首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
利用Taylor公式展开导出了交错网格中可导函数任意次导数的任意偶数阶精度的差分近似式及相应的差分系数,从而改进了常规高精度交错网格有限差分算法中对各个空间导数采用不一致精度的问题。采用推导的交错网格高阶差分算法对一阶弹性波动方程进行数值模拟,得到了精确的数值模拟结果,证明了推导的交错网格高阶差分算法的正确性。  相似文献   

2.
交错网格波场数值模拟是目前地震正演中广泛使用的方法,为对比分析不同阶数的差分格式下产生的计算效率和精度差异,重新推导了弹性波方程的4种时间4阶、空间2N阶的差分公式及系数,并计算了他们的稳定性条件。利用这4种差分格式进行弹性波场数值模拟,对比分析了波场快照、合成地震记录及CPU时间。结果表明:时间4阶、空间6+6阶精度的交错网格有限差分方法在进行地震波场数值模拟时具有较高的计算精度和计算效率。  相似文献   

3.
井间地震正演模拟技术是研究地震波在井间传播规律的重要手段之一,可以帮助认识井间地震的复杂波场.从二维井间地震波传播波动方程出发,结合初始、边界条件,推导出了交错网格任意偶阶精度差分格式,阐述了非均匀差分网格的实现方法.在此基础上,编制了跨孔波场交错网格有限差分正演程序,并应用该程序对半空间粘弹性跨孔模型进行了正演计算,得到了震源在不同位置时的波场快照及地震记录图.这对于跨孔模型波传播规律的研究,具有重要意义.  相似文献   

4.
在井间地震有限差分数值模拟中,用离散化的高阶差分方程近似连续导数的波动方程时,不可避免地会产生数值频散,而数值频散程度则直接影响到地震波数值模拟精度,因此为了得到清晰准确的地震波场记录,必须尽可能地压制数值频散。这里在一阶速度应力弹性波方程的基础上,利用两个约束条件构造拉格朗日函数获取优化差分系数,与泰勒展开差分系数下的交错网格高阶差分模拟结果比较,发现改进的优化交错网格差分算子的高阶差分数值模拟能更有效地压制数值频散,进一步提高交错网格高阶差分数值模拟的精度,为高精度井间地震数据的波场成像、纵横波联合解释等提供可靠依据。  相似文献   

5.
交错采样网格能自动保证电磁场分布遵守能量守恒定律.本文基于交错采样网格,推导了大地电磁二维有限差分正演过程,实现了二维正演程序;通过与一维解析解对比,验证了算法的正确性且具有较高的计算精度.随后利用有限内存拟牛顿最优化算法,实现了交错采样有限差分二维反演;通过理论模型反演,验证了反演算法的稳定性,揭示有限内存拟牛顿反演...  相似文献   

6.
从具有水平对称轴的横向各向同性(HTI)介质中的弹性波动方程出发,在交错网格空间中采用高阶差分算子对弹性波动方程进行差分离散,得到了HTI介质中地震波正演的高阶有限差分格式,研究并实现了PML吸收边界条件。在此基础上实现了HTI介质中弹性波方程的多波正演。数值算例表明,该方法能够精确模拟弹性波在复杂各向异性介质中的传播过程,得到高精度的正演记录。  相似文献   

7.
以Biot双相介质模型为背景,笔者推导了双相各向同性介质二维三分量一阶速度——应力弹性波方程方程,建立了各向同性双相介质波动方程的二维三分量有限差分格式。分别采用传统交错网格有限差分技术和旋转交错网格有限差分技术对均匀和非均匀双相各向同性介质进行了波场模拟。结果表明,旋转交错网格有限差分技术能够有效模拟双相各向同性介质中弹性波的传播情况;通过传统和旋转交错网格有限差分技术的对比,说明了旋转交错网格有限差分算法的稳定性更强,避免了插值带来的误差,是一种有效的地震波场模拟方法。  相似文献   

8.
非均匀介质中交错网格高阶有限差分数值模拟   总被引:5,自引:0,他引:5  
地震波场的数值模拟一直是地球物理学的一个重要的研究领域,而在数值正演模拟方法的研究中,计算精度和计算效率是评价该方法有效性及优越性的二个关键问题。这里从一阶速度—应力弹性波动方程出发,着重介绍如何构造离散化模型的网格,如何求解空间导数,如何选取边界条件等内容,从而更有效地提高数值计算的精度与计算效率。文中构造了不同类型的介质模型,并在交错网格中,利用高阶有限差分模拟非均匀介质的波场传播。模拟结果表明,该方法实现简单,具有很好地稳定性和较高的精度,能够直观、高效地反映出介质中波场的传播规律。  相似文献   

9.
熊杰  邹长春  孟小红 《现代地质》2012,26(6):1283-1288
在柱坐标系下推导了二维感应测井差分格式,采用频率域有限差分方法求解感应测井正演问题。针对差分近似得到的线性方程组系数矩阵是大型稀疏复系数病态矩阵求解困难等问题,采用不完全LU分解预条件的稳定双共轭梯度(BICGSTAB)算法求解该线性方程组。研究结果表明,本算法具有速度快、精度高和稳定性好等优点,能有效提高感应测井正演模拟的效率和精度。  相似文献   

10.
贴体网格有限差分正演模拟算法不仅能够精确模拟任意起伏地形下的波场特征,且计算效率较高,是一种很有应用前景的处理西部复杂地表问题的方法;然而,目前求解波动方程时常用的同位网格和标准交错网格,在处理贴体网格起伏地表正演模拟时存在诸多问题。为此,将全交错网格引入到曲线坐标系下,避免了标准交错网格的插值误差和同位网格中奇偶失联引起的高频振荡现象,提高了模拟精度,减小了算法实现的复杂度。在自由边界条件实施时,采用牵引力镜像法计算速度分量,速度自由边界条件配合紧致交错差分格式更新应力分量,得到了较好的效果。随后,重点研究了贴体全交错网格正演模拟算法的影响因素,考虑了网格正交性、网格间距和网格拼接等的影响,并取得了如下认识:算法对网格的正交性没有过分要求;网格间距的突变会引起虚假反射的产生;不同类型的网格拼接对模拟结果不会造成明显的影响。  相似文献   

11.
交错网格下的浅水方程高分辨Gauss型格式   总被引:1,自引:0,他引:1       下载免费PDF全文
在交错网格上,基于高精度的Gauss积分公式,针对浅水波方程设计了对模拟涌波具有高分辨率的完全二阶精度的数值计算格式。由于采用了交错网格,差分格式不需要解Riemann问题,因此本文格式具有计算简单、工作量少、编程简便等特点。另外,在一维单个方程时,本文格式在CFL(Courant Friedrich Lewy)条件限制下为TVD(Total Variation Diminishing)格式,在二维和三维情况下格式具有MmB(Maximum and Minimum Bounds Preserving)性质。利用国家高性能计算中心(合肥)的曙光1000型分布存储大规模并行机,对在交错网格下所构造的求解浅水方程的高分辨差分格式进行了并行实现,几个算例的计算结果令人满意。  相似文献   

12.
Starting from nonhydrostatic Boussinesq approximation equations, a general method is introduced to deduce the dispersion relationships. A comparative investigation is performed on inertia-gravity wave with horizontal lengths of 100, 10 and 1 km. These are examined using the second-order central difference scheme and the fourth-order compact difference scheme on vertical grids that are currently available from the perspectives of frequency, horizontal and vertical component of group velocity. These findings are compared to analytical solutions. The obtained results suggest that whether for the second-order central difference scheme or for the fourth-order compact difference scheme, Charny–Phillips and Lorenz (L) grids are suitable for studying waves at the above-mentioned horizontal scales; the Lorenz time-staggered and Charny–Phillips time staggered (CPTS) grids are applicable only to the horizontal scales of less than 10 km, and N grid (unstaggered grid) is unsuitable for simulating waves at any horizontal scale. Furthermore, by using fourth-order compact difference scheme with higher difference precision, the errors of frequency and group velocity in horizontal and vertical directions produced on all vertical grids in describing the waves with horizontal lengths of 1, 10 and 100 km cannot inevitably be decreased. So in developing a numerical model, the higher-order finite difference scheme, like fourth-order compact difference scheme, should be avoided as much as possible, typically on L and CPTS grids, since it will not only take many efforts to design program but also make the calculated group velocity in horizontal and vertical directions even worse in accuracy.  相似文献   

13.
隋竞函  刘财 《世界地质》2018,37(4):1239-1249
基于一阶速度-应力波动方程,采用高阶交错网格有限差分数值模拟方法,对弹性及黏弹性TTI介质进行正演数值模拟。模拟时采用完全匹配层吸收边界条件(PML)消除边界反射。同时设计了层状介质模型、断层模型,通过模型的正演计算,得到了不同时刻的地震波波场快照及合成地震记录,分析其波场运动学及动力学特征。模拟结果表明,交错网格有限差分法可以很好地完成对复杂介质的波场模拟,具有较高的精度和可靠性。  相似文献   

14.
林树海  王伟利 《现代地质》2012,26(6):1193-1198
为提高电磁波场数值计算精度,对时间域有限差分法与时间域伪谱法进行了对比研究。时间域有限差分法是一种目前流行的电磁场时域数值计算方法,已被广泛应用于求解与时间有关的偏导数方程。对于大规模数值计算,时间域有限差分法需要较多的内存空间。时间域伪谱法基于时间域有限差分法,该方法使用快速傅里叶度换来计算麦克斯韦方程中的空间导数。由于傅里叶变换的准确性,时间域伪谱法使计算精度提高,数值计算时所需的格子数大大减少,这极大地节省了计算机内存空间,适合于大规模正反演问题的数值计算。  相似文献   

15.
对气煤煤样孔隙率测试的基础上,讨论了各向异性系数与孔隙率的关系,表明各向异性的大小与孔隙率之间有一定的关系。应用高阶交错网格差分算法,对一阶速度-应力弹性波方程进行模拟,分析了其稳定性和边界条件。通过对Thomsen各向异性参数的模拟表明,主要控制的是P波的各向异性强弱,δ主要控制水平垂直正交方向上的各向异性强弱。对煤田各向异性研究具有重要意义。  相似文献   

16.
在弹性波频率空间域有限差分数值模拟方面,差分网格及边界条件是影响弹性波模拟成功与否的关键,为了压制数值模拟中的网格频散,采用25点有限差分算子,建立了有限差分矩阵方程,且借鉴匹配层衰减边界条件思想,设计了弹性波频率空间域有限差分数值模拟算法。由于采用高阶有限差分法来提高差分格式的精度,将会导致计算量显著增加,为此,对频率空间域有限差分弹性波数值模拟方法,采用流水线技术与分治策略进行了并行算法研究,提高了计算效率,使得在合理的计算时间内更精确地模拟弹性波在弹性介质中的传播过程。  相似文献   

17.
随着隧道技术的快速发展,工程上对地质超前预报的可行性和准确性也提出了更高的要求。首先分析了现有以及改进后的定向探测系统的优缺点;然后利用一阶速度—应力弹性波动方程和高阶交错网格法,导出用于改进后的TSP地震波场数值模拟的差分计算方程,并构建倾斜软弱夹层和空洞地质模型,对上述模型进行正演模拟,获得相应的波场快照和单炮记录,进而对地震波场进行分析。结果表明:改进后的TSP观测装置易于实现;有限差分法可有效地模拟改进后的TSP地震波场,其模拟结果清晰可靠地揭示了隧道地质中地震波的传播规律。  相似文献   

18.
利用高阶交错网格有限差分模拟Kelvin-Voigt黏弹性介质中传播的地震波,同时将完全匹配层吸收边界条件引入到其边界处理中。数值模拟结果表明,完全匹配层吸收边界效果好,高阶有限差分能模拟得到的黏弹性介质波场精度较高。对模拟的黏弹性波场进行分析,表明介质的粘滞性使地震反射波的能量变弱,高频衰减明显,并比低频衰减得快,主频向低频方向移动,有效频带变窄,即降低了地震波的分辨率;并且反射转换波比反射纵波要衰减得快;而且还随着传播距离的增加,其峰值频率也逐渐降低。通过数值模拟分析具有不同的粘滞系数介质对地震波的吸收和衰减,结果表明随着粘滞系数的增大,地下介质对地震波的吸收衰减更明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号