首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Anomalously high porosities up to 30% at burial depth of >3000 m along with varying amounts and types of carbonate cements occur in the fluvial channel sandstone facies of the Triassic Skagerrak Formation, Central Graben, Norway. However, porosities of the Skagerrak Formation are lower in the Norwegian sector than in the UK sector. In this study, petrographic analysis, core examination, scanning electron microscopy, elemental mapping, carbon and oxygen isotope, fluid inclusion and microgeometry analysis are performed to determine the diagenesis and direct influence on reservoir quality, with particular focus on the role played by carbonate cementation. The sandstones are mainly fine-grained lithic-arkosic to sub-arkosic arenites and display a wide range of intergranular volumes (2.3%–43.7% with an average of 23.6%). Porosity loss is mainly due to compaction (av. 26.6%) with minor contribution from cementation (av. 12.1%). The carbonate cements are patchy in distribution (from trace to 20.7%) and appear as various types e.g. calcretes (i.e. calcareous concreted gravels), poikilitic sparite and sparry ferroan dolomite, and euhedral or/and aggregated ankerite/ferroan dolomite crystals. This study highlights the association of carbonate precipitation with the remobilisation of carbonate from intra-Skagerrak calcretes during early burial stage i.e. <500 m. During deeper burial, compaction is inhibited by carbonate cements, resulting high intergranular volume of up to 32% and 29% for fine- and medium-grained sandstones, respectively. Carbonate cement dissolution probably results from both meteoric water flow with CO2 during shallow burial, and organic CO2 and carboxylic acid during deep burial. The maximum intergranular volume enhanced by dissolution of early carbonate cements is calculated to 8% and 5% for fine- and medium-grained sandstones, respectively. Compaction continues to exert influence after dissolution of carbonate cements, which results in a loss of ∼6% intergranular volume for fine- and medium-grained sandstones. Reservoir quality of the Norwegian sector is poorer than that of the UK sector due to a lower coverage of clay mineral coats e.g. chlorite, later and deeper onset of pore fluid overpressure, lower solubility of carbonate compared to halite, and a higher matrix content.  相似文献   

2.
The complex burial and diagenetic histories of the Jurassic Fulmar and Triassic Skagerrak sandstones in the UK Central North Sea present significant challenges with regard to reservoir quality and rock property prediction. Commercial reservoir quality is retained despite deep burial and associated high temperatures and pressures. Shallow marine Fulmar sands are normally compacted (mean IGV = 26 ± 3%) yet have porosities of 21–33%. Porosity was preserved through inhibition of quartz cementation by clay and microquartz coatings, and enhanced by dissolution of framework grains (∼5%). Skagerrak fluvial sands are more compacted (mean IGV = 23 ± 2%), exhibit minor feldspar dissolution (<1%), and have porosities of 16–27%. Quartz cement averages only 2 ± 1.5% due to robust chlorite coats that cover 80% (±13%) of quartz surfaces.We modeled reservoir quality evolution using the forward diagenetic model Touchstone, which simulates porosity loss due to compaction and quartz cementation. Quantitative petrographic analyses and burial history data were used to calibrate Touchstone model parameters. The results were applied to deeper prospects for pre-drill prediction of porosity and permeability. In parallel, petrophysical data were used to characterize the elastic properties of the sandstones to provide a basis for quantitative seismic forward modeling. Experimental data and core-calibrated petrophysical results, reflecting variable in situ fluids and saturations, were used to build an elastic properties model. The model is robust and was used to generate fluid-filled sandstone properties, incorporating Touchstone results, for prospect-specific seismic attribute modeling. Well results from exploration wells are in good agreement with pre-drill Touchstone and elastic properties model predictions.  相似文献   

3.
A detailed laboratory study of 53 sandstone samples from 23 outcrops and 156 conventional core samples from the Maastrichtian-Paleocene Scollard-age fluvial strata in the Western Canada foredeep was undertaken to investigate the reservoir characteristics and to determine the effect of diagenesis on reservoir quality. The sandstones are predominantly litharenites and sublitharenites, which accumulated in a variety of fluvial environments. The porosity of the sandstones is both syn-depositional and diagenetic in origin. Laboratory analyses indicate that porosity in sandstones from outcrop samples with less than 5% calcite cement averages 14%, with a mean permeability of 16 mD. In contrast, sandstones with greater than 5% calcite cement average 7.9% porosity, with a mean permeability of 6.17 mD. The core porosity averages 17% with 41 mD permeability. Cementation coupled with compaction had an important effect in the destruction of porosity after sedimentation and burial. The reservoir quality of sandstones is also severely reduced where the pore-lining clays are abundant (>15%). The potential of a sandstone to serve as a reservoir for producible hydrocarbons is strongly related to the sandstone’s diagenetic history. Three diagenetic stages are identified: eodiagenesis before effective burial, mesodiagenesis during burial, and telodiagenesis during exposure after burial. Eodiagenesis resulted in mechanical compaction, calcite cementation, kaolinite and smectite formation, and dissolution of chemically unstable grains. Mesodiagenesis resulted in chemical compaction, precipitation of calcite cement, quartz overgrowths, and the formation of authigenic clays such as chlorite, dickite, and illite. Finally, telodiagenesis seems to have had less effect on reservoir properties, even though it resulted in the precipitation of some kaolinite and the partial dissolution of feldspar.  相似文献   

4.
This paper investigates the reservoir potential of deeply-buried Eocene sublacustrine fan sandstones in the Bohai Bay Basin, China by evaluating the link between depositional lithofacies that controlled primary sediment compositions, and diagenetic processes that involved dissolution, precipitation and transformation of minerals. This petrographic, mineralogical, and geochemical study recognizes a complex diagenetic history which reflects both the depositional and burial history of the sandstones. Eogenetic alterations of the sandstones include: 1) mechanical compaction; and 2) partial to extensive non-ferroan carbonate and gypsum cementation. Typical mesogenetic alterations include: (1) dissolution of feldspar, non-ferroan carbonate cements, gypsum and anhydrite; (2) precipitation of quartz, kaolinite and ferroan carbonate cements; (3) transformation of smectite and kaolinite to illite and conversion of gypsum to anhydrite. This study demonstrates that: 1) depositional lithofacies critically influenced diagenesis, which resulted in good reservoir quality of the better-sorted, middle-fan, but poor reservoir quality in the inner- and outer-fan lithofacies; 2) formation of secondary porosity was spatially associated with other mineral reactions that caused precipitation of cements within sandstone reservoirs and did not greatly enhance reservoir quality; and 3) oil emplacement during early mesodiagenesis (temperatures > 70 °C) protected reservoirs from cementation and compaction.  相似文献   

5.
The Jiaolai Basin (Fig. 1) is an under-explored rift basin that has produced minor oil from Lower Cretaceous lacustrine deltaic sandstones. The reservoir quality is highly heterogeneous and is an important exploratory unknown in the basin. This study investigates how reservoir porosity and permeability vary with diagenetic minerals and burial history, particularly the effects of fracturing on the diagenesis and reservoir deliverability. The Laiyang sandstones are tight reservoirs with low porosity and permeability (Φ < 10% and K < 1 mD). Spatial variations in detrital supply and burial history significantly affected the diagenetic alterations during burial. In the western Laiyang Sag, the rocks are primarily feldspathic litharenites that underwent progressive burial, and thus, the primary porosity was partially to completely eliminated as a result of significant mechanical compaction of ductile grains. In contrast, in the eastern Laiyang Sag, the rocks are lithic arkoses that were uplifted to the surface and extensively eroded, which resulted in less porosity reduction by compaction. The tectonic uplift could promote leaching by meteoric water and the dissolution of remaining feldspars and calcite cement. Relatively high-quality reservoirs are preferentially developed in distributary channel and mouth-bar sandstones with chlorite rims on detrital quartz grains, which are also the locations of aqueous fluid flow that produced secondary porosity. The fold-related fractures are primarily developed in the silt–sandstones of Longwangzhuang and Shuinan members in the eastern Laiyang Sag. Quartz is the most prevalent fracture filling mineral in the Laiyang sandstones, and most of the small-aperture fractures are completely sealed, whereas the large-aperture fractures in a given set may be only partially sealed. The greatest fracture density is in the silt–sandstones containing more brittle minerals such as calcite and quartz cement. The wide apertures are crucial to preservation of the fracture porosity, and the great variation in the distribution of fracture-filling cements presents an opportunity for targeting fractures that contribute to fluid flow.  相似文献   

6.
Diagenesis is of decisive significance for the reservoir heterogeneity of most clastic reservoirs. Linking the distribution of diagenetic processes to the depositional facies and sequence stratigraphy has in recent years been discipline for predicting the distribution of diagenetic alterations and reservoir heterogeneity of clastic reservoirs. This study constructs a model of distribution of diagenetic alterations and reservoir heterogeneity within the depositional facies by linking diagenesis to lithofacies, sandstone architecture and porewater chemistry during burial. This would help to promote better understanding of the distribution of reservoir quality evolution and the intense heterogeneity of reservoirs. Based on an analogue of deltaic distributary channel belt sandstone in Upper Triassic Yanchang Formation, 83 sandstone plug samples were taken from 13 wells located along this channel belt. An integration of scanning electron microscopy, thin sections, electron microprobe analyses, rate-controlled porosimetry (RCP), gas-flow measurements of porosity and permeability, and nuclear magnetic resonance (NMR) experiments, together with published data, were analysed for the distribution, mineralogical and geochemical characteristics of detrital and diagenetic components and the distribution of reservoir quality within the distributary channel belt.Distribution of diagenetic alterations and reservoir heterogeneity within the distributary channel belt sandstones include (i) formation of high quality chlorite rims in the middle part of thick sandstones with coarser grain sizes and a lower content of ductile components resulted from the greater compaction resistance of these sandstones (providing larger pore spaces for chlorite growth), leading to formation of the intergranular pore – wide sheet-like throat and intergranular pore - intragranular pore – wide sheet-like throat (Φ>15%, k>1mD) in the middle part of thick sandstones; (ii) formation of thinner chlorite rims in the middle part of thinner sandstones is associated with the intergranular pore - intragranular pore – narrow sheet-like throat (9%<Φ<14%, 0.2mD<k<0.8mD); (iii) strong cementation by kaolinite in the more proximal sandstones of distributary channel owing to the strong feldspar dissolution by meteoric water, resulting in the intragranular pore - group of interstitial cement pores – narrow sheet-like throat/extremely narrow sheet-like throat (8%<Φ<11%, 0.1mD<k<0.3mD) due to the pore-filling kaolinite occluding porosity; (iv) formation of dense ferrocalcite zones (δ18OVPDB = −23.4‰ to −16.6‰; δ13 CVPDB = −4.0‰ to −2.3‰) favoured in the top and bottom of the channel sandstone which near the sandstone-mudstone bouding-surface, destroying pore space (Φ<8%, k<0.1mD); (v) strong compaction in sandstone of distributary channel edge laterally as a result of fine grain size and high content of ductile components in those sandstones, forming the group of interstitial cement pores – extremely narrow sheet-like throat with porosity values less than 8%.  相似文献   

7.
Extensive, large-scale pervasive cementation in the form of cement bodies within fluvial strata has rarely been documented although fluvial strata commonly act as important hydrocarbon reservoirs, as well as groundwater aquifers. Here, we present outcrop, petrographic and geochemical data for pervasive ferroan dolomite cement bodies up to 250 m in size from Upper Cretaceous Desert Member and Castlegate Sandstone fluvial strata exposed in the Book Cliffs in Utah. These cement bodies are present with coastal plain fluvial strata within both the Desert and Castlegate lowstand sandstones and are most abundant in the thin, distal fluvial strata. Cement bodies are almost entirely absent in updip, thicker, fluvial strata. Petrographic observations suggest a predominantly early diagenetic timing to the mildly ferroan dolomite, with a component of later burial origin. δ13C values for the cement (+4.8 to −5.7‰ V-PDB) suggest a marine-derived source for the earliest phase with a burial organic matter source for later cement. δ18O data (−6.3 to −11.8‰ V-PDB) suggest precipitation from freshwater dominated fluids. It is proposed here that dolomite was derived from leaching of detrital dolomite under lowstand coals and cementation took place in coastal aquifers experiencing mixed meteoric-marine fluids as a result of base-level fluctuations. This data presented here shows that large cement bodies can be an important component within fluvial sandstones with a potentially significant impact upon both reservoir quality and fluid flow within reservoirs, especially at the marine-non-marine interface.  相似文献   

8.
Tight grainstones, although widespread throughout the Lower Triassic Feixianguan Formation in the Sichuan Basin, have received little attention, in part, due to their lower porosity and greater heterogeneity relative to their dolostone counterparts. Based on data from cores and thin sections, as well as petrophysical properties, the Feixianguan grainstones, representing a major gas reservoir in the Jiannan gas field were systemically analysed to better understand porosity evolution in tight carbonates that have experienced original oil accumulation and subsequent thermal cracking during progressive burial. The grainstones were divided into two types according to whether pyrobitumen was present, and their porosity evolutions were quantitatively reconstructed. Taking 40% as the original porosity, the grainstones without pyrobitumen, which were ineffective palaeo-oil reservoirs, lost 21.94% and 3.13% of their porosities through marine and burial calcite cementation, respectively, and 13.34% by compaction, and have a current porosity of 1.59%, thus allowing them to serve as major present-day gas reservoirs. Comparatively, pyrobitumen-bearing grainstones, which were once palaeo-oil reservoirs, lost 23.96% and 2.36% of their porosities through marine and burial calcite cementation, respectively; 11.4% by compaction, and 1.44% by pyrobitumen and have a current porosity of 0.84%, thus making them ineffective gas reservoirs. This study provides a quantitative understanding of the close association between porosity evolution and reservoir effectiveness for the palaeo-oil charge and present-day gas accumulation with respect to diagenetic history, which is useful for the future exploration in tight gas limestone reservoirs.  相似文献   

9.
Understanding diagenetic heterogeneity in tight sandstone reservoirs is vital for hydrocarbon exploration. As a typical tight sandstone reservoir, the seventh unit of the Upper Triassic Yanchang Formation in the Ordos Basin (Chang 7 unit), central China, is an important oil-producing interval. Results of helium porosity and permeability and petrographic assessment from thin sections, X-ray diffraction, scanning electron microscopy and cathodoluminescence analysis demonstrate that the sandstones have encountered various diagenetic processes encompassing mechanical and chemical compaction, cementation by carbonate, quartz, clay minerals, and dissolution of feldspar and lithic fragments. The sandstones comprise silt-to medium-grained lithic arkoses to feldspathic litharenites and litharenites, which have low porosity (0.5%–13.6%, with an average of 6.8%) and low permeability (0.009 × 10−3 μm2 to 1.818 × 10−3 μm2, with an average of 0.106 × 10−3 μm2).This study suggests that diagenetic facies identified from petrographic observations can be up-scaled by correlation with wire-line log responses, which can facilitate prediction of reservoir quality at a field-scale. Four diagenetic facies are determined based on petrographic features including intensity of compaction, cement types and amounts, and degree of dissolution. Unstable and labile components of sandstones can be identified by low bulk density and low gamma ray log values, and those sandstones show the highest reservoir quality. Tightly compacted sandstones/siltstones, which tend to have high gamma ray readings and relatively high bulk density values, show the poorest reservoir quality. A model based on principal component analysis (PCA) is built and show better prediction of diagenetic facies than biplots of well logs. The model is validated by blind testing log-predicted diagenetic facies against petrographic features from core samples of the Upper Triassic Yanchang Formation in the Ordos Basin, which indicates it is a helpful predictive model.  相似文献   

10.
The c. 500 m thick Middle Jurassic sandstones of the fluvial Bristol Elv and marine Pelion Formations of the East Greenland Basin are evaluated here in order to improve the understanding of the processes that influenced the diagenetic evolution. The study may help to predict the reservoir properties of sandstones affected by magmatism and faulting, both in general and specifically in undrilled areas on- and offshore East Greenland and, in the Vøring Basin on the Mid-Norwegian shelf. The study shows a variety of authigenic mineral phases dominated by quartz cement, carbonate cement, illite and iron-oxide. One of the clear differences between the two formations is the presence of early carbonate-cemented horizons in the marine sandstones; these horizons are inferred to reflect a primary concentration of biogenic clasts and fossil shells. Intense quartz cementation occurs primarily in the fluvial sandstones but the marine sandstones are also highly quartz-cemented. Two episodes of burial and uplift are recorded in the diagenetic sequence and widespread grain-crushing in coarse-grained intervals is believed to result from overpressure and subsequent compaction due to sudden pressure release along major faults. Maximum burial depths may only have been around 2000–2500 m. Cathodoluminescence analyses show that grain crushing was followed by intense quartz cementation. The quartz cement is to a great deal believed to have formed due to increased surface area from crushing of detrital quartz grains, creating fresh nucleation sites for the quartz. Cathodoluminescence investigations also show that only minor pressure dissolution has taken place between detrital quartz grains and that the ubiquitous quartz cementation displays several growth zones, and was thus in part the result of the introduction of silica-rich extra-formational fluids related to the flow of hot fluids along reactivated faults and increased heat flow and temperature due to magmatism. This interpretation is supported by fluid inclusion homogenization temperatures between 117 and 158 °C in quartz cements. In one of the two study areas, the development of macroscopic stylolites has significantly enhanced quartz cementation, probably in connection with thermal convection flow. As a result of the magmatic and fault-related quartz cementation and illitization, the reservoir quality of the sandstone formations deteriorated and changed drastically.  相似文献   

11.
Compared to conventional reservoirs, pore structure and diagenetic alterations of unconventional tight sand oil reservoirs are highly heterogeneous. The Upper Triassic Yanchang Formation is a major tight-oil-bearing formation in the Ordos Basin, providing an opportunity to study the factors that control reservoir heterogeneity and the heterogeneity of oil accumulation in tight oil sandstones.The Chang 8 tight oil sandstone in the study area is comprised of fine-to medium-grained, moderately to well-sorted lithic arkose and feldspathic litharenite. The reservoir quality is extremely heterogeneous due to large heterogeneities in the depositional facies, pore structures and diagenetic alterations. Small throat size is believed to be responsible for the ultra-low permeability in tight oil reservoirs. Most reservoirs with good reservoir quality, larger pore-throat size, lower pore-throat radius ratio and well pore connectivity were deposited in high-energy environments, such as distributary channels and mouth bars. For a given depositional facies, reservoir quality varies with the bedding structures. Massive- or parallel-bedded sandstones are more favorable for the development of porosity and permeability sweet zones for oil charging and accumulation than cross-bedded sandstones.Authigenic chlorite rim cementation and dissolution of unstable detrital grains are two major diagenetic processes that preserve porosity and permeability sweet zones in oil-bearing intervals. Nevertheless, chlorite rims cannot effectively preserve porosity-permeability when the chlorite content is greater than a threshold value of 7%, and compaction played a minor role in porosity destruction in the situation. Intensive cementation of pore-lining chlorites significantly reduces reservoir permeability by obstructing the pore-throats and reducing their connectivity. Stratigraphically, sandstones within 1 m from adjacent sandstone-mudstone contacts are usually tightly cemented (carbonate cement > 10%) with low porosity and permeability (lower than 10% and 0.1 mD, respectively). The carbonate cement most likely originates from external sources, probably derived from the surrounding mudstone. Most late carbonate cements filled the previously dissolved intra-feldspar pores and the residual intergranular pores, and finally formed the tight reservoirs.The petrophysical properties significantly control the fluid flow capability and the oil charging/accumulation capability of the Chang 8 tight sandstones. Oil layers usually have oil saturation greater than 40%. A pore-throat radius of less than 0.4 μm is not effective for producible oil to flow, and the cut off of porosity and permeability for the net pay are 7% and 0.1 mD, respectively.  相似文献   

12.
Chemical compaction and the relative importance of the pressure dissolution and illite-mica induced dissolution (IMID) models have remained a contentious issue, as is the role played by stress in chemical compaction. This paper offers further support and evidence as discussed in Stricker et al. (2016b), focusing on the reservoir quality of the Triassic Skagerrak Formation sandstones in the high pressure high temperature (HPHT) Central Graben, North Sea. The reply discusses alterative reservoir quality interpretations and comments as raised by Maast (2016). A series of theoretical and experimental studies, as well as field based evidence is presented providing strong support to the important role of stress (e.g. vertical effective stress) during chemical compaction. The evidence leads to the conclusion that the process of chemical compaction is stress and temperature driven and significantly enhanced by clay minerals, playing a catalytic role by increasing the width of diffusion pathway or by modifying the kinetics of the dissolution process.  相似文献   

13.
There is increasing evidence that quartz cementation can be viewed as a process controlled by temperature and insensitive to effective stress. This view of quartz cementation in sandstones is often referred to as the illite-mica induced dissolution model (IMID), which assumes quartz dissolution to occur along stylolites and clay laminae rather than at quartz-quartz grain contacts. In the present comment it is argued that the exceptional reservoir quality in the Skagerrak Formation of the Heron Cluster, North Sea, is due to grain coatings and rapid Cenozoic burial limiting the exposure to quartz cementation. This line of reasoning implies overpressure has had neglectable porosity preserving effect in the Heron Cluster.  相似文献   

14.
This study aims at unravelling the diagenetic history and its effect on the pore system evolution of the Triassic redbeds exposed in SE Spain (TIBEM1), an outcrop analogue of the TAGI (Trias Argilo-Gréseux Inférieur) reservoir (Berkine-Ghadames Basin, Algeria). Similar climatic, base level and tectonic conditions of aforementioned alluvial formations developed analogue fluvial facies stacking patterns. Furthermore, interplay of similar detrital composition and depositional facies in both formations resulted in analogue early diagenetic features. Petrographic observations indicate lithic subarkosic (floodplain facies) and subarkosic (braidplain facies) compositions which are considered suitable frameworks for potential reservoir rocks. Primary porosity is mainly reduced during early diagenesis through moderate mechanical compaction and formation of K-feldspar overgrowth, gypsum, dolomite and phyllosilicate cements. Early mesodiagenesis is testified by low chemical compaction and quartz cementation. Telodiagenetic calcite filling fractures and K-feldspar dissolution determined the final configuration of analysed sandstones. Mercury injection-capillary pressure technique reveals overbank deposits in the floodplain as the least suitable potential reservoirs because of their lowest open porosity (OP < 16%), permeability (k < 5 mD) and small dimensions. On the other hand, braidplain deposits show the highest values of such properties (OP up to 31.6% and k > 95 mD) and greater thickness and lateral continuity, so being considered the best potential reservoir. The accurate estimation of TIBEM microscale attributes can provide important input for appraisal and enhanced oil recovery performance in TAGI and in others reservoirs consisting on similar fluvial sandy facies.  相似文献   

15.
Mechanical compaction of sand-rich reservoirs usually occurs during shallow burial and involves the rearrangement of framework grains and the ductile deformation of soft lithoclasts. The reservoir quality (porosity and permeability) of some Neogene sandstones of the South Caspian Basin has, however, been dramatically reduced by mechanical compaction involving extensive grain-fracturing (i.e. porosity collapse). These sandstones were probably susceptible to pervasive grain-fracturing because they were buried rapidly and experienced compressional deformation prior to reaching 80 °C. Consequently, they did not undergo quartz cementation and were therefore exposed to high stresses while they were extremely weak. Grain-size and structural position are also important controls on the distribution of grain fracturing in the onshore analogue in the Apsheron Peninsula. Microstructural analysis confirms that susceptibility to distributed grain-fracturing increases with increasing grain-size. Structural position has also an important impact on the distribution of porosity collapse. In particular, sandstones within the hinges of folded sections have undergone much more extensive grain-fracturing than within the surrounding area; the increased stresses in this structural position have enhanced distributed grain-fracturing and subsequent deformation band development.  相似文献   

16.
The Kuqa Foreland Basin (KFB) immediately south of the South Tianshan Mountains is a major hydrocarbon producing basin in west China. The Kelasu Thrust Belt in the basin is the most favorable zone for hydrocarbon accumulations. Widespread overpressures are present in both the Cretaceous and Paleogene reservoirs with pressure coefficients up to 2.1. The tectonic compression process in KFB resulted from the South Tianshan Mountains uplift is examined from the viewpoint of the overpressure generation and evolution in the Kelasu Thrust Belt. The overpressure evolution in the reservoir sandstones were reconstructed through fluid inclusion analysis combined with PVT and basin modeling. Overpressures at present day in the mudstone units in the Kelasu Thrust Belt and reservoir sandstones of the Dabei Gas Field and the Keshen zone are believed to have been generated by horizontal tectonic compression. Both disequilibrium compaction and horizontal tectonic compression are thought to contribute to the overpressure development at present day in the reservoir of the Kela-2 Gas Field with the reservoir sandstones showing anomalously high primary porosities and low densities from wireline log and core data. The overpressure evolution for the Cretaceous reservoir sandstone in the Kelasu Thrust Belt evolved through four stages: a normal hydrostatic pressure (>12–5 Ma), a rapidly increasing overpressure (∼5–3 Ma), an overpressure release (∼3–1.64 Ma) and overpressure preservation (∼1.64–0 Ma). Overpressure developed in the second stage (∼5–3 Ma) was generated by disequilibrium compaction as tectonic compression due to the uplift of the Tianshan Mountains acted at the northern monocline of KFB from 5 Ma to 3 Ma, which provided abundant sediments for the KFB and caused the anomalously high sedimentation rate during the N2k deposition. From 3 Ma to 1.64 Ma, the action of tectonic compression extended from the northern monocline to the Kelasu Thrust Belt and returned to the northern monocline of KFB from 1.64 Ma to present day. Therefore, the horizontal tectonic compression was the dominant overpressure mechanism for the overpressure generation in the third stage (∼3–1.64 Ma) and overpressure caused by disequilibrium compaction from 5 Ma to 3 Ma was only preserved in the Kela-2 Gas Field until present day.  相似文献   

17.
The Kaimiro Formation is an early to middle Eocene, NE-SW trending reservoir fairway in Taranaki Basin, and comprises a range of coastal plain through to shallow marine facies. A time of regional transgression is observed across the Paleocene–Eocene transition, which is linked to a general global warming trend and to regional thermal relaxation-related subsidence in New Zealand. The earliest Eocene transgressive deposits pass upwards into a series of cyclically stacked packages, interpreted as 3rd and 4th order sequences. Maximum regression occurred within the early Eocene and was followed by punctuated retrogradational stacking patterns associated with shoreline retreat and subsequent regional transgression in the middle Eocene.The Kaimiro Formation is considered a good reservoir target along most of the reservoir fairway, which can largely be attributed to a consistently quartz-rich, lithic-poor composition and reasonably coarse sand grain size. Correlations demonstrate that within the early Eocene the main reservoir facies are channel-fill sandstones overlying candidate sequence boundaries in paleoenvironmentally landward (proximal) settings, and upper shoreface/shoreline sandstones in relatively basinward (distal) settings. Middle Eocene reservoir facies are not represented in distal wells due to overall transgression at this time, yet they form a significant target in more proximal well locations, particularly on the Taranaki Peninsula.Depositional facies is one of the principal controls on sandstone reservoir quality. However, while reservoir facies have been proven along the length of the reservoir fairway, it is evident that diagenesis has significantly impacted sandstone quality. Relatively poor reservoir properties are predicted for deeply buried parts of the basin (maximum burial >4.5 km) due to severe compaction and relatively abundant authigenic quartz and illite. In contrast, good reservoir properties are locally represented in reservoir facies where present-day burial depths are <4 km due to less severe compaction, cementation and illitisation. Within these beds (<4 km) the presence of locally occurring authigenic grain-coating chlorite (shallow marine facies) and/or well-developed secondary porosity are both favourable to reservoir quality, while pervasive kaolinite and/or carbonate are both detrimental to reservoir quality.These results illustrate how an interdisciplinary approach to regional reservoir characterisation are used to help reduce risk during prospect evaluation. Assessment of both reservoir distribution and quality is necessary and can be undertaken through integrated studies of facies, sequence stratigraphy, burial modelling and petrography.  相似文献   

18.
The Upper Triassic Chang 6 sandstone, an important exploration target in the Ordos Basin, is a typical tight oil reservoir. Reservoir quality is a critical factor for tight oil exploration. Based on thin sections, scanning electron microscopy (SEM), X-ray diffraction (XRD), stable isotopes, and fluid inclusions, the diagenetic processes and their impact on the reservoir quality of the Chang 6 sandstones in the Zhenjing area were quantitatively analysed. The initial porosity of the Chang 6 sandstones is 39.2%, as calculated from point counting and grain size analysis. Mechanical and chemical compaction are the dominant processes for the destruction of pore spaces, leading to a porosity reduction of 14.2%–20.2% during progressive burial. The porosity continually decreased from 4.3% to 12.4% due to carbonate cementation, quartz overgrowth and clay mineral precipitation. Diagenetic processes were influenced by grain size, sorting and mineral compositions. Evaluation of petrographic observations indicates that different extents of compaction and calcite cementation are responsible for the formation of high-porosity and low-porosity reservoirs. Secondary porosity formed due to the burial dissolution of feldspar, rock fragments and laumontite in the Chang 6 sandstones. However, in a relatively closed geochemical system, products of dissolution cannot be transported away over a long distance. As a result, they precipitated in nearby pores and pore throats. In addition, quantitative calculations showed that the dissolution and associated precipitation of products of dissolution were nearly balanced. Consequently, the total porosity of the Chang 6 sandstones increased slightly due to burial dissolution, but the permeability decreased significantly because of the occlusion of pore throats by the dissolution-associated precipitation of authigenic minerals. Therefore, the limited increase in net-porosity from dissolution, combined with intense compaction and cementation, account for the low permeability and strong heterogeneity in the Chang 6 sandstones in the Zhenjing area.  相似文献   

19.
Upper Carboniferous sandstones are one of the most important tight gas reservoirs in Central Europe. We present data from an outcrop reservoir analog (Piesberg quarry) in the Lower Saxony Basin of Northern Germany. This field-based study focuses on the diagenetic control on spatial reservoir quality distribution.The investigated outcrop consists of fluvial 4th-order cycles, which originate from a braided river dominated depositional environment. Westphalian C/D stratigraphy, sedimentary thicknesses and exposed fault orientations (NNW-SSE and W-E) reflect tight gas reservoir properties in the region further north. Diagenetic investigations revealed an early loss of primary porosity by pseudomatrix formation. Present day porosity (7% on average) and matrix permeability (0.0003 mD on average) reflect a high-temperature overprint during burial. The entire remaining pore space is occluded with authigenic minerals, predominantly quartz and illite. This reduces reservoir quality and excludes exposed rocks as tight gas targets. The correlation of petrographic and petrophysical data show that expected facies-related reservoir quality trends were overprinted by high-temperature diagenesis. The present day secondary matrix porosity reflects the telogenetic dissolution of mesogenetic ankerite cements and unstable alumosilicates.Faults are associated with both sealed and partially sealed veins near the faults, indicating localized mass transport. Around W-E striking faults, dissolution is higher in leached sandstones with matrix porosities of up to 26.3% and matrix permeabilities of up to 105 mD. The dissolution of ankerite and lithic fragments around the faults indicates focused fluid flow. However, a telogenetic origin cannot be ruled out.The results of this work demonstrate the limits of outcrop analog studies with respect to actual subsurface reservoirs of the greater area. Whereas the investigated outcrop forms a suitable analog with respect to sedimentological, stratigraphic and structural inventory, actual reservoirs at depth generally lack telogenetic influences. These alter absolute reservoir quality values at the surface. However, the temperature overprint and associated diagenetic modification, which caused the unusually low permeability in the studied outcrop, may pose a reservoir risk for tight gas exploration as a consequence of locally higher overburden or similar structural positions.  相似文献   

20.
Mechanical compaction is the main porosity-reducing process in sandstones, including high-reservoir-quality rigid-grain sandstones. For such sandstones, the extrapolation of theoretical or experimental compaction algorithms needs calibration with rocks having well constrained burial histories. Evaluating the compaction of these rocks is achieved by comparing current intergranular volume (IGV) with depositional IGV, which is strongly dependent on sorting. However, because sandstone sorting is difficult to measure accurately, its impact on depositional porosity and compaction state is largely underestimated. We use the quartzarenites of the Oligocene Carbonera Formation in the subsurface of the hydrostatically-pressured Llanos basin to illustrate the importance of sorting when evaluating the compaction of rigid-grain sandstones. IGV and sorting were measured in core samples using a combination of transmitted-light and cathodoluminescence images, resulting in improved accuracy over standard procedures. The compaction state of clean quartzarenites at given depths is best described using IGV-versus-sorting plots, which are used to derive compaction curves for specified sorting values. The IGV-versus-sorting trends are displaced to lower IGV values with increasing burial depth. The differences in IGV caused by differences in sorting exceed the differences in IGV resulting from 1000 m of burial, illustrating the high impact of sorting when evaluating compaction. Contrasting with published experimental results, the compaction of the Llanos basin ductile-grain-poor quartzarenites is independent of grain size, and grain rearrangement is the main compaction mechanism during the first ∼1.6 km of burial. Based on the Llanos data, we have generated IGV-versus-depth curves for clean pure quartzarenites of specific sorting, which can be used to predict their maximum primary porosity up to moderate burial depths. Differences with other published burial curves are probably related to unaccounted variations in sorting, ductile-grain content and framework-strengthening cements. However, the Llanos basin quartzarenites contain virtually no cements, explaining their high degree of compaction relative to other rigid-grain sandstones, and making them ideal to isolate the effects of compaction on the IGV of quartzarenites. The Llanos basin data suggest that, below ∼2.5 km of depth, clean well- to moderately well sorted quartzarenites continue reducing their IGV by mechanical compaction below the 26% limit, which should apply only to extremely well sorted, rigid grain, uncemented sandstones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号