首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We compared the functions and values of fringing salt marshes to those of meadow marshes along the southern Maine/New Hampshire coast. Differences included soil organic matter content, plant species richness, and percent cover of high and low-marsh species. More sediment was trapped per unit area in fringing marshes than in meadow marshes, but this difference was not significant. Similarities included aboveground and belowground peak season biomass and the ability to dampen wave energy. Both marsh types reduced the height of waves coming onto the marsh surface by 63% only 7 m into the marsh. Fringing marshes are diverse in terms of their physical characteristics (width, length, slope, elevation, soils). Despite their small size, they are valuable components of estuaries, performing many ecological functions to the same degree as nearby meadow marshes. More effort should be made to include them in regional efforts to conserve and restore coastal habitats.  相似文献   

2.
Studies of adult northern diamondback terrapins (Malaclemys terrapin terrapin) in the salt marshes on the Atlantic Ocean side of Cape May Peninsula reveal that from mid-November through December, terrapins gradually migrate from the open waters of the sounds into the marsh creeks. Within the creeks, hibernating diamondbacks hibernate as isolated individuals or in small groups. Three hibernating methods are used: 1) resting on the bottom under water, 2) burial atop creek banks, and 3) taking refuge beneath undercut banks. Hibernating diamondbacks apparently remain dormant all winter.  相似文献   

3.
Many salt marshes in densely populated areas have been subjected to a reduction in tidal flow. In order to assess the impact of tidal flow restriction on marsh sedimentation processes, sediment cores were collected from flow-restricted restricted salt marshes along the Connecticut coast of Long Island Sound. Cores were also collected from unrestricted reference marshes and from a marsh that had been previously restricted but was restored to fuller tidal flushing in the 1970's. High bulk densities and low C and N concentrations were found at depth in the restricted marsh cores, which we attribute to a period of organic matter oxidation, sediment compaction, and marsh surface subsidence upon installation of flow restrictions (between 100 and 200 years before the present, depending on the marsh). Recent sedimentation rates at the restricted marshes (as determined by137Cs and210Pb dating) were positive and averaged 78% (137Cs) and 50% (210Pb) of reference marsh sedimentation rates. The accumulation of inorganic sediment was similar at the restricted and reference marshes, perhaps because of the seasonal operation of the tide gates, while organic sediment accretion (and pore space) was significantly lower in the restricted marshes, perhaps because of higher decomposition rates. Sedimentation rates at the restored marsh were significantly higher than at the reference marshes. This marsh has responded to the higher water levels resulting from restoration by a rapid increase in marsh surface elevation.  相似文献   

4.
Salt marsh fucoid algae are a conspicuous component of north temperate marshes, yet comparatively little research has been conducted to examine their ecological effects. We examined the influence of salt marsh fucoids on physical conditions and the biotic community in a manipulative experiment conducted in a southern Maine back-barrier salt marsh. The biomass of salt marsh fucoids was higher than that of aboveground Spartina alterniflora in the zone where we conducted the experiment. Average daytime temperatures at the sediment surface were significantly reduced by the presence of salt marsh fucoids. Density and biomass of standing-dead S. alterniflora was significantly higher when salt marsh fucoids were removed. In contrast, the abundance of various species of epifauna and infauna were significantly enhanced by the presence of salt marsh fucoids. A regional survey indicated that results from the study site may be conservative because the biomass of salt marsh fucoids was lowest among other back-barrier marshes. Salt marsh fucoids are little studied ecosystem engineers whose presence affects the microclimate and biotic community, especially the animals that constitute the basal components of the salt marsh trophic relay.  相似文献   

5.
Flow hindrance by salt‐marsh vegetation is manifested in the structure of the tidal current; it has a significant impact on sediment transport and it has been related to increased sediment accretion. The flow characteristics in three different vegetation types (Spartina maritima, Sp. anglica and Salicornia sp./Suaeda maritima) were measured on three salt‐marshes in Portugal and England. These in situ measurements differ from laboratory flume experiments with ‘clean’ vegetation by the complexity of natural canopies. Skimming flow develops above the Spartina canopy when the vegetation is fully submerged. In this situation, a low turbulence zone with nearly constant velocity in the denser canopy is separated from the skimming flow above by an interface characterized by high Reynolds stresses. In the low turbulence zone, a positive relationship exists between turbulence intensity and shoot density, which is due to wake turbulence generated locally in the canopy. The rate of particle settling should be increased in that zone. The lower limit of skimming flow is best predicted by the height within the canopy that includes 85% of the biomass. For emergent Spartina canopies and the short Salicornia/Suaeda marsh, the maximal velocity‐gradient is shifted upwards compared to a standard boundary layer over bare sediment and the turbulence is attenuated near the bed, but to a lesser extent than for fully submerged Spartina canopies. A turbulence reduction near the bed was observed in all measured profiles; that should enhance sediment deposition and protects the bed against subsequent erosion.  相似文献   

6.
Northeastern US salt marshes face multiple co-stressors, including accelerating rates of relative sea level rise (RSLR), elevated nutrient inputs, and low sediment supplies. In order to evaluate how marsh surface elevations respond to such factors, we used surface elevation tables (SETs) and surface elevation pins to measure changes in marsh surface elevation in two eastern Long Island Sound salt marshes, Barn Island and Mamacoke marshes. We compare marsh elevation change at these two systems with recent rates of RSLR and find evidence of differences between the two sites; Barn Island is maintaining its historic rate of elevation gain (2.3?±?0.24 mm year?1 from 2003 to 2013) and is no longer keeping pace with RSLR, while Mamacoke shows evidence of a recent increase in rates (4.2?±?0.52 mm year?1 from 1994 to 2014) to maintain its elevation relative to sea level. In addition to data on short-term elevation responses at these marshes, both sites have unusually long and detailed data on historic vegetation species composition extending back more than half a century. Over this study period, vegetation patterns track elevation change relative to sea levels, with the Barn Island plant community shifting towards those plants that are found at lower elevations and the Mamacoke vegetation patterns showing little change in plant composition. We hypothesize that the apparent contrasting trend in marsh elevation at the sites is due to differences in sediment availability, salinity, and elevation capital. Together, these two systems provide critical insight into the relationships between marsh elevation, high marsh plant community, and changing hydroperiods. Our results highlight that not all marshes in Southern New England may be responding to accelerated rates of RSLR in the same manner.  相似文献   

7.
Ombrogenic Atlantic salt marshes are defined as areas of halophytic, terrestrial vegetation which are periodically flooded by the tide and have a predominant underlying organic substrate comprising of wood and/or Sphagnum peat that formed under freshwater conditions. The objective of this study was to determine to what extent salt marsh plant ecology and, specifically, vegetation composition and zonation relate to this underlying substrate of organic matter (peat). A vegetation survey was carried out on nine salt marshes, three on peat substrate and two on sand, mud and sand/mud, respectively. In parallel, key edaphic variables were measured including pH, conductivity, organic content, moisture content and nutrients: ammonium, nitrate and phosphorus. Salt marshes on peat substrate are distinct. Ammonium content was twice the maximum reported in other salt marsh studies, while the vegetation composition of salt marshes on peat substrate was significantly different from that of other salt marshes. Salt marshes on peat substrate were found to be higher in species diversity and richness and characterised by a predominantly forb and rush community. However, some common salt marsh species, such as Atriplex portulacoides and Spartina anglica were absent from salt marshes on peat. Ordination analysis revealed that zonation was primarily associated with conductivity on peat substrates. In contrast, moisture plays a greater role in zonation within non-peat salt marshes. The findings confirm that the high organic matter content of ombrogenic Atlantic salt marshes is associated with distinct vegetation composition.  相似文献   

8.
We assess the status of channel networks and pools of two tidal salt marshes recovering from more than a century of agricultural reclamation on the Bay of Fundy, Canada. A process of largely unmanaged restoration occurred at these sites since abandonment of agricultural activities during the first half of the twentieth century. Each recovering marsh was compared to a reference marsh that was never drained or ditched. We field mapped channel networks at all marshes and used aerial photographs to map the pre-abandonment channel network at one of the sites. The recovering marshes have hybrid channel networks that feature highly variable channel morphologies, loss of original channels, and incorporation of drainage ditches. Although channel networks in recovering marshes integrate agricultural ditches, the recovering marsh networks may not be substantially increased in length or density. Our aerial photograph analysis shows that channel density at one of the recovering marshes is comparable to the pre-abandonment density, but with reduced sinuosity. Field mapping of permanent tidal pools on the lower Bay marshes revealed that pools cover 13% of the recovering marsh, compared to ∼5% of the reference marsh. This study demonstrates that these essential marsh features can be regained through restoration or simple abandonment of drainage infrastructure.  相似文献   

9.
Tidal salt marsh is a key defense against, yet is especially vulnerable to, the effects of accelerated sea level rise. To determine whether salt marshes in southern New England will be stable given increasing inundation over the coming decades, we examined current loss patterns, inundation-productivity feedbacks, and sustaining processes. A multi-decadal analysis of salt marsh aerial extent using historic imagery and maps revealed that salt marsh vegetation loss is both widespread and accelerating, with vegetation loss rates over the past four decades summing to 17.3 %. Landward retreat of the marsh edge, widening and headward expansion of tidal channel networks, loss of marsh islands, and the development and enlargement of interior depressions found on the marsh platform contributed to vegetation loss. Inundation due to sea level rise is strongly suggested as a primary driver: vegetation loss rates were significantly negatively correlated with marsh elevation (r 2?=?0.96; p?=?0.0038), with marshes situated below mean high water (MHW) experiencing greater declines than marshes sitting well above MHW. Growth experiments with Spartina alterniflora, the Atlantic salt marsh ecosystem dominant, across a range of elevations and inundation regimes further established that greater inundation decreases belowground biomass production of S. alterniflora and, thus, negatively impacts organic matter accumulation. These results suggest that southern New England salt marshes are already experiencing deterioration and fragmentation in response to sea level rise and may not be stable as tidal flooding increases in the future.  相似文献   

10.
Emerging insects were monitored every 10 days between early May and late August 1993, from tidal pools in three coastal salt marshes on Prince Edward Island, Canada. The salt marsh pools ranged from about 1 m2 to > 1,000 m2 in surface area, and had salinities ranging from 11–27‰ Water temperatures through the study period ranged from 4–46°C. Most of the emerging insects were flies (Diptera; 85%), and two-thirds of these were in the sub-Order Nematocera, mainly Chironomidae, Ceratopogonidae, and Culicidae. Forty-three species of Nematocera were identified, although most of these were rare occurrences, and twelve of the species are undescribed. No consistent relationships were found between abundance or diversity and pool size or marsh for Nematocera species overall, although some species showed a statistical preference for a particular marsh or pool size. Emergence patterns were consistent between marshes for species found in different marshes, but overall patterns were highly variable, depending upon species.  相似文献   

11.
Along the mid- and north Atlantic coasts of the USA, over 90 % of salt marshes have been ditched. Ditching was largely abandoned by the mid-twentieth century; however, techniques that create permanent shallow water pools for mosquito control and bird habitat are increasingly being applied to marshes of the USA and elsewhere. Salt marshes in Plum Island Sound, Massachusetts, and Barnegat Bay, New Jersey, were used to examine differences between areas that have been ditched and those altered to increase the density of shallow pools in water table dynamics, salinity, soil and porewater chemistry, as well as short-term sedimentation, accretion, and elevation change rates. We found that the area with plugged ditches, berms, and pools in Plum Island had less drainage, higher salinity and porewater sulfide and ammonium concentrations, and higher soil organic matter than the adjacent ditched area. Despite averaging 8 cm lower in elevation, the Plum Island ditched area had less sediment deposition and was composed of higher elevation plant species than the area with plugged ditches, berms, and shallow pools. Elevation increased in the ditched area at a rate of 3.2 ± 0.5 mm/year, but elevation change was variable in the area with pools. In Barnegat Bay, the marsh area with pools and ditches had less sediment deposition and surface accretion than the ditch-only area, associated, in part, with the higher elevation. An average elevation difference of 4.5 cm was associated with a sixfold difference in mineral sediment deposition. Temporal sediment deposition and surface accretion was important in the ditch-only area but was absent or muted in the area with numerous pools. Elevation increased in both marsh areas at an average rate of 1.8 ± 0.8 mm/year, less than half the long-term average local rate of sea-level rise. Our results illustrate how physical manipulations including changes to tidal hydrology and surface topography interact with elevation to influence short-term biophysical feedbacks.  相似文献   

12.
Salt marsh plant communities are regulated by feedback processes involving hydrologic regimes, disturbance, and marsh physical characteristics, and as expected differ among habitat types. Using three barrier beach salt marshes along the Gulf of Maine, we examined the effects of ditching and ditch-plugging on plant characteristics by means of comparisons to natural creek and pool habitats. Results indicated that ditch and creek habitats were similar in terms of species richness and diversity of emergent vascular plants, but cover and biomass were significantly higher in habitat adjacent to creeks. Plant composition in ditch habitat was distinguished by the higher percentage of forb species (associated with poor drainage), while the proportion of tall-form Spartina alterniflora was much higher in creek habitat (associated with sloping banks of creeks). These results are indicative of differences in hydrologic and disturbance regimes that can influence competitive and facilitative interactions, habitat structure, and heterogeneity. Results for pool comparisons indicated that plant characteristics were significantly different between ditch-plug and natural pools. Species richness, diversity, and biomass were significantly lower in ditch-plug habitat compared with all other habitats, and plant cover averaged only 30 % in habitat adjacent to ditch-plugs, which was significantly lower than all other habitats. These differences have ecological implications in terms of habitat structure and function of ditch-plug habitat. In addition, increased stress leading to plant dieback due to ditch-plugging has resulted in subsidence that can decrease the stability of ditch-plug habitat and expedite the loss of salt marsh habitat, especially with rising sea levels.  相似文献   

13.
We examined connectivity among marsh subhabitats to determine the structural limits and important components of a polyhaline salt marsh by studying the patterns of abundance, residency, and movement of a numerically and ecologically dominant nektonic fish (mummichog, Fundulus heteroclitus). We captured, tagged (n = 14,040 individuals, 30–110 mm), and recaptured from Feb 2001 to Jul 2002, although most recaptures (75–95% by tagging location) occurred within 150 days. Seasonal residency and movements were common among most subhabitats based on catch per unit effort and recapture per unit effort. Thus, these (marsh pools, intertidal and subtidal creeks, and marsh surface) should be considered natural subhabitats within New England type salt marshes. Further, all these subhabitat types should be included in studies of salt marsh nekton and marsh restoration and creation activities.  相似文献   

14.
This paper examines how perennial Aster tripolium and annual Salicornia procumbens salt marshes alter the biomass, density, taxon diversity, and community structure of benthic macrofauna, and also examines the role of elevation, sediment grain size, plant cover, and marsh age. Core samples were collected on a fixed grid on an intertidal flat in the Westerschelde estuary (51.4° N, 4.1° E) over 5 years (2004–2008) of salt marsh development. In unvegetated areas, macrobenthic biomass, density, and taxon diversity were highest when elevation was highest, benthic diatoms were most abundant, and sediment median grain size was smallest. In contrast, in salt marsh areas, macrobenthic biomass and taxon diversity increased with median grain size, while the effects of elevation and diatom abundance on macrobenthic biomass, density, and diversity were not significant. In fine sediments, macrofaunal community structure in the salt marsh was particularly affected; common polychaetes such as Nereis diversicolor, Heteromastus filiformis, and Pygospio elegans had low abundance and oligochaetes had high abundance. Marsh age had a negative influence on the density of macrofauna, and A. tripolium stands had lower macrofaunal densities than the younger S. procumbens stands. There were no significant effects of marsh age, plant cover, and vegetation type on macrobenthic biomass, taxon diversity, and community structure. The results highlight that ecosystem engineering effects of salt marsh plants on macrofauna are conditional. Organic enrichment of the sediment and mechanical hindering of macrofaunal activity by plant roots are proposed as plausible mechanisms for the influence of the salt marsh plants on macrofauna.  相似文献   

15.
An integrated marsh management (IMM) project in an urbanized watershed on Long Island, New York, USA, aimed to mitigate salt marsh degradation and to reduce mosquito production by an innovative combination of restoration and open marsh water management methods. The grid ditch network at two treatment marshes was replaced with naturalized tidal channels and ponds. Effects of the hydrologic alterations were monitored utilizing a before–after–control–impact approach. The treatment marshes experienced a number of beneficial outcomes including a fourfold reduction in the invasive Phragmites australis and increased native vegetation cover in the most degraded portions of the marsh, increased abundance and diversity of marsh killifish and estuarine nekton species, higher shorebird and waterfowl densities, and increased avian species diversity. The successful implementation of IMM concept led to improved marsh health and diminished mosquito production. Therefore, this study may serve as a template for similar large-scale integrated salt marsh restoration projects.  相似文献   

16.
Many salt marshes throughout southern New England are exhibiting a trend toward submergence, as reported in this volume and other published literature. This paper provides a brief perspective on sea-level rise and the many other interacting factors that contribute to marsh submergence in this and other regions. Curtailing nutrient loading and removing or altering barriers (e.g., dams, dikes) to the delivery of suspended sediment to marshes are discussed as management or restoration techniques to consider for increasing long-term sustainability of marshes. Adaptation measures are many (e.g., thin-layer sediment application to marsh surface, facilitation of landward marsh migration, shoreline stabilization), but all require study to evaluate their potential for enhancing resilience. Research, monitoring, and dynamic modeling, coupled with appropriate management and adaptation approaches implemented at local and regional scales, will contribute to the challenge of sustaining salt marshes in an uncertain future of sea-level rise, other climate factors, and stressors associated with a developing coastal zone.  相似文献   

17.
A process-based numerical model is applied to investigate sediment transport dynamics and sediment budget in tide-dominated estuaries under different salt marsh erosion scenarios. Using a typical funnel-shaped estuary (Ribble Estuary, UK) as a study site, it is found that the remobilization of sediments within the estuary is increased as a result of the tidal inundation of the eroded salt marsh. The landward export of the finest sediment is also intensified. The relationship between salt marsh erosion and net landward export of sediments has been found to be non-linear—with the first 30% salt marsh erosion causing most of the predicted export. The presence of vegetation also influences the sediment budget. Results suggest that vegetation reduces the amount of sediment being transported upstream. Again, the trapping effect of salt marsh in terms of plant density is non-linear. Whilst a vegetated surface with a stem density of 64 plants/m2 decreased the net landward export of very fine sand by around 50%, a further increase in stem density from 64 to 512 plants/m2 had a relatively small effect.  相似文献   

18.
In light of widespread coastal eutrophication, identifying which nutrients limit vegetation and the community consequences when limitation is relaxed is critical to maintaining the health of estuarine marshes. Studies in temperate salt marshes have generally identified nitrogen (N) as the primary limiting nutrient for marsh vegetation, but the limiting nutrient in low salinity tidal marshes is unknown. I use a 3-yr nutrient addition experiment in mid elevation,Spartina patens dominated marshes that vary in salinity along two estuaries in southern Maine to examine variation in nutrient effects. Nutrient limitation shifted across estuarine salinity gradients; salt and brackish marsh vegetation was N limited, while oligohaline marsh vegetation was co-limited by N and phosphorus (P). Plant tissue analysis ofS. patens showed plants in the highest salinity marshes had the greatest percent N, despite N limitation, suggesting that N limitation in salt marshes is partially driven by a high demand for N to aid in salinity tolerance. Fertilization had little effect on species composition in monospecificS. patents stands of salt and brackish marshes, but N+P treatments in species-rich oligohaline marshes significantly altered community composition, favoring dominance by high aboveground producing plants. Eutrophication by both N and P has the potential to greatly reduce the characteristic high diversity of oligohaline marshes. Inputs of both nutrients in coastal watersheds must be managed to protect the diversity and functioning of the full range of estuarine marshes.  相似文献   

19.
The importance of intertidal estuarine habitats, like salt marsh and oyster reef, has been well established, as has their ubiquitous loss along our coasts with resultant forfeiture of the ecosystem services they provide. Furthering our understanding of how these habitats are evolving in the face of anthropogenic and climate driven changes will help improve management strategies. Previous work has shown that the growth and productivity of both oyster reefs and salt marshes are strongly linked to elevation in the intertidal zone (duration of aerial exposure). We build on that research by examining the growth of marsh-fringing oyster reefs at yearly to decadal time scales and examine movement of the boundary between oyster reef and salt marsh at decadal to centennial time scales. We show that the growth of marsh-fringing reefs is strongly associated to the duration of aerial exposure, with little growth occurring below mean low water and above mean sea level. Marsh-shoreline movement, in the presence or absence of fringing oyster reefs, was reconstructed using transects of sediment cores. Carbonaceous marsh sediments sampled below the modern fringing oyster reefs indicate that marsh shorelines within Back Sound, North Carolina are predominantly in a state of transgression (landward retreat), and modern oyster-reef locations were previously occupied by salt marsh within the past two centuries. Cores fronting transgressive marsh shorelines absent fringing reefs sampled thinner and less extensive carbonaceous marsh sediment than at sites with fringing reefs. This indicates that fringing reefs are preserving carbonaceous marsh sediment from total erosion as they transgress and colonize the exposed marsh shoreline making marsh sediments more resistant to erosion. The amount of marsh sediment preservation underneath the reef scales with the reef’s relief, as reefs with the greatest relief were level with the marsh platform, preserving a maximum amount of carbonaceous sediments during transgression by buffering the marsh from erosional processes. Thus, fringing oyster reefs not only have the capacity to shelter shorelines but, if located at the ideal tidal elevation, they also keep up with accelerating sea-level rise and cap carbonaceous sediments, protecting them from erosion, as reefs develop along the marsh.  相似文献   

20.
Herbivory is a common process in salt marshes. However, the direct impact of marsh herbivory on nutrient cycling in this ecosystem is poorly understood. Using a 15N enrichment mesocosm study, we quantified nitrogen (N) cycling in sediment and plants of black needlerush (Juncus roemerianus) salt marshes, facilitated by litter decomposition and litter plus grasshopper feces decomposition. We found 15 times more 15N recovery in sediment with grasshopper herbivory compared to sediment with no grasshopper herbivory. In plants, even though we found three times and a half larger 15N recovery with grasshopper herbivory, we did not find significant differences. Thus, herbivory can enhance N cycling in black needlerush salt marshes sediments and elevate the role of these salt marshes as nutrient sinks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号