首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Upper Triassic Chang 6 sandstone, an important exploration target in the Ordos Basin, is a typical tight oil reservoir. Reservoir quality is a critical factor for tight oil exploration. Based on thin sections, scanning electron microscopy (SEM), X-ray diffraction (XRD), stable isotopes, and fluid inclusions, the diagenetic processes and their impact on the reservoir quality of the Chang 6 sandstones in the Zhenjing area were quantitatively analysed. The initial porosity of the Chang 6 sandstones is 39.2%, as calculated from point counting and grain size analysis. Mechanical and chemical compaction are the dominant processes for the destruction of pore spaces, leading to a porosity reduction of 14.2%–20.2% during progressive burial. The porosity continually decreased from 4.3% to 12.4% due to carbonate cementation, quartz overgrowth and clay mineral precipitation. Diagenetic processes were influenced by grain size, sorting and mineral compositions. Evaluation of petrographic observations indicates that different extents of compaction and calcite cementation are responsible for the formation of high-porosity and low-porosity reservoirs. Secondary porosity formed due to the burial dissolution of feldspar, rock fragments and laumontite in the Chang 6 sandstones. However, in a relatively closed geochemical system, products of dissolution cannot be transported away over a long distance. As a result, they precipitated in nearby pores and pore throats. In addition, quantitative calculations showed that the dissolution and associated precipitation of products of dissolution were nearly balanced. Consequently, the total porosity of the Chang 6 sandstones increased slightly due to burial dissolution, but the permeability decreased significantly because of the occlusion of pore throats by the dissolution-associated precipitation of authigenic minerals. Therefore, the limited increase in net-porosity from dissolution, combined with intense compaction and cementation, account for the low permeability and strong heterogeneity in the Chang 6 sandstones in the Zhenjing area.  相似文献   

2.
The Flemish Pass Basin is a deep-water basin located offshore on the continental passive margin of the Grand Banks, eastern Newfoundland, which is currently a hydrocarbon exploration target. The current study investigates the petrographic characteristics and origin of carbonate cements in the Ti-3 Member, a primary clastic reservoir interval of the Bodhrán Formation (Upper Jurassic) in the Flemish Pass Basin.The Ti-3 sandstones with average Q86.0F3.1R10.9 contain various diagenetic minerals, including calcite, pyrite, quartz overgrowth, dolomite and siderite. Based on the volume of calcite cement, the investigated sandstones can be classified into (1) calcite-cemented intervals (>20% calcite), and (2) poorly calcite-cemented intervals (porous). Petrographic analysis shows that the dominant cement is intergranular poikilotopic (300–500 μm) calcite, which stared to form extensively at early diagenesis. The precipitation of calcite occured after feldspar leaching and was followed by corrosion of quartz grains. Intergranular calcite cement hosts all-liquid inclusions mainly in the crystal core, but rare primary two-phase (liquid and vapor) fluid inclusions in the rims ((with mean homogenization temperature (Th) of 70.2 ± 4.9 °C and salinity estimates of 8.8 ± 1.2 eq. wt.% NaCl). The mean δ18O and δ13C isotopic compositions of the intergranular calcite are −8.3 ± 1.2‰, VPDB and −3.0 ± 1.3‰, VPDB, respectively; whereas, fracture-filling calcite has more depleted δ18O but similar δ13C values. The shale normalized rare earth element (REESN) patterns of calcite are generally parallel and exhibit slightly negative Ce anomalies and positive Eu anomalies. Fluid-inclusion gas ratios (CO2/CH4 and N2/Ar) of calcite cement further confirms that diagenetic fluids originated from modified seawater. Combined evidence from petrographic, microthermometric and geochemical analyses suggest that (1) the intergranular calcite cement precipitated from diagenetic fluids of mixed marine and meteoric (riverine) waters in suboxic conditions; (2)the cement was sourced from the oxidation of organic matters and the dissolution of biogenic marine carbonates within sandstone beds or adjacent silty mudstones; and (3) the late phases of the intergranular and fracture-filling calcite cements were deposited from hot circulated basinal fluids.Calcite cementation acts as a main controlling factor on the reservoir quality in the Flemish Pass reservoir sandstones. Over 75% of initial porosity was lost due to the early calcite cementation. The development of secondary porosity (mostly enlarged, moldic pores) and throats by later calcite dissolution due to maturation of organic matters (e.g., hydrocarbon and coals), was the key process in improving the reservoir quality.  相似文献   

3.
4.
5.
By integrating diagenesis and sequence stratigraphy, the distribution of diagenetic alterations and their impact on reservoir quality was investigated within a sequence stratigraphic framework using the fluvial and shallow marine sandstones in the Cambrian-Ordovician succession of southwest Sinai. The perographic and geochemical analysis of the studied sandstone revealed that the eogenetic alterations display fairly systematic spatial and temporal distribution patterns within the lowstand system tract and transgressive system tract, as well as along the sequence stratigraphic surfaces (i.e., sequence boundaries, transgressive surfaces and parasequence boundaries). During relative sea-level fall, percolation of meteoric waters through sandstones of the LST and below sequence and parasequence boundaries resulted in extensive dissolution of detrital grains and formation of kaolinite, authigenic K-feldspar and feldspar overgrowths as well as formation of mechanical infiltrated clays around the detrital grains. During relative sea-level rise, invasion of marine water into the sandstones as a consequence of landward migration of the shoreline, as well as low sedimentation rates encountered in the TST, resulted in the formation of glauconite, apatite and pyrite. Development of pseudomatrix, which was formed by mechanical compaction of mud intraclasts, is mostly abundant along transgressive surfaces and parasequence boundaries of the TST, and is related to the abundance of mud intraclasts in the transgressive lag deposits.The types and extent of eogenetic alterations have an important impact on the distribution of the mesogenetic alterations, including the formation of quartz overgrowths and dickite.Distribution of mesogenetic quartz overgrowths in the sandstones was controlled by the distribution of mechanically infiltrated clays and the presence of eogenetic cement. Sandstones that remained poorly cemented during eodiagenesis and that have thin or discontinuous infiltrated clay rims around the detrital grains were cemented during mesodiagenesis by quartz. The absence of extensive eogenetic cements in the sandstones suggested that the partial deterioration of porosity was mainly due to mechanical compaction. Partial transformation of kaolinite to dickite, which indicates neomorphic change to a better-ordered and more stable crystal structure at the elevated temperatures during mesodiagenesis, is partially a function of distribution of kaolinite during eodiagenesis.The conceptual model developed in this study shows the diagenetic evolutionary pathways in the reservoir sandstones within a sequence stratigraphic context, which in turn provides some insights into the controls on reservoir heterogeneity.  相似文献   

6.
Lacustrine deep-water turbidite plays are a novel area for exploration in the Huimin Depression, Bohai Bay Basin. Turbidites in the Shang 847 block, a typical turbidite play in the Huimin Depression, provide an opportunity to study the factors controlling the reservoir properties and hydrocarbon accumulation in lacustrine turbidite sandstones. The reservoir quality of turbidite sandstones (very fine-grained, moderately to well sorted, mainly lithic arkose) in this study area are mainly controlled by the distribution patterns of carbonate cements and pseudomatrix. Significant inverse relationships exist between the volume of carbonate cement and both porosity and permeability of the turbidite sandstones. Carbonate cement is located preferentially near the margins of the sandstone bodies. Sandstones with distance from the sandstone–mudstone contact surface less than 0.7 m or with thickness less than 1.2 m are commonly tightly cemented (carbonate cement >15%) with low porosity and permeability (lower than 10% and 0.1 mD, respectively). The source of carbonate cement was most likely external, probably derived from the surrounding mudstone. Most pore-filling carbonate cements occurred during late diagenesis at burial depths greater than 2200 m. The petrophysical properties of turbidites have a positive relationship with the content of kaolinite and chlorite, but have a negative relationship with the content of illite. 2-D and 3-D reconstructions of non-oil bearing and oil-bearing layers indicate that dissolution of carbonate cement, feldspars and unstable rock fragments was more developed in oil-bearing layers than in non-oil bearing layers and hance oil-bearing layers have higher porosity and larger pore sizes. Petrophysical property appears to have a significant effect on the hydrocarbon accumulation in the turbidite sandstones. Sandstones with porosities lower than 9% and/or permeabilities lower than 0.78 mD are not prone to contain oil.  相似文献   

7.
Tight-gas reservoirs, characterized by low porosity and low permeability, are widely considered to be the product of post-depositional, diagenetic processes associated with progressive burial. This study utilizes a combination of thin section petrography, scanning electron microscopy, microprobe and back scatter electron analysis, stable isotope geochemistry and fluid inclusion analysis to compare the diagenetic history, including porosity formation, within sandstones of the second member of Carboniferous Taiyuan Formation (C3t2) and the first member of Permian Xiashihezi Formation (P1x1) in the Ordos Basin in central China.In the P1x1 member, relatively high abundances of metamorphic rock fragments coupled with a braided river and lacustrine delta environment of deposition, produced more smectite for transformation to illite (50–120 °C). This reaction was driven by dissolution of unstable minerals (K-feldspar and rock fragments) during the early to middle stages of mesodiagenesis and consumed all K-feldspar. Abundant intragranular porosity (average values of 2.8%) and microporosity in kaolinite (average values of 1.5%) formed at these burial depths with chlorite and calcite developed as by-products.In the C3t2 member, relatively low abundances of metamorphic rock fragments coupled with an incised valley-coastal plain environment of deposition resulted in less smectite for transformation to illite. High K+/H+ ratios in the early pore waters related to a marine sedimentary environment of deposition promoted this reaction. Under these conditions, K-feldspar was partially preserved. During the middle to late stages of mesodiagenesis, K-feldspar breakdown produced secondary intragranular (average values of 1.4%) and intergranular pores (average values of 1.2%). Release of K+ ions promoted illitization of kaolinite with quartz overgrowths and ferrous carbonates developed as by-products.This study has demonstrated that whereas both members are typical tight-gas sandstones, they are characterized by quite different diagenetic histories controlled by the primary detrital composition, especially during mesodiagenesis. Types of secondary porosity vary between the two members and developed at different stages of progressive burial. The content of unstable detrital components, notably feldspar, was the key factor that determined the abundance of secondary porosity.  相似文献   

8.
Reservoir quality and heterogeneity are critical risk factors in tight oil exploration. The integrated, analysis of the petrographic characteristics and the types and distribution of diagenetic alterations in the Chang 8 sandstones from the Zhenjing area using core, log, thin-section, SEM, petrophysical and stable isotopic data provides insight into the factors responsible for variations in porosity and permeability in tight sandstones. The results indicate that the Chang 8 sandstones mainly from subaqueous distributary channel facies are mostly moderately well to well sorted fine-grained feldspathic litharenites and lithic arkose. The sandstones have ultra-low permeabilities that are commonly less than 1 mD, a wide range of porosities from 0.3 to 18.1%, and two distinct porosity-permeability trends with a boundary of approximately 10% porosity. These petrophysical features are closely related to the types and distribution of the diagenetic alterations. Compaction is a regional porosity-reducing process that was responsible for a loss of more than half of the original porosity in nearly all of the samples. The wide range of porosity is attributed to variations in calcite cementation and chlorite coatings. The relatively high-porosity reservoirs formed due to preservation of the primary intergranular pores by chlorite coatings rather than burial dissolution; however, the chlorites also obstruct pore throats, which lead to the development of reservoirs with high porosity but low permeability. In contrast, calcite cementation is the dominant factor in the formation of low-porosity, ultra-low-permeability reservoirs by filling both the primary pores and the pore throats in the sandstones. The eogenetic calcites are commonly concentrated in tightly cemented concretions or layers adjacent to sandstone-mudstone contacts, while the mesogenetic calcites were deposited in all of the intervals and led to further heterogeneity. This study can be used as an analogue to understand the variations in the pathways of diagenetic evolution and their impacts on the reservoir quality and heterogeneity of sandstones and is useful for predicting the distribution of potential high-quality reservoirs in similar geological settings.  相似文献   

9.
This paper provides an example of an integrated multi-scale study of a carbonate reservoir. The Danian Lower R2 carbonate reservoir is located in the South of the Aquitaine Basin (France) and represents a potential underground gas storage site for Gaz de France. The Danian Lower R2 reservoir was deposited as a prograding carbonate platform bordered by a reef barrier. The effects of sedimentary and diagenetic events on the reservoir properties, particularly dolomitization, were evaluated. In this study, the reservoir quality has been assessed by seismic analyses at the basin scale, by log-analysis at the reservoir scale, by petrographic methods and by petrophysical tools at the pore-core scale.Two dolomitization stages, separated by a compaction event with associated fracturing and stylolites, have been identified. These diagenetic events have significantly improved the Lower R2 carbonate reservoir properties. It is demonstrated that the reservoir quality is mainly controlled by the pore-geometry, which is determined by various diagenetic processes. The permeability values of the reservoir range over 4 orders of magnitude, from 0.1 to 5600 mD and the porosity values range between 2 and 42%. Reservoir unit 4 (a karstic dolomite) shows the best reservoir properties with average porosity values ranging between 11.1% and 19.3% and an average permeability ranging between 379 and 766 mD. Reservoir unit 2 (a fine-grained limestone) shows the worst reservoir properties. The cementation factors range from 1.68 to 2.48. The dolomitic crystal carbonate texture (mainly units 3 and 4) shows the highest value of the cementation factor (1.98–2.48) and formation factor (9.54–36.97), which is due to its high degree of cementation. The saturation exponents vary between 1.2 and 3.4. Using these experimental electrical parameters and the resistivity laterolog tool we predicted the water saturation in the various reservoir units. The permeability was predicted by combining the formation factor with the micro-geometric characteristic length. The best fit is obtained with the Katz and Thompson's model and for a constant of 1/171.  相似文献   

10.
The Jiaolai Basin (Fig. 1) is an under-explored rift basin that has produced minor oil from Lower Cretaceous lacustrine deltaic sandstones. The reservoir quality is highly heterogeneous and is an important exploratory unknown in the basin. This study investigates how reservoir porosity and permeability vary with diagenetic minerals and burial history, particularly the effects of fracturing on the diagenesis and reservoir deliverability. The Laiyang sandstones are tight reservoirs with low porosity and permeability (Φ < 10% and K < 1 mD). Spatial variations in detrital supply and burial history significantly affected the diagenetic alterations during burial. In the western Laiyang Sag, the rocks are primarily feldspathic litharenites that underwent progressive burial, and thus, the primary porosity was partially to completely eliminated as a result of significant mechanical compaction of ductile grains. In contrast, in the eastern Laiyang Sag, the rocks are lithic arkoses that were uplifted to the surface and extensively eroded, which resulted in less porosity reduction by compaction. The tectonic uplift could promote leaching by meteoric water and the dissolution of remaining feldspars and calcite cement. Relatively high-quality reservoirs are preferentially developed in distributary channel and mouth-bar sandstones with chlorite rims on detrital quartz grains, which are also the locations of aqueous fluid flow that produced secondary porosity. The fold-related fractures are primarily developed in the silt–sandstones of Longwangzhuang and Shuinan members in the eastern Laiyang Sag. Quartz is the most prevalent fracture filling mineral in the Laiyang sandstones, and most of the small-aperture fractures are completely sealed, whereas the large-aperture fractures in a given set may be only partially sealed. The greatest fracture density is in the silt–sandstones containing more brittle minerals such as calcite and quartz cement. The wide apertures are crucial to preservation of the fracture porosity, and the great variation in the distribution of fracture-filling cements presents an opportunity for targeting fractures that contribute to fluid flow.  相似文献   

11.
The provenance of the Maastrichtian deep-water reservoir sandstones from the Jubarte oil field (Campos Basin, eastern Brazil), was studied using an integrated approach that included quantitative petrography, conventional heavy mineral analysis, garnet mineral chemistry and zircon geochronology. The reservoirs are predominantly coarse, poorly-sorted sandstones with feldspathic composition derived from uplifted basement terrains. The fourth- and fifth-order depositional sequences analyzed show no major variations in composition or in provenance through time. However, variations in apatite:tourmaline presents potential to be used as a parameter for sandstone correlation within the field. The composition of heavy minerals indicates derivation from high temperature and low-to-medium pressure aluminous metapelitic rocks, from granites and subordinate mafic rocks, derived from the Cabo Frio Tectonic Domain and the Oriental terrain of Ribeira orogen, characterizing a supply route from SW to NE. The low ZTR index, as well as the absence of low-grade stable heavy minerals and of metasedimentary rock fragments, suggest that by the end of Cretaceous all supracrustal, low-grade terrains had already been totally eroded, and that plutonic, infracrustal rocks were exposed, similarly to the present situation.  相似文献   

12.
13.
The paper deals with original stratigraphic, petrographic and structural data concerning the evolution of the southern Apennines chain (Italy). The main Langhian to Pliocene deposits cropping out in the northern sector of the southern Apennines foreland basin system (Sannio-Irpinia area) have been studied and correlated in order to document the effects of tectonic changes on the evolution of sandstone detrital modes and stratigraphic architecture. The studied sandstone units can be grouped in five key intervals: a) Numidian Flysch, mostly formed by Langhian mature quartzarenitic deposits and conformable Serravallian post-Numidian successions, formed by arkosic and calciclastic arenaceous-pelitic beds (foreland depozones); b) Langhian to Tortonian San Giorgio Fm., mostly composed of quartzofeldspatic sandstones (foredeep depozone); c) Tortonian to Early Messinian, quartz-feldspatic and partly sedimentary-carbonatoclastic petrofacies, thrust-top successions (Vallone Ponticello, Villanova del Battista and San Bartolomeo fms.); d) Late Messinian quartzolithic to quartzofeldspatic sandstones (Torrente Fiumarella, Anzano Molasse and Tufo-Altavilla unit), which can be referred to infilled thrust-top basins; e) unconformity-bounded Pliocene quartzofeldspatic sandstone strata (wedge-top depozones), characterized by synsedimentary tectonic activity.Detrital modes of the Serravallian through Middle Pliocene sandstones of the southern Apennines foreland basin system testify clear provenance relations from the accreted terranes forming the southern Apennine thrust-belt. The studied clastics show almost the same blended (quartz-feldspatic) composition; this condition could be related to the tectonic transport over thrust ramp of source rocks, as suggested by the tectonic evolutionary model. This study, dealing with sedimentary provenance analysis and tectonostratigraphic evolution, provides an example of the close relations between clastic compositions and foreland basin system development in southern Apennines.  相似文献   

14.
Shale adsorption and breakthrough pressure are important indicators of shale gas development and key factors in evaluating the reservoir capacities of shales. In this study, geochemical tests, pore-structure tests, methane adsorption tests, and breakthrough-pressure tests were conducted on shales from the Carboniferous Hurleg Formation in eastern Qaidam Basin. The effects of the shale compositions and pore structures on the adsorption and breakthrough pressures were studied, and the reservoir capacities of the shales were evaluated by analyzing the shale adsorptions and sealing effects. The results indicate that the organic carbon content was only one of factors in affecting the adsorption capacity of the shale samples while the effect of the clay minerals was limited. Based on the positive correlation between the adsorption capacity and specific surface area of the shale, the specific surface area of the micropores can be used as an indicator to determine the adsorption capacity of shale. The micro-fracturing of brittle minerals, such as quartz, create a primary path for shale gas breakthrough, whereas the expansion of clay minerals with water greatly increases the breakthrough pressure in the shale samples. Methane adsorption tests showed that maximum methane adsorption for shale samples Z045 and S039 WAS 0.107 and 0.09655 mmol/g, respectively. The breakthrough pressure was 39.36 MPa for sample S039, maintained for 13 days throughout the experiment; however, no breakthrough was observed in sample Z045 when subjected to an injected pressure of 40 MPa for 26 days. This indicates that sample Z045, corresponding to a depth of 846.24 m, exhibited higher adsorption capacity and a better reservoir-sealing effect than sample S039 (498.4 m depth). This study provides useful information for future studies of Qaidam Basin shale gas exploration and development and for evaluation of shale quality.  相似文献   

15.
Compared to conventional reservoirs, pore structure and diagenetic alterations of unconventional tight sand oil reservoirs are highly heterogeneous. The Upper Triassic Yanchang Formation is a major tight-oil-bearing formation in the Ordos Basin, providing an opportunity to study the factors that control reservoir heterogeneity and the heterogeneity of oil accumulation in tight oil sandstones.The Chang 8 tight oil sandstone in the study area is comprised of fine-to medium-grained, moderately to well-sorted lithic arkose and feldspathic litharenite. The reservoir quality is extremely heterogeneous due to large heterogeneities in the depositional facies, pore structures and diagenetic alterations. Small throat size is believed to be responsible for the ultra-low permeability in tight oil reservoirs. Most reservoirs with good reservoir quality, larger pore-throat size, lower pore-throat radius ratio and well pore connectivity were deposited in high-energy environments, such as distributary channels and mouth bars. For a given depositional facies, reservoir quality varies with the bedding structures. Massive- or parallel-bedded sandstones are more favorable for the development of porosity and permeability sweet zones for oil charging and accumulation than cross-bedded sandstones.Authigenic chlorite rim cementation and dissolution of unstable detrital grains are two major diagenetic processes that preserve porosity and permeability sweet zones in oil-bearing intervals. Nevertheless, chlorite rims cannot effectively preserve porosity-permeability when the chlorite content is greater than a threshold value of 7%, and compaction played a minor role in porosity destruction in the situation. Intensive cementation of pore-lining chlorites significantly reduces reservoir permeability by obstructing the pore-throats and reducing their connectivity. Stratigraphically, sandstones within 1 m from adjacent sandstone-mudstone contacts are usually tightly cemented (carbonate cement > 10%) with low porosity and permeability (lower than 10% and 0.1 mD, respectively). The carbonate cement most likely originates from external sources, probably derived from the surrounding mudstone. Most late carbonate cements filled the previously dissolved intra-feldspar pores and the residual intergranular pores, and finally formed the tight reservoirs.The petrophysical properties significantly control the fluid flow capability and the oil charging/accumulation capability of the Chang 8 tight sandstones. Oil layers usually have oil saturation greater than 40%. A pore-throat radius of less than 0.4 μm is not effective for producible oil to flow, and the cut off of porosity and permeability for the net pay are 7% and 0.1 mD, respectively.  相似文献   

16.
Pore pressure prediction is needed for drilling deepwater wildcats in the Sea of Japan because it is known from past experience that there can be drilling problems can arise due to overpressure at shallow depths. The “Joetsu Basin” area is located offshore to the southwest of Sado Island on the eastern margin of the Sea of Japan. The sedimentary succession of the Neogene is mainly composed of turbidite sediments which contained smectite-rich mudstones. The cause of overpressure in the study area is expected to be a combination of mechanical disequilibrium compaction and chemical compaction, especially from the illitization of smectite.We have constructed basin models and performed numerical simulations by using 1D and 3D PetroMod to understand clearly the history of fluid flow and overpressure development in the lower Pliocene Shiya Formation and Middle to Upper Miocene Teradomari Formations. A compaction model coupled with both mechanical and chemical compaction for smectite-rich sediments is used for pore pressure calibration. We have examined three key relationships: porosity-effective stress, porosity-permeability, and the kinetics of smectite-illite transformation. We determined the ranges for the parameter values in those relationships that allow a good fit between measured and modelled pore pressures to be obtained. Results showed that for the most likely case, high pore pressure in the Lower and Upper Teradomari developed since 8.5 Ma and 5.5 Ma, respectively. Pore pressures in studied structures have approximately doubled since 1 Ma due to the high deposition rate of the Pleistocene Haizume Formation and smectite-illite transformation in the lower Pliocene-Shiya and Middle to Upper Miocene- Lower and Upperr Teradomari formations. In three cases (high case, most likely case and low case), the overpressures in the Shiya, Upper and Lower Teradomari Formations are less than 1 MPa, 15 and 30 Ma, respectively.The results provide a basis for planning future wells in the “Joetsu Basin” area and in other basins where geological conditions are similar, i.e., deepwater, high sedimentation rate, high geothermal gradient and smectite-rich sediments.  相似文献   

17.
Delta-front sand bodies with large remaining hydrocarbon reserves are widespread in the Upper Cretaceous Yaojia Formation in the Longxi area of the Western Slope, Songliao Basin, China. High-resolution sequence stratigraphy and sedimentology are performed based on core observations, well logs, and seismic profile interpretations. An evaluation of the reservoir quality of the Yaojia Formation is critical for further petroleum exploration and development. The Yaojia Formation is interpreted as a third-order sequence, comprising a transgressive systems tract (TST) and a regressive systems tract (RST), which spans 4.5 Myr during the Late Cretaceous. Within this third-order sequence, nine fourth-order sequences (FS9–FS1) are recognized. The average duration of a fourth-order sequence is approximately 0.5 Myr. The TST (FS9–FS5) mostly comprises subaqueous distributary channel fills, mouth bars, and distal bars, which pass upward into shallow-lake facies of the TST top (FS5). The RST (FS4–FS1) mainly contains subaqueous distributary-channel and interdistributary-bay deposits. Based on thin-sections, X-ray diffraction (XRD), scanning electron microscope (SEM) and high-pressure mercury-intrusion (HPMI) analyses, a petrographic study is conducted to explore the impact of the sedimentary cyclicity and facies changes on reservoir quality. The Yaojia sandstones are mainly composed of lithic arkoses and feldspathic litharenites. The sandstone cements mostly include calcite, illite, chlorite, and secondary quartz, occurring as grain coating or filling pores. The Yaojia sandstones have average core plug porosity of 18.55% and permeability of 100.77 × 10−3 μm2, which results from abundant intergranular pores and dissolved pores with good connectivity. Due to the relatively coarser sediments and abundant dissolved pores in the feldspars, the FS4–FS1 sandstones have better reservoir quality than the FS9–FS5 sandstones, developing relatively higher porosity and permeability, especially the FS1 and FS2 sandstones. The source–reservoir–cap-rock assemblages were formed with the adjoining semi-deep lake mudstones that were developed in the Nenjiang and Qingshankou Formations. This study reveals the deposition and distribution of the delta-front sand bodies of the Yaojia Formation within a sequence stratigraphic framework as well as the factors controlling the Yaojia sandstones reservoir quality. The research is of great significance for the further exploration of the Yaojia Formation in the Longxi area, as well as in other similar lacustrine contexts.  相似文献   

18.
Accurate porosity and permeability evaluation of rock formations is critical to estimate the quality and resource potential of a reservoir. In addition to directly measure the porosity and pore size distribution, low field Nuclear Magnetic Resonance (NMR) is able to measure the effective porosity and estimate the in-situ formation permeability, though its robustness is arguable and requires calibrations on cores with specific lithologies.The Mesozoic formations of the central Perth Basin (Western Australia) host hot sedimentary aquifers and recently became key targets for geothermal heat extraction. A collection of cores was retrieved from three wells intersecting these units. The characterisation of their flow properties complements the current evaluation of the Perth Basin by adding new data on effective porosity, pore size distribution, pore geometry and calibration of predictive models for the permeability according to a comprehensive facies classification scheme.This study highlights the consistency of the NMR approach when compared to conventional helium injection method. Most favourable lithologies for well production correspond to very coarse to fine sandstones of fluvial channel fill with porosities >15% and permeabilities >>1 mD. Similarly, these facies exhibit (i) the highest effective porosities, (ii) the highest pore space to pore throat ratio, and (iii) the lowest contribution of clay bound water. These aspects confirm the importance of clay occurrence in the assessment of the flow efficiency of a formation.The Yarragadee Formation presents the best reservoir quality regarding its porosity and permeability, even though high discrepancies occur locally owing to the great variability of lithofacies encountered. The scattered values observed for the Lesueur Sandstone are likely to be due to the basin architecture and fault system which generate different mechanical compaction and secondary cementation. Given an adequate facies analysis, the NMR method represents a powerful tool to estimate the flow efficiency of a reservoir.  相似文献   

19.
Sequence stratigraphy of fluvial deposits is a controversial topic because changes in relative sea level will eventually have indirect impact on the spatial and temporal distribution of depositional facies. Changes in the relative sea level may influence the accommodation space in fluvial plains, and hence have impact on types of fluvial system, frequency of avulsion, and style of vertical and lateral accretion. This study aims to investigate whether depositional facies and changes in the fluvial system of the Lower Triassic Petrohan Terrigenous Group sandstones (NW Bulgaria) in response to changes in the relative sea level have an impact on the spatial and temporal distribution of diagenetic alterations.  相似文献   

20.
Mineral types (detrital and authigenic) and organic-matter components of the Ordovician-Silurian Wufeng and Longmaxi Shale (siliceous, silty, argillaceous, and calcareous/dolomitic shales) in the Sichuan Basin, China are used as a case study to understand the control of grain assemblages and organic matter on pores systems, diagenetic pathway, and reservoir quality in fine-grained sedimentary rocks. This study has been achieved using a combination of petrographic, geochemical, and mercury intrusion methods. The results reveal that siliceous shale comprises an abundant amount of diagenetic quartz (40–60% by volume), and authigenic microcrystalline quartz aggregates inhibit compaction and preserve internal primary pores as rigid framework for oil filling during oil window. Although silty shale contains a large number of detrital silt-size grains (30–50% by volume), which is beneficial to preserve interparticle pores, the volumetric contribution of interparticle pores (mainly macropores) is small. Argillaceous shale with abundant extrabasinal clay minerals (>50% by volume) undergoes mechanical and chemical compactions during burial, leading to a near-absence of primary interparticle pores, while pores preserved between clay platelets are dominant with more than 10 nm in pore size. Pore-filling calcite and dolomite precipitated during early diagenesis inhibit later compaction in calcareous/dolomitic shale, but the cementation significantly reduces the primary interparticle pores. Pore-throat size distributions of dolomitic shale show a similar trend with silty shale. Besides argillaceous shale, all of the other lithofacies are dominated by OM pores, which contribute more micropores and mesopores and is positively related to TOC and quartz contents. The relationship between pore-throat size and pore volume shows that most pore volumes are provided by pore throats with diameters <50 nm, with a proportion in the order of siliceous (80.3%) > calcareous/dolomitic (78.4%) > silty (74.9%) > argillaceous (61.3%) shales. In addition, development degree and pore size of OM pores in different diagenetic pathway with the same OM type and maturity show an obvious difference. Therefore, we suggest that the development of OM pores should take OM occurrence into account, which is related to physical interaction between OM and inorganic minerals during burial diagenesis. Migrated OM in siliceous shale with its large connected networks is beneficial for forming more and larger pores during gas window. The result of the present work implies that the study of mineral types (detrital and authigenic) and organic matter-pores are better understanding the reservoir quality in fine-grained sedimentary rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号