似文献   

5.
Long period variations in the occurrence of prolonged intervals of calm magnetic field conditions are studied using index Ap of magnetic activity. The solar-cycle variation in occurrence is compared with the sunspot number. Anomalous behaviour for solar cycle 20, observed in other solar parameters, are shown to be manifested in the occurrence frequency of quiet intervals. Spectral characteristics of occurrence indicates a dominant long period variation of about 30 years and a more feeble 11-year oscillation  相似文献   

6.
The goal of this research is to examine one-dimensional total electron content (TEC) data using principal component analysis (PCA) to search for total electron content (TEC) anomalies associated with large earthquakes in 24 h prior to nucleation. The characteristics of principal eigenvalues generated for TEC prior to 24 earthquakes of magnitude scale M?≥?5.0 and 6 lesser earthquakes of magnitude scale M?<?5 that occurred in Taiwan from 01 January 2000 to 31 December 2001 are examined. In an earlier paper, I was able to confirm the statistical findings of Liu et al. (J Geophys Res 111, 2006) that sparse earthquake-associated TEC anomalies existed in 5 days prior to the 12 large earthquakes they examined (Lin, Terr Atm Ocean Sci, 2010). In this paper, I wish to examine the subtlety of principal component analysis in detecting earthquake-associated TEC anomalies by examining if such precursors can be detected in 24 h prior to large earthquakes. Of the earthquakes examined, TEC anomalies given by clear extreme principal eigenvalues were evident within 24 h of nucleation for 21 of the 24 earthquakes of M?≥?5.0. After making allowance for the general status of background TEC, it is clear that these extreme principal eigenvalues are representative of earthquake-associated anomalies. For the smaller earthquakes (M?<?5), it was not possible to differentiate earthquake-associated anomalies from background effects on TEC status. These new findings confirm the validity of PCA in searching for earthquake-associated TEC anomalies and show that it is subtle enough to detect TEC anomalies within 24 h leading to a large earthquake. If this approach continues to prove successful, it could theoretically be used in real-time prediction of large earthquakes through early detection of earthquake-associated TEC anomalies.  相似文献   

7.
The goal of this study was to determine whether principal component analysis (PCA) can be used to process GPS ionospheric total electron content (TEC) data on a monthly basis to identify early earthquake-associated TEC anomalies. PCA is applied to GPS (mean value of a month) ionospheric TEC records collected from the Japan GEONET system to detect TEC anomalies associated with 10 earthquakes in Japan (M?≥?6.0) from 2006 to 2007. According to the results, PCA was able to discriminate clear TEC anomalies in the months when all 10 earthquakes occurred. After reviewing the months when no M?≥?6.0 earthquake occurred but the geomagnetic storm activity was present, it is possible that the maximal principal eigenvalues PCA returned for these 10 earthquakes indicate earthquake-associated TEC anomalies. Previously, PCA has been used to discriminate earthquake-associated TEC anomalies recognized by other researchers who found that a statistical association between large earthquakes and TEC anomalies could be established in the 5 days before earthquake nucleation and in 24 h before earthquake; however, since PCA uses the characteristics of principal eigenvalues to determine earthquake-related TEC anomalies, it is possible to show that such anomalies existed earlier than this 5-day statistical window. In this paper, this is shown through the application of PCA to one-dimensional TEC data relating to the earthquake of 17 February 2007 (M?=?6.0). The analysis is applied to daily TEC and reveals a large principal eigenvalue (representative of an earthquake-associated anomaly) for 02 February, 15 days before the 17 February earthquake.  相似文献   

8.
Efimov  A. I.  Lukanina  L. A.  Chashei  I. V.  Bird  M. K.  Pätzold  M. 《Astronomy Reports》2019,63(3):174-181

Results of experiments on polarized radio sounding of the outer solar corona using the Helios spacecraft from 1975 to 1984 are presented. The characteristic parameters of the temporal spectra of fluctuations in the Faraday rotation of the plane of polarization for heliocentric distances from 3.5 to 5.5 solar radii are obtained. The absolute level of these fluctuations and, consequently, the level of fluctuations of the magnetic field, is almost independent of the solar activity. It is well known that the global structure of the solar wind varies with the solar cycle such that there is slow solar wind at low latitudes and fast solar wind at high latitudes during solar minima. In contrast, a slow solar wind dominates at all latitudes during solar maxima. One explanation for the invariance of the fluctuations observed by sounding the circumsolar plasma is that the mean magnetohydrodynamic turbulence of the low-latitude, slow solar wind depends weakly on the phase of the solar cycle.

  相似文献   

9.
西北地区近代及历史时期气候变化趋势分析   总被引:16,自引:0,他引:16  
利用小波分析、Mann-Kendall等统计方法和台站资料、历史时期气候代用资料及太阳黑子资料,分析了西北地区气候突变发生的时间及分布、与太阳活动的关系.结果表明:西北地区在气候变暖的背景下,降水增加,主要分布在新疆及河西等地,东部变化不大或略有减少;目前正处在百年尺度上太阳活动的强烈时期,树木年轮表明西北地区干湿变化除与太阳黑子周期有很好的正相关外,还存在64a变化周期.  相似文献   

10.
利用地球系统模式CESM过去2 000年气候模拟试验结果,探讨了在百年尺度上东亚夏季风降水的时空变化特征及其成因,对于认识百年尺度气候变化规律、区分外强迫因子对东亚季风的影响有着重要的科学意义。研究表明:1东亚夏季风降水与温度基本同相变化,降水存在准100年、准150年和准200年周期。2降水标准化EOF第一模态为由北向南"负—正—负—正"的条带状空间分布,而EOF第二模态基本为全区一致的分布型态。3东亚夏季风降水准100年周期主要受太阳辐射、火山活动和气候系统内部变率的共同影响;准150年周期主要受太阳辐射的影响;准200年周期主要受太阳辐射和火山活动的影响。东亚夏季风降水在温带地区主要受温室气体和土地利用/覆盖的影响;在副热带地区主要受太阳辐射和火山活动的影响;在热带地区主要受太阳辐射、火山活动和气候系统内部变率的影响。  相似文献   

11.
为研究太阳活动与全球大震的关系, 引入一个无量纲的"地震能量函数√G", 并分析研究了1681—2011故年间全球M≥7.0大震的能量释放的时间序列.由此发现全球大震在太阳活动周4个阶段的分布和活动度, 随震级的强度而异.提出地壳对太阳风暴加卸载响应模式, 用于解释此现象: 通过考察最近331 a, 得出全球共发生了10个M≥9.0超级巨震的时空分布特征, 特别是太阳活动峰年期间没有发生过超级巨震.该研究结果可为判断全球大震提供参考.   相似文献   

12.
The literature on influences of solar activity on the Indian weather and climate is reviewed since the discovery of sunspot cycle. Fluctuations in solar activity are undoubtedly a factor affecting weather and climate. Although the results of some of the studies are conflicting, Indian weather and climate is, in general, inversely related to sunspots. However, the areal extent of floods in India seems to expand and contract in phase with the Hale double sunspot cycle, suggesting that the flood rhythm is in some manner controlled by long-term solar activity related to solar magnetic effects. All the evidences of solar influences on weather and climate may have practical implications in improving long-range forecasting of weather and climate, once the physical coupling mechanisms and their modification by other factors are clearly understood. Some of the promising plausible physical mechanisms for explaining solar effects on weather and climate are also discussed.  相似文献   

13.
Magnetic Hα synoptic maps of the Sun for 1915–1999 are analyzed and the intensities of spherical harmonics of the large-scale solar magnetic field computed. The possibility of using these Hα maps as a database for investigations of long-term variations of solar activity is demonstrated. As an example, the magnetic-field polarity distribution for the Hα maps and the analogous polarity distribution for the magnetographic maps of the Stanford observatory for 1975–1999 are compared. An activity index A(t) is introduced for the large-scale magnetic field, which is the sum of the magnetic-moment intensities for the dipole and octupole components. The 11-year cycle of the large-scale solar magnetic field leads the 11-year sunspot cycle by, on average, 5.5 years. It is concluded that the observed weak large-scale solar magnetic field is not the product of the decay of strong active-region fields. Based on the new data, the level of the current (23rd) solar-activity cycle and some aspects of solar-cycle theory are discussed.  相似文献   

14.
The ion composition of fluxes of charged particles in interplanetary space with energies ∼0.03–10 MeV/nucleon are studied during quiet periods in the 23rd solar-activity cycle using data from the ACE spacecraft. Apart from the activity minimum, the Fe/O ratio during such periods corresponds to either the relative abundances of ions in particle fluxes accelerated in solar flares or the mean abundances of elements in the solar corona. At the cycle minimum, this ratio takes on values characteristic for the solar wind. These results indicate that the background fluxes of low-energy particles in the phases of the growth, maximum, and decay of the solar cycle include significant contributions from both coronal particles accelerated to suprathermal energies and particles accelerated in small impulsive solar flares. The particle fluxes from such flares are distinguished by an enhanced abundance of iron ions.  相似文献   

15.
青海德令哈地区近400年来的降水量变化与太阳活动   总被引:19,自引:11,他引:8       下载免费PDF全文
黄磊  邵雪梅 《第四纪研究》2005,25(2):184-192
使用多种数学统计方法分析了德令哈地区降水量变化与太阳活动之间的关系,发现近400年来降水量的长期变化与太阳黑子周期长度(SCL)和太阳黑子周期上升支长度之间存在着较好的反相关关系,当SCL偏短、太阳黑子周期上升支长度偏短时,太阳活动偏强,德令哈地区降水量偏多,反之偏少。功率谱和小波分析发现降水量序列中存在着与太阳活动的多种周期相一致的周期,对降水量与太阳活动在不同时间尺度上周期变化之间的关系进行了详细分析。交叉小波分析发现太阳活动主要在百年左右尺度的周期变化上影响德令哈地区降水量的长期变化,太阳活动周期变化的信号越强,对降水量变化的影响越大。文章最后对太阳活动影响德令哈地区降水量变化的可能机制进行了探讨。  相似文献   

16.
We present an analysis of the temporal and spectral characteristics of high-energy (E>30 MeV) gamma-ray emission from solar flares in the 22nd solar-activity cycle obtained in the Gamma-1 experiment. The powerful flares of March 26, June 15, and October 27, 1991, are examined, as well as the weaker events of October 29 and December 8, 1991. Two emission phases are revealed in these flares: an active phase with individual, short bursts of radiation and a slow phase without such bursts. A qualitative scenario for the development of a solar gamma-ray flare is presented, based on the common temporal and spectral features of the observed flares and of simulation results.  相似文献   

17.
Analysis of the relativistic proton spectra of solar flares occurring in the 23rd solar activity cycle derived from data of a worldwide neutron monitor network and numerical modeling both provide evidence for the acceleration of charged particles by an electric field that arises in coronal current sheets during reconnection. The method used to obtain the spectra is based on simulating the response of a neutron monitor to an anisotropic flux of relativistic solar protons with specified parameters and determining the characteristics of the primary relativistic solar protons by fitting model responses to the observations. Studies of the dynamics of the energy spectra distinguish two populations of relativistic protons in solar cosmic-ray events: the so-called fast component, which arrives at the flux front of the solar cosmic rays, followed by the delayed slow component. The fast component is characterized by strong anisotropy and an exponential energy spectrum, in agreement with the spectrum yielded by mathematical modeling of particle acceleration by an electric field directed along the X line of the magnetic field. The slow component, whose propagation is probably diffusive, has a power-law spectrum.  相似文献   

18.
The design properties and technical characteristics of the upgraded Large Phased Array (LPA) are briefly described. The results of an annual cycle of observations of interplanetary scintillations of radio sources on the LPA with the new 96-beam BEAM 3 system are presented. Within a day, about 5000 radio sources displaying second-timescale fluctuations in their flux densities due to interplanetary scintillations were observed. At present, the parameters of many of these radio sources are unknown. Therefore, the number of sources with root-mean-square flux-density fluctuations greater than 0.2 Jy in a 3° × 3° area of sky was used to characterize the scintillation level. The observational data obtained during the period of the maximum of solar cycle 24 can be interpreted using a three-component model for the spatial structure of the solar wind, consisting of a stable global component, propagating disturbances, and corotating structures. The global component corresponds to the spherically symmetric structure of the distribution of the turbulent interplanetary plasma. Disturbances propagating from the Sun are observed against the background of the global structure. Propagating disturbances recorded at heliocentric distances of 0.4–1 AU and at all heliolatitudes reach the Earth’s orbit one to two days after the scintillation enhancement. Enhancements of ionospheric scintillations are observed during night-time. Corotating disturbances have a recurrence period of 27d. Disturbances of the ionosphere are observed as the coronal base of a corotating structure approaches the western edge of the solar limb.  相似文献   

19.
Two-dimensional ionospheric total electron content (TEC) data during the time period from 00:00 on 2 July to 12:00 UT on 8 July 2013, which was 5 days before to 1 day after a deep earthquake at 18:35:30 on 7 July 2013 UT (Mw = 7.2) with a depth at about 378.8 km in Papua New Guinea, were examined by two-dimensional principal component analysis (2DPCA) to detect TEC precursor related to the earthquake because TEC precursors usually have shown up in earlier time periods. A TEC precursor was highly localized around the epicenter from 06:00 to 06:05 on 6 July, where its duration time was at least 5 minutes. Ionizing radiation radon gas release should be a possibility to cause the anomalous TEC fluctuation, e.g., electron density variation. The plasma might have large damping at that time to cause TEC fluctuation of short time, and the gas released with small amount in short time period, and 2DPCA could identify short time TEC fluctuation while the fluctuation lasted for a long time. Other background TEC anomalies caused by the geomagnetic storm, small earthquakes and non-earthquake activities, e.g., equatorial ionization anomaly resulted in the small principal eigenvalues, therefore the detection of TEC precursor was regardless of these background TEC anomalies.  相似文献   

20.
The sector structure and variations in the large-scale magnetic field of the Sun are studied in detail using solar magnetic-field data taken over a long time interval (1915–1990). The two-sector and four-sector structures are independent entities (i.e., their cross correlation is very small), and they are manifest in different ways during the main phases of the 11-year cycle. The contribution of the two-sector structure increases toward the cycle minimum, whereas that of the four-sector structure is larger near the maximum. The magnetic-field sources determining the two-sector structure are localized near the bottom of the convection zone. The well-known 2–3-year quasi-periodic oscillations are primarily associated with the four-sector structure. The variations in the rotational characteristics of these structures have a period of 55–60 years. The results obtained are compared with the latest helioseismology data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号