首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Based on an integrated analysis of seismic, well logging and paleontological data, the sequence architecture and depositional evolution of the northeastern shelf margin of the South China Sea since Late Miocene are documented. The slope deposits of the Late Miocene to Quaternary can be divided into two composite sequences (CS1 and CS2) bounded by regional unconformities with time spans of 3–7 Ma, and eight sequences defined by local unconformities or discontinuities with time spans of 0.8–2.3 Ma. Unconformities within CS1 feature shelf-edge channel erosion, while in CS2 they form truncations at the top of the shelf margin as prograding complexes and onlap contacts against the slope.Depositional systems recognized in the slope section include unidirectionally migrating slope channels, slope fans or aprons, shelf-edge deltas and large-scale slope clinoforms. CS1 (Late Miocene to Pliocene) is characterized by development of a series of shelf-margin channels and associated slope fan aprons. The shelf-margin channels, oriented mostly NW-SE, migrate unidirectionally northeastwards and intensively eroded almost the entire shelf-slope zone. Two types of channels have been identified: (1) broad, shallow and unconfined or partly confined outer-shelf to shelf-break channels; and (2) deeply incised and confined unidirectionally migrating slope channels. They might be formed by gravity flow erosion as bypassing channels and filled mostly with along-slope current deposits. Along the base of the shelf slope, a series of small-scale slope fans or fan aprons are identified, including three depositional paleo-geomorphological elements: (1) broad or U-shaped, unconfined erosional-depositional channels; (2) frontal splays-lobes; and (3) non-channelized sheets. CS2 (Quaternary) consists mainly of a set of high-angle clinoforms, shelf-margin deltas and lower slope unidirectionally migrating channels.The relative sea level changes reflected in the sequence architecture of the study area are basically consistent with Haq's global sea level curve, but the development of regional unconformities were apparently enhanced by tectonic uplift. The development of high-angle (thick) clinoforms in the Quaternary may be attributed to a high sediment supply rate and rapid tectonic subsidence. The formation of the unidirectionally migrating channels appears to have resulted from the combined effects of the northeastward South China Sea Warm Current (SCSWC) and downslope gravity flow. The formation of the slope channels in the outer-shelf to shelf-break zone may be predominately controlled by bottom current, whereas those developed along the middle to lower slope zone may be dominated by gravity flow.  相似文献   

2.
Shelf-edge deltas (SEDs) forming during periods of relative sea level fall and lowstand are generally efficient in transferring sediments to the slope and basins, and their identification in subsurface data is often considered a good indication of coeval development of slope and basin-floor turbidite reservoirs. This study investigates the seismic stratigraphic evolution of a forced-regressive and normal regressive shelf-edge delta (Bonaparte SED) that accumulated on the edge of the NW Australian margin during the late Quaternary. High resolution 2D and 3D reflection seismic data allow reconstruction of the main episodes of delta progradation and understanding of the extrinsic and intrinsic controls on their deposition. The lack of a significant turbidite system forming off the shelf-edge delta throughout the Quaternary is a striking feature of the Bonaparte SED. Instead, slope sedimentation is dominated by the accumulation of plume-derived mud belts and their reworking through mass-transport processes. Seismic geomorphology permits interpretation of the process regime of the youngest shelf-edge depocentre by applying a new process-based shallow-marine classification scheme to the 3D seismic attribute data. Results suggest either a tide or wave dominated delta with fluvial processes being of tertiary significance. A tide or wave-dominated, fluvial-affected shelf-edge delta classification is consistent with the paleogeographical reconstruction of the margin during the last glacial maximum (ca. 25 ka BP). The comparison of this mixed-process shelf-edge delta and starved slope system with a fluvial-dominated counterpart with significant sandy slope deposits emphasizes the potential of assessing the process regime of shelf-edge deltas as a rapid, first approach for predicting the presence or absence of coeval slope and basin-floor reservoirs.  相似文献   

3.
Seismic characterization of Eocene-Oligocene heterozoan carbonate strata from the Browse Basin, Northwest Shelf of Australia, defines marked progradation of nearly 10 km. Stratal terminations and stacking subdivide the succession into mappable seismic units. Stratal architecture and seismic geomorphology varies systematically through the succession.Individual surfaces, discerned by toplap, onlap, and truncation, outline sigmoidal to tangential oblique clinoforms with heights of ranging from 350 to 650 m and maximum gradients between 8 and 18°. Sigmoidal clinoforms can include aggradation in excess of ∼200 m, prograde more than 500 m, and have slopes characterized by inclined, wavy to discontinuous reflectors that represent ubiquitous gullies and channels. In contrast, the overlying tangential oblique clinoforms include downstepped shelf margins, limited on-shelf aggradation (<100 m) and toplap, subdued progradation (<500 m), and continuous parallel inclined reflectors on the slope. Wedges of basinally restricted reflectors at toe of slope onlap surfaces of pronounced erosional truncation or syndepositional structural modification. The succession includes repeated patterns of seismic units that onlap, aggrade, and prograde, interpreted to represent sequence sets and composite sequences.The associations of shelf aggradation, shelf-margin progradation, and slope channeling within sigmoidal seismic units and the less marked progradation and channeling within tangential oblique seismic units contrast with the classic sequence model in which sediment delivery to the slope and pronounced progradation is favored by limited shelf accommodation. This distinct divergence is interpreted to reflect the prolific heterozoan production across the shelf during periods of rising and high base level when the shelf is flooded, perhaps enhanced by downwelling. Comparison with purely photozoan systems reveals similarities and contrasts in seismic stratigraphic heterogeneity and architecture, interpreted to be driven by distinct characteristics of heterozoan sedimentary systems.  相似文献   

4.
G Ercilla  B Alonso  J Baraza 《Marine Geology》1994,120(3-4):249-265
The post-Calabrian sedimentary column of the northwestern Alboran Sea comprises three depositional sequences. The two older depositional sequences are defined by lowstand systems tracts (shelf-margin deltas, slope, base-of-slope, and basin deposits, and the Guadiaro channel-levee complex). In contrast, the most recent depositional sequence also includes transgressive (relict shelf facies) and high-stand (the Guadalmedina-Guadalhorce prodelta and hemipelagic facies) systems tracts. The stratigraphic architecture of these depositional sequences is controlled by the synchronism between high frequency sea-level changes, variations in sediment supply, and sedimentary processes. The configuration of the depositional sequences is variable and their distribution is complex, as a result of the relative importance played by sea-level changes and tectonism through the area.

The sequence boundaries are represented by polygenetic surfaces in the proximal margin, and by monogenetic surfaces in the distal margin and basin. Each polygenetic surface results from the interaction between the sequence boundary with the lowstand erosional truncation surface and the transgressive surface, both developed during the previous sea-level cycle. The monogenetic surfaces correspond to unconformities and their correlative conformities, formed during sea-level lowstands. This pattern of depositional sequences developed in the margin and basin of the northwestern Alboran Sea shows differences with the Exxon Sequence Stratigraphy Model as traditionally applied: sea-level change control is essentially recognized through lowstand systems tracts, and sequence boundary coincides with lowstand erosional truncation surface and transgressive surface, both developed during the previous sea-level cycle.  相似文献   


5.
陆架边缘三角洲因其具有面积广、厚度大、储层发育等特点,在世界上已成为重要的油气勘探目标。运用高分辨率单道地震资料,对南海北部珠江口盆地番禺低隆起陆架边缘三角洲第四系地震相和沉积特征进行了详细分析,认为第四系陆架边缘三角洲主要为三角洲平原、三角洲前缘和前三角洲沉积。三角洲平原主要以水道—天然堤相组合为局部特征,频繁发生水道下切与改道。三角洲前缘主要以大型的前积地震相为主,随着海平面升降及物源供给变化,前缘带不断进积,由陆架向陆坡方向生长,三角洲前缘砂体前积受控于坡折带。前三角洲特征不明显。综合分析表明,研究区第四纪以来相对海平面经历了多次缓慢下降再迅速上升的旋回,形成了慢速海退和快速海侵交替进行的陆架边缘三角洲沉积。  相似文献   

6.
对于具有较宽陆架的下刚果盆地,当相对海平面下降时期,陆架区沉积中心向外陆架迁移,形成陆架边缘三角洲。其为深水区提供大量陆源碎屑物质,使低位体系域发育碎屑流沉积、浊流水道及前端扇体系;当相对海平面上升时期,沉积中心后退至内/中陆架,使深水区海侵+高位体系域以深海、半深海原地泥质沉积及泥质碎屑流沉积为主。深水层序以凝缩层段为界,层序界面之上为泥质碎屑流沉积,或者为浊流沉积;界面之下以深海、半深海原地沉降泥质沉积为主。测井曲线界面多为岩性突变面,GR曲线由"微齿状"转变为退积的"钟形"或加积的"箱形"。根据上述沉积旋回特征,将下刚果盆地中新统地层划分了7个三级层序、2个二级层序。海平面的周期性变化决定陆架区沉积中心的位置,从而决定了对深水区的沉积物供给,同时沉积物供给量主要受构造和气候的控制,潮湿的气候(冰室气候)及构造抬升有利于陆上沉积物的剥蚀,沉积物供给相对增加,从而决定了深水层序发育的类型和分布特征。  相似文献   

7.
The northeastern shelf margin of the South China Sea(SCS) is characterized by the development of large scale foresets complexes since Quaternary. Based on integral analysis of the seismic, well logging and paleontological data, successions since ~3.0 Ma can be defined as one composite sequence, consist of a set of regional transgressive to regressive sequences. They can be further divided into six 3 rd order sequences(SQ0–SQ5) based on the Exxon sequence stratigraphic model. Since ~1.6 Ma, five sets of deltaic systems characterized by development of wedge-shaped foresets complexes or clinoforms had been identified. High-resolution seismic data and the thick foresets allowed further divided of sub-depositional sequences(4 th order) of regression to transgression, which is basically consistent with published stacked benthic foram O-isotope records. Depositional systems identified in the study area include deltaic deposits(inner-shelf deltas and shelf-edge deltas), incised valleys, and slope slumping massive deposits. Since ~1.6 Ma, clinoforms prograded from the southern Panyu Lower Uplift toward the northern Baiyun Depression, shelf slope break migrated seaward, whereas the shelf edge of SQ0 migrated landward. The development of incised valleys in the continental shelf increased upward,especially intensive on the SB3 and SB2. The slumping massive deposits increased abruptly since SB2, which corresponds to the development of incised valleys. The evolution of depositional systems of continental slope mainly controlled by the combined influence of sea level changes, tectonic movements, sediment supply and climate changes. Since ~3.0 Ma, relative sea level of the northern SCS had been experienced transgression(~3.0 Ma BP) to regression(~1.6 Ma BP). The regional regression and maximum transgressions of the composite sequences were apparently enhanced by uplift or subsidence related to tectono-thermal events. In addition,climatic variations including monsoon intensification and the mid-Pleistocene transition may have enhanced sediment supply by increasing erosion rate and have an indispensable influence on the development of the incised valleys and 5 sets of deltaic systems since ~1.6 Ma.  相似文献   

8.
Triassic platform-margin deltas in the western Barents Sea   总被引:1,自引:0,他引:1  
The Early to Middle Triassic in the Barents Sea was dominated by prograding transgressive-regressive sequences. Internal clinoform geometries indicate that sediments were derived from the Baltic Shield in the south and the Uralian Mountains in the east and southeast. These systems were formed in a large, relatively shallow epicontinental basin, where modest variations in relative sea-level relocated the shoreline significantly. This study shows the development of strike elongated depositional wedges that thicken just basinward of the platform-edge. Seismic facies and time-thickness maps show the position and development of platform-margin delta complexes within each sequence. Seismic clinoforms and trajectory analysis show significant lateral variation from the axis of the delta complex to areas adjacent to the main delivery system. Frequent toplap geometries are observed in proximity to coarse-grained deposits, while aggradation of seismic clinoforms characterizes areas laterally to the platform-margin deltas. Complex shifts in depocenters are revealed by large-scale compensational stacking pattern and relict platform breaks. Locally, relict breaks are created due to pre-existing paleo-topography. Platform-margin deltas can be identified by careful mapping of clinoform geometries, clinoform angles and trajectories. However, seismic analysis of prograding clinoform units indicate that the shoreline and delta complexes commonly are positioned landward of the platform-edge. Deposition of platform-margin deltas is sometimes caused by locally increased sediment supply during slightly rising relative sea-level, and occasionally caused by a regional drop in relative sea-level with significant shelf bypass.Development, position, thickness and facies distribution of platform deltas and platform-margin deltas of very broad low-relief basins, like the Triassic of the epicontinental Barents Sea basin, are strongly sensitive to changes in relative sea-level due to rapid emergence and submergence of wide areas, and to changes in position of major rivers supplying sand to the delta systems. In this respect, the depositional model of the present study deviates from models of clinoform successions obtained from small and narrow basins or siliciclastic platforms with high coarse-clastic sediment supply.  相似文献   

9.
We present new evidence of shallow-water muddy contourite drifts at two distinct locations in the central Mediterranean characterized by a relatively deep shelf edge (between 170 and 300 m below sea level): the south-eastern Adriatic margin and the north-western Sicily Channel. The growth of these shelf-edge contourite drifts is ascribed to the long-term impact of the Mediterranean themohaline circulation. The Levantine Intermediate Water flows continuously, with annual or inter-annual variations, and affects the shelf edge and the upper slope in both study areas. In addition, the SW Adriatic margin is impinged by the seasonally modulated off-shelf cascading of North Adriatic Dense Water. This water mass has formed ever since the large Adriatic continental shelf was drowned by the post-glacial sea-level rise. It energetically sweeps the entire slope from the shelf edge to the deep basin. These bottom currents flow parallel or oblique to the depth contours, and are laterally constricted along markedly erosional moats aligned parallel to the shelf edge where they increase in flow velocity. The internal geometry and growth patterns of the shelf-edge contourites reflect changes in oceanographic setting affecting the whole Mediterranean Sea. In particular, seismic correlation with published sediment cores documents that these deposits are actively growing and migrating during the present interglacial, implying an enhancement in bottom-water formation during intervals of relative sea-level rise and highstand. Regardless of the specific mechanisms of formation, sediment drifts in both study areas have been affected by widespread thin-skinned mass-wasting events during post-glacial times. Repeated mass-transport processes have affected in particular the downslope flank of the shelf-edge contourite drifts, indicating that these muddy deposits are prone to failure during, or soon after, their deposition.  相似文献   

10.
A sedimentary succession studied along three parallel seismic lines details a platform-edge progradation of 21–36 km in a northwesterly direction across the northwestern Barents Shelf. The intra-shelf clinoform succession is bounded at bottom and top by Base Olenekian and Early Ladinian seismic reflectors. The ca 800 m thick succession can be resolved into seven distinct clinothems. The system is characterized by an early sub-horizontal platform-edge trajectory with extensive progradation, limited relative sea level rise and restricted accommodation. Thereafter the system outlines a largely ascending trajectory, marking a major rise in relative sea level and creation of significant accommodation. The platform-edge appears to back-step along one line suggesting that relative sea level rise out-paced sediment influx and preserved a clinothem with a trajectory characterized by accretionary transgression. Thereafter the trajectory is overall ascending regressive, with some variation of the trajectory angle, culminating in a flat and finally descending trajectory with oblique clinoforms outlining extensive progradation and another period of limited accommodation. The clinoforms downlap onto a succession of basin-floor deposits which appear to comprise at least two separate periods of deposition, forming two separate units. The first five clinothems downlap onto the first basin-floor unit. The shift to downlap onto the second unit occurs around the second period of extensive platform-edge advance, suggesting limited accommodation promoted bypass of significant amounts of sediment to the basin floor.The Gardarbanken High has been considered an obstacle to Early Triassic sediment progradation in this part of the basin. This inference can be corroborated based on the seismic attributes, which show sediment infill and onlap near the High. The influence is also noticeable in the reduced slope relief near the High, indicating that the basin floor was topographically higher. However, other geometric attributes cannot provide any definitive measures of structural influence.The thickness of preserved topsets and the distance from the platform-edge to the toe pinch-out point of each clinothem is found to be inversely proportional. This relationship is most marked in the fully developed sigmoidal clinoforms, whereas the link appears weaker in the oblique clinoforms. A near-perfect correlation between clinothem average vertical thickness (the average sedimentary rock accumulation within the clinothem) and advance of the toe is found, with only a relatively close relationship between clinothem average vertical thickness and advance of the platform-edge. In the studied system it therefore appears the advance of the toe is governed solely by sediment influx while the advance of the platform-edge is also influenced by relative sea level.  相似文献   

11.
The shelf-upper slope stratigraphy offshore and around the Guadalfeo River on the northern continental margin of the Alboran Sea, Western Mediterranean Basin, has been defined through the interpretation of a grid of Sparker seismic profiles. We tried to identify evolutionary trends in shelf growth, as well as to determine the regional/local factors that may modify the influence of glacio-eustatic fluctuations. Four major depositional sequences are identified in the sedimentary record by a detailed seismic interpretation, which defines three significant intervals of shelf-upper slope progradation, dominated by deposition of shelf-margin wedges, which resulted in uniform patterns of shelf-margin growth in response to significant sea-level falls. In contrast, the record of transgressive intervals is more variable, mainly as the result of distinct patterns of regressive-to-transgressive transitions. Major progradational wedges are internally composed of seaward-prograding, landward-thinning wedges, interpreted to represent shelf-margin deltaic deposits. In contrast, the last aggradational interval is composed of shelf-prograding wedges that show distinct characteristics, in terms of seismic facies, morphology and distribution when compared with previous shelf-margin wedges. These shelf wedges are thought to represent the particular case of Regressive Systems or Shelf Margin Systems Tracts, and their development seems to be controlled by a drastic change in main depocenter location, which moved from the upper slope to the shelf during the Pleistocene. The stacking pattern of seismic units, the shallowness of the acoustic basement and the migration of the shelf break are used to infer spatial and temporal changes in tectonic subsidence-uplift rates, which interact with low-order glacio-eustatic changes. For much of the Pliocene-Quaternary, uplifted sectors alternated laterally with sectors experiencing more subsidence. Subsequently, a significant change from lateral outgrowth to vertical accretion is recognised. This stratigraphic change could be related to the combined influence of increased subsidence rates on the shelf and the onset of higher-frequency glacio-eustatic cyclicity after the Mid Pleistocene Revolution that occurred around 1 Ma.  相似文献   

12.
Tectonically-complex settings present accommodation and sediment supply changes with patterns and rates for which the current sequence stratigraphy paradigms are not designed. In the Tertiary Piedmont Basin (TPB) and Peri-Adriatic Basin (PAB), outcrop and seismic examples demonstrate that the observed stratal and stacking patterns cannot be entirely explained using conventional sequence-stratigraphic models. Therefore, it is of paramount importance to use a model-independent more comprehensive approach encompassing advanced sequence-stratigraphic concepts combined with process changes, while being able to consider the morphostructural complexity that characterizes these margins and their changes induced by basin reshaping.Abrupt relative sea level falls generated by uplift or basin inversion may exceed several hundreds of meters, resulting in wedge-margin progressive unconformities characterized by subaerial and subaqueous erosional truncation. A progressive increase in sediment supply occurs, expressed by increasing volume and size of mass-transport complexes overlain by forced-regressive deltas, as the maximum sediment supply is delayed until after the main uplift. Different accommodation/sediment supply ratios may also occur at the same time along different margins of the same basin, generating a diachronism in the T-R or R-T cycles, adding further complexity to the variability produced by autogenesis.On clastic shelf margins characterized by an increasing rate of relative sea level rise, such as in case of increasing rollback velocities and related flexural tilting, or following an orogenic collapse, sediment supply may not keep pace with increasing accommodation so that initially retrogradation and basinward condensation occur, marked by omission surfaces. However, when the rate of subsidence increases, the succession is punctuated by multiple subaqueous erosional unconformities marking phases of basinward tilting leading to the oversteepening of basin margins and abrupt deepening. The downwarping usually produces large-scale subaqueous erosional surfaces passing laterally into paraconformities, so hinged-margin drowning unconformities affecting clastic shelves occur, associated with regional stratigraphic gaps.The re-establishment of the slope equilibrium profile implies high volume of sediments eroded from drowned deltas and shelves, feeding turbidites deposited at the toe of above-grade slopes. These turbidites can be therefore considered as high accommodation-high sediment supply systems. This suggests that turbidites are delivered basinward not only due to bypass at sequence boundaries or during the highstand progradation of supply-driven deltas, but also due to abrupt accommodation creation on hinged-shelf margin wedges.The great variability of tectonically-driven unconformities generated under either decreasing or increasing accommodation suggests that the features described in the TPB and the PAB are probably not uncommon, controlled by linked dynamic turnarounds of accommodation, sediment supply and stratigraphy taking place throughout the development of basin reorganizations.  相似文献   

13.
珠江口盆地白云凹陷是我国深水油气勘探的重点区域,然而对其深水储层分布特征及规律并没有明确的认识。利用钻井、岩心以及地震资料,针对白云凹陷发育的三套重要的储层,从储层类型分析入手探讨了其时空展布规律,指明珠江口盆地深水区油气勘探方向。研究结果表明:珠江口盆地深水区主要发育深水扇、陆架边缘三角洲与东沙台缘斜坡扇砂体;在缓陆坡阶段,主要在陆架坡折带附近发育陆架边缘三角洲和深水扇储层,而在陡陆坡阶段深水储层主要发育在陆架坡折带的下方,为典型的深水扇砂体;珠江口盆地深水油气勘探目标主要为SQ23.8发育的陆架边缘三角洲、深水扇以及台缘斜坡扇砂体,SQ21时期水道、深水扇和陆架边缘三角洲砂体,SQ13.8发育的深水扇砂体、水道充填砂体。  相似文献   

14.
Multibeam bathymetry, high (sleeve airguns) and very high resolution (parametric system-TOPAS-) seismic records were used to define the morphosedimentary features and investigate the depositional architecture of the Cantabrian continental margin. The outer shelf (down to 180–245 m water depth) displays an intensively eroded seafloor surface that truncates consolidated ancient folded and fractured deposits. Recent deposits are only locally present as lowstand shelf-margin deposits and a transparent drape with bedforms. The continental slope is affected by sedimentary processes that have combined to create the morphosedimentary features seen today. The upper (down to 2000 m water depth) and lower (down to 3700–4600 m water depth) slopes are mostly subject to different types of slope failures, such as slides, mass-transport deposits (a mix of slumping and mass-flows), and turbidity currents. The upper slope is also subject to the action of bottom currents (the Mediterranean Water — MW) that interact with the Le Danois Bank favouring the reworking of the sediment and the sculpting of a contourite system. The continental rise is a bypass region of debris flows and turbidity currents where a complex channel-lobe transition zone (CLTZ) of the Cap Ferret Fan develops.The recent architecture depositional model is complex and results from the remaining structural template and the great variability of interconnected sedimentary systems and processes. This margin can be considered as starved due to the great sediment evacuation over a relatively steep entire depositional profile. Sediment is eroded mostly from the Cantabrian and also the Pyrenees mountains (source) and transported by small stream/river mountains to the sea. It bypasses the continental shelf and when sediment arrives at the slope it is transported through a major submarine drainage system (large submarine valleys and mass-movement processes) down to the continental rise and adjacent Biscay Abyssal Plain (sink). Factors controlling this architecture are tectonism and sediment source/dispersal, which are closely interrelated, whereas sea-level changes and oceanography have played a minor role (on a long-term scale).  相似文献   

15.
Five depositional bodies occur within the Quaternary deposits of the northwestern Alboran Sea: Guadalmedina-Guadalhorce prodelta, shelf-edge wedges, progradational packages, Guadiaro channel-levee complex, and debris flow deposits. The sedimentary structure reflects two styles of margin growth characterized: 1) by an essentially sediment-starved outer, shelf and upper slope and by divergent slope seismic facies; 2) by a prograding sediment outer shelf, and parallel slope seismic facies. Eustatic oscillations, sediment supply, and tectonic tilting have controlled the type of growth pattern, and the occurrence of the depositional bodies. Debris flows were also controlled locally by diapirism.  相似文献   

16.
The Middle to Upper Jurassic Todagin assemblage in northwestern British Columbia, Canada, was deposited in the Bowser Basin above arc-related rocks of the Stikine terrane. Sedimentary structures indicate that a variety of gravity flow processes were involved in transport and deposition in deep-water slope environments. At Mount Dilworth, laterally continuous and channelized turbidites are interbedded with and overlain by mass-transport deposits in which sedimentary clasts are supported in a mudstone matrix. More than 50% of the succession consists of mass-transport deposits, indicating significant slope instability. A 300 m thick mass-transport complex exposed near the top of the succession is interpreted to result from tectonic activity, which triggered a major change in sediment supply from a local source area. At Todagin Mountain, a channel complex displays three successive channel-fills with associated overbank sedimentation units. Mass-transport deposits are rare, and confined to channel axes. Channels 1 and 2 are characterized by 40-50 m thick, ungraded pebble clast-supported conglomerate while the uppermost Channel 3 contains graded beds and occasional traction structures. The gradual change from erosive and amalgamated channel deposits at the base, to more aggradational channels at the top, is related to elevation of the equilibrium profile. Creation of accommodation favored aggradation on the mud-dominated slope succession and construction of well-developed channel-levee systems. The vertical succession exposed at Todagin Mountain is consistent with normal progradation of the slope under high sedimentation rates. In the Mount Dilworth area, extensional faulting associated with development of the restricted Eskay rift in the early Middle Jurassic produced a dissected basement above which the Todagin assemblage was deposited. These structures were inverted during collision of the Stikine and Cache Creek terranes, and likely played a major role in the stratigraphic evolution of the deep-water architectures.  相似文献   

17.
The Bay of Oran is part of the northern Algerian continental margin, located in the Western Mediterranean Sea between Europe and northern Africa. A regional terrace in ca. 320 m water depth described in earlier studies and a second deeper located one (∼1200 m water depth) provide an unusually vast amount of accommodation space for an observed prograding wedge. Seismo-stratigraphic interpretation of high-resolution reflection seismic data show different phases of mixed cool-water carbonate-siliciclastic deposition: (Ia) Initial aggradation with low dipping foreset deposition during early-Pliocene relative sea-level highstand. (Ib) Deposition transitions to progradation when aggradation reaches the base level. (IIa) Once progradation reaches the shelf break, terrace deposition is reduced to coarse fraction foreset deposits until it ceases entirely. (IIb) Finer sediments are bypassed and start to aggrade on the lower slope terrace until deposits reach the shelf terrace depth. (III) Due to accommodation space prolongation progradation recommences. Phase IIa and phase III deposits are separated by a hiatus. A drop in mean sea-level during the mid-Pleistocene will have caused the base level to fall below the upper strata, hence causing some reworking and redeposition. However, sea-level variations are not considered to be a main controlling factor of the depositional sequences. The evolution of this continuous Pliocene–Pleistocene mixed cool-water carbonate-siliciclastic prograding wedge is instead attributed to the controlling factor of this unusually vast amount of accommodation space. In closest proximity to the sea-floor, sparse recent sedimentation in form of 5–10 m thick sediment lobes can be observed in subbottom profiler data only. From a tectonic point of view, a prolongation of the Yusuf Fault into the survey area though expected by other authors could not be supported with the available dataset.  相似文献   

18.
运用珠江口盆地新采集的高分辨率多道地震资料,结合前人在本区的钻井、岩心、测井曲线及地震的综合资料,建立了白云凹陷北坡上新世-第四纪的等时地层格架,在此基础上分析了陆架边缘典型沉积体系,并初步探讨了其控制因素。研究表明,上新世-第四纪地层内识别出T0(海底)、T1(1.8 Ma)和T2(5.3 Ma)3个三级层序界面,划分出A、B 2个三级层序。研究区地震相主要有席状平行-亚平行地震相、帚状前积地震相、透镜状前积地震相、谷状充填地震相,不同的地震相及其组合代表特定的沉积体系。地震相特征分析表明,研究区上新世-第四纪发育大规模的陆架边缘三角洲和深切水道群,深切水道是沉积物向下陆坡-深海盆输送的通道。白云凹陷北坡上新世-第四纪沉积体系的发育受陆架边缘的地形、海平面升降、沉积物供给等因素的控制。  相似文献   

19.
This study focuses on the interpretation of stratigraphic sequences through the integration of biostratigraphic, well log and 3D seismic data. Sequence analysis is used to identify significant surfaces, systems tracts, and sequences for the Miocene succession.The depositional systems in this area are dominantly represented by submarine fans deposited on the slope and the basin floor. The main depositional elements that characterize these depositional settings are channel systems (channel-fills, channel-levee systems), frontal splays, frontal splay complexes, lobes of debrites and mass-transport complexes.Five genetic sequences were identified and eleven stratigraphic surfaces interpreted and correlated through the study area. The Oligocene-lower Miocene, lower Miocene and middle Miocene sequences were deposited in bathyal water depths, whereas the upper Miocene sequences (Tortonian and Messinian) were deposited in bathyal and outer neritic water depths. The bulk of the Miocene succession, from the older to younger deposits consists of mass-transport deposits (Oligocene-lower Miocene); mass transport deposits and turbidite deposits (lower Miocene); debrite deposits and turbidite deposits (middle Miocene); and debrite deposits, turbidite deposits and pelagic and hemipelagic sediments (upper Miocene). Cycles of sedimentation are delineated by regionally extensive maximum flooding surfaces within condensed sections of hemipelagic mudstone which represent starved basin floors. These condensed sections are markers for regional correlation, and the maximum flooding surfaces, which they include, are the key surfaces for the construction of the Miocene stratigraphic framework. The falling-stage system tract forms the bulk of the Miocene sequences. Individual sequence geometry and thickness were controlled largely by salt evacuation and large-scale sedimentation patterns. For the upper Miocene, the older sequence (Tortonian) includes sandy deposits, whereas the overlying younger sequence (Messinian) includes sandy facies at the base and muddy facies at the top; this trend reflects the change from slope to shelf settings.  相似文献   

20.
The Pleistocene sedimentary growth pattern of the northern Catalonia continental shelf is characterized by the vertical stacking of seaward downlapping regressive deposits. These deposits are characterized by a progradational development, with oblique clinoforms of low angle in the middle continental shelf, that become more inclined seaward in the outer continental shelf and shelfbreak. Eustatic sea level fluctuations controlled the development of this sedimentary pattern, whereas sediment supply conditioned the nonuniform progradation along the continental shelf and subsidence due to both sediment loading and tectonics controlled its preservation through and along the continental shelf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号