首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diagenesis is of decisive significance for the reservoir heterogeneity of most clastic reservoirs. Linking the distribution of diagenetic processes to the depositional facies and sequence stratigraphy has in recent years been discipline for predicting the distribution of diagenetic alterations and reservoir heterogeneity of clastic reservoirs. This study constructs a model of distribution of diagenetic alterations and reservoir heterogeneity within the depositional facies by linking diagenesis to lithofacies, sandstone architecture and porewater chemistry during burial. This would help to promote better understanding of the distribution of reservoir quality evolution and the intense heterogeneity of reservoirs. Based on an analogue of deltaic distributary channel belt sandstone in Upper Triassic Yanchang Formation, 83 sandstone plug samples were taken from 13 wells located along this channel belt. An integration of scanning electron microscopy, thin sections, electron microprobe analyses, rate-controlled porosimetry (RCP), gas-flow measurements of porosity and permeability, and nuclear magnetic resonance (NMR) experiments, together with published data, were analysed for the distribution, mineralogical and geochemical characteristics of detrital and diagenetic components and the distribution of reservoir quality within the distributary channel belt.Distribution of diagenetic alterations and reservoir heterogeneity within the distributary channel belt sandstones include (i) formation of high quality chlorite rims in the middle part of thick sandstones with coarser grain sizes and a lower content of ductile components resulted from the greater compaction resistance of these sandstones (providing larger pore spaces for chlorite growth), leading to formation of the intergranular pore – wide sheet-like throat and intergranular pore - intragranular pore – wide sheet-like throat (Φ>15%, k>1mD) in the middle part of thick sandstones; (ii) formation of thinner chlorite rims in the middle part of thinner sandstones is associated with the intergranular pore - intragranular pore – narrow sheet-like throat (9%<Φ<14%, 0.2mD<k<0.8mD); (iii) strong cementation by kaolinite in the more proximal sandstones of distributary channel owing to the strong feldspar dissolution by meteoric water, resulting in the intragranular pore - group of interstitial cement pores – narrow sheet-like throat/extremely narrow sheet-like throat (8%<Φ<11%, 0.1mD<k<0.3mD) due to the pore-filling kaolinite occluding porosity; (iv) formation of dense ferrocalcite zones (δ18OVPDB = −23.4‰ to −16.6‰; δ13 CVPDB = −4.0‰ to −2.3‰) favoured in the top and bottom of the channel sandstone which near the sandstone-mudstone bouding-surface, destroying pore space (Φ<8%, k<0.1mD); (v) strong compaction in sandstone of distributary channel edge laterally as a result of fine grain size and high content of ductile components in those sandstones, forming the group of interstitial cement pores – extremely narrow sheet-like throat with porosity values less than 8%.  相似文献   

2.
An example of diagenesis and reservoir quality of buried sandstones with ancient incursion of meteoric freshwater is presented in this study. The interpretation is based on information including porosity and permeability, petrography, stable isotopic composition of authigenic minerals, homogenization temperatures (Th) of aqueous fluid inclusions (AFIs), and pore water chemistry. These sandstones, closely beneath or far from the regional unconformity formed during the late Paleogene period, are located in the thick Shahejie Formation in the Gaoliu area of Nanpu Sag, Bohai Bay Basin, East China. Early-diagenetic calcite cements were leached to form intergranular secondary pores without precipitation of late-diagenetic calcite cements in most sandstones. Feldspars were leached to form abundant intragranular secondary pores, but with small amounts of concomitant secondary minerals including authigenic quartz and kaolinite. The mass imbalance between the amount of leached minerals and associated secondary minerals suggests that mineral leaching reactions occurred most likely in an open geochemical system, and diagenetic petrography textures suggest that advective flow dominated the transfer of solutes from leached feldspars and calcites. Low salinity and ion concentrations of present pore waters, and extensive water rock interactions suggest significant incursion of meteoric freshwater flux in the sandstones. Distances of the sandstones to the regional unconformity can reach up to 1800 m, while with significant uplift in the Gaoliu area, the burial depth of such sandstones (below sea level) can be less than 800–1000 m during the uplift and initial reburial stage. Significant uplift during the Oligocene period provided substantial hydraulic drive and widely developed faults served as favorable conduits for downward penetration of meteoric freshwater from the earth's surface (unconformity) to these sandstone beds. Extensive feldspar leaching has been occurring since the uplift period. Coupled high Th (95∼115 °C) of AFI and low δ18O(SMOW) values (+17∼+20‰) within the quartz overgrowths show that quartz cementation occurred in the presence of diagenetic modified meteoric freshwater with δ18O(SMOW) values of −7∼−2‰, indicating that authigenic quartz only have been formed during the late reburial stage when meteoric fresh water penetration slowed down. Secondary pores in thin sections and tested porosity suggest that meteoric freshwater leaching of feldspars and calcite minerals generated approximately 7–10% enhanced secondary porosity in these sandstones. Meteoric freshwater leaching reactions cannot be ignored in similar sandstones that located deep beneath the unconformity, with great uplift moving these sandstones above or close to sea level and with faults connecting the earth's surface with the sandstone beds.  相似文献   

3.
The Jiaolai Basin (Fig. 1) is an under-explored rift basin that has produced minor oil from Lower Cretaceous lacustrine deltaic sandstones. The reservoir quality is highly heterogeneous and is an important exploratory unknown in the basin. This study investigates how reservoir porosity and permeability vary with diagenetic minerals and burial history, particularly the effects of fracturing on the diagenesis and reservoir deliverability. The Laiyang sandstones are tight reservoirs with low porosity and permeability (Φ < 10% and K < 1 mD). Spatial variations in detrital supply and burial history significantly affected the diagenetic alterations during burial. In the western Laiyang Sag, the rocks are primarily feldspathic litharenites that underwent progressive burial, and thus, the primary porosity was partially to completely eliminated as a result of significant mechanical compaction of ductile grains. In contrast, in the eastern Laiyang Sag, the rocks are lithic arkoses that were uplifted to the surface and extensively eroded, which resulted in less porosity reduction by compaction. The tectonic uplift could promote leaching by meteoric water and the dissolution of remaining feldspars and calcite cement. Relatively high-quality reservoirs are preferentially developed in distributary channel and mouth-bar sandstones with chlorite rims on detrital quartz grains, which are also the locations of aqueous fluid flow that produced secondary porosity. The fold-related fractures are primarily developed in the silt–sandstones of Longwangzhuang and Shuinan members in the eastern Laiyang Sag. Quartz is the most prevalent fracture filling mineral in the Laiyang sandstones, and most of the small-aperture fractures are completely sealed, whereas the large-aperture fractures in a given set may be only partially sealed. The greatest fracture density is in the silt–sandstones containing more brittle minerals such as calcite and quartz cement. The wide apertures are crucial to preservation of the fracture porosity, and the great variation in the distribution of fracture-filling cements presents an opportunity for targeting fractures that contribute to fluid flow.  相似文献   

4.
Extensive, large-scale pervasive cementation in the form of cement bodies within fluvial strata has rarely been documented although fluvial strata commonly act as important hydrocarbon reservoirs, as well as groundwater aquifers. Here, we present outcrop, petrographic and geochemical data for pervasive ferroan dolomite cement bodies up to 250 m in size from Upper Cretaceous Desert Member and Castlegate Sandstone fluvial strata exposed in the Book Cliffs in Utah. These cement bodies are present with coastal plain fluvial strata within both the Desert and Castlegate lowstand sandstones and are most abundant in the thin, distal fluvial strata. Cement bodies are almost entirely absent in updip, thicker, fluvial strata. Petrographic observations suggest a predominantly early diagenetic timing to the mildly ferroan dolomite, with a component of later burial origin. δ13C values for the cement (+4.8 to −5.7‰ V-PDB) suggest a marine-derived source for the earliest phase with a burial organic matter source for later cement. δ18O data (−6.3 to −11.8‰ V-PDB) suggest precipitation from freshwater dominated fluids. It is proposed here that dolomite was derived from leaching of detrital dolomite under lowstand coals and cementation took place in coastal aquifers experiencing mixed meteoric-marine fluids as a result of base-level fluctuations. This data presented here shows that large cement bodies can be an important component within fluvial sandstones with a potentially significant impact upon both reservoir quality and fluid flow within reservoirs, especially at the marine-non-marine interface.  相似文献   

5.
Understanding diagenetic heterogeneity in tight sandstone reservoirs is vital for hydrocarbon exploration. As a typical tight sandstone reservoir, the seventh unit of the Upper Triassic Yanchang Formation in the Ordos Basin (Chang 7 unit), central China, is an important oil-producing interval. Results of helium porosity and permeability and petrographic assessment from thin sections, X-ray diffraction, scanning electron microscopy and cathodoluminescence analysis demonstrate that the sandstones have encountered various diagenetic processes encompassing mechanical and chemical compaction, cementation by carbonate, quartz, clay minerals, and dissolution of feldspar and lithic fragments. The sandstones comprise silt-to medium-grained lithic arkoses to feldspathic litharenites and litharenites, which have low porosity (0.5%–13.6%, with an average of 6.8%) and low permeability (0.009 × 10−3 μm2 to 1.818 × 10−3 μm2, with an average of 0.106 × 10−3 μm2).This study suggests that diagenetic facies identified from petrographic observations can be up-scaled by correlation with wire-line log responses, which can facilitate prediction of reservoir quality at a field-scale. Four diagenetic facies are determined based on petrographic features including intensity of compaction, cement types and amounts, and degree of dissolution. Unstable and labile components of sandstones can be identified by low bulk density and low gamma ray log values, and those sandstones show the highest reservoir quality. Tightly compacted sandstones/siltstones, which tend to have high gamma ray readings and relatively high bulk density values, show the poorest reservoir quality. A model based on principal component analysis (PCA) is built and show better prediction of diagenetic facies than biplots of well logs. The model is validated by blind testing log-predicted diagenetic facies against petrographic features from core samples of the Upper Triassic Yanchang Formation in the Ordos Basin, which indicates it is a helpful predictive model.  相似文献   

6.
A detailed laboratory study of 53 sandstone samples from 23 outcrops and 156 conventional core samples from the Maastrichtian-Paleocene Scollard-age fluvial strata in the Western Canada foredeep was undertaken to investigate the reservoir characteristics and to determine the effect of diagenesis on reservoir quality. The sandstones are predominantly litharenites and sublitharenites, which accumulated in a variety of fluvial environments. The porosity of the sandstones is both syn-depositional and diagenetic in origin. Laboratory analyses indicate that porosity in sandstones from outcrop samples with less than 5% calcite cement averages 14%, with a mean permeability of 16 mD. In contrast, sandstones with greater than 5% calcite cement average 7.9% porosity, with a mean permeability of 6.17 mD. The core porosity averages 17% with 41 mD permeability. Cementation coupled with compaction had an important effect in the destruction of porosity after sedimentation and burial. The reservoir quality of sandstones is also severely reduced where the pore-lining clays are abundant (>15%). The potential of a sandstone to serve as a reservoir for producible hydrocarbons is strongly related to the sandstone’s diagenetic history. Three diagenetic stages are identified: eodiagenesis before effective burial, mesodiagenesis during burial, and telodiagenesis during exposure after burial. Eodiagenesis resulted in mechanical compaction, calcite cementation, kaolinite and smectite formation, and dissolution of chemically unstable grains. Mesodiagenesis resulted in chemical compaction, precipitation of calcite cement, quartz overgrowths, and the formation of authigenic clays such as chlorite, dickite, and illite. Finally, telodiagenesis seems to have had less effect on reservoir properties, even though it resulted in the precipitation of some kaolinite and the partial dissolution of feldspar.  相似文献   

7.
The Basque–Cantabrian Basin (NE Spain) has been considered one of the most interesting areas for hydrocarbon exploration in the Iberian Peninsula since the 60th to 70th of last century. This basin is characterized by the presence of numerous outcrops of tar sands closely associated with fractures and Triassic diapirs. The aims of this work is to establish the diagenetic evolution of the Upper Cretaceous reservoir rocks with special emphasis in the emplacement of oil and their impact on reservoir quality. The studied rocks are constituted of carbonates and sandstones that contain massive quantities of bitumen filling vugs and fractures.Petrographic results indicate that the carbonate rocks from Maestu outcrops are bioclastic grainstones and wackestones, whereas the tar sandstones from Atauri and Loza outcrops are dominated by quartzarenites and subordinated subarkoses. The paragenetic sequence of the main diagenetic phases and processes include, pyrite, bladed and drusy calcite cement, calcite overgrowths, silicification of bioclasts and microcrystalline rhombic dolomite cement, and first stage of oil emplacement, blocky calcite cement, coarse crystalline calcite cement, calcitized dolomite, calcite veins, saddle dolomite and stylolites filled by the second phase of oil entrance. Together with the above mentioned diagenetic alterations, the arenites are affected by early kaolinitization of feldspars and the scarce formation of clay rim and epimatrix of illite. All sandstones and dolomitized carbonate rocks show high intercrystalline and intergranular porosity which is full by biodegraded hydrocarbons (solid bitumen). The biodegradation affects alkanes, isoprenoids and partially hopanes and steranes saturated hydrocarbons. Aromatics hydrocarbons, like naphthalenes, phenanthrenes, dibenzothiophenes and triaromatics are also affected by biodegradation. Results indicate that the first HC emplacement corresponds to early stage of calcite and dolomite cementation, and the second and more important emplacement is related to fracturation processes resulting in the formation of excellent reservoirs.  相似文献   

8.
Future exploration in lower Miocene sandstones in the Gulf of Mexico will focus increasingly at depths greater than 4.5 km, and reservoir quality will be a critical risk factor in these deep to ultradeep reservoirs. The goal of this study was to understand the variation in reservoir quality of lower Miocene sandstones across the western Gulf of Mexico. To do this, we examined regional variation in detrital mineral composition, diagenesis, and reservoir quality in five areas: (1) Louisiana, (2) upper Texas coast, (3) lower Texas coast, (4) Burgos Basin, Mexico, and (5) Veracruz Basin, Mexico using petrographic and petrophysical data from depths of 0.9–7.2 km.There are strong variations in mineralogical composition within the study area. Lower Miocene sandstones from offshore Louisiana have an average composition of quartz = 86%, feldspar = 12%, and rock fragments = 2% (Q86F12R2). Feldspar and rock-fragment content increase southward as source areas shifted to include volcanic and carbonate rocks. Composition of samples from offshore Texas ranges from Q67F24R9 in the upper Texas coast to Q58F24R19 in the lower Texas coast. Lower Miocene sandstones from the onshore Burgos Basin, northern Mexico, have an average composition of Q54F22R23, whereas sandstones from the Veracruz Basin, southern Mexico, contain the highest proportion of rock fragments, Q33F12R55. Main diagenetic events in quartz-rich lower Miocene sandstones in Louisiana were mechanical compaction and precipitation of quartz cement. Compactional porosity loss increased to the south with increasing rock-fragment content. Calcite is the most abundant cement in the south and is strongly related to reservoir quality loss.At moderate burial depths, the best reservoir quality occurs in quartz-rich sandstones in Louisiana and decreases with increasing lithic content in Texas and Mexico. Porosity is higher in Louisiana and upper Texas than in lower Texas and Mexico at all depths and temperatures, but at depths >5 km and temperatures >175 °C, porosity differences are lessened. The lower Miocene sandstone trend in the western Gulf of Mexico from Louisiana to Mexico is an example of the importance of variation in detrital mineralogy as a control on diagenesis and reservoir quality.  相似文献   

9.
The processes involved in the interaction between organic fluids and carbonates, and the resulting effect on reservoir quality during the evolution and maturation of organic matter remain unclear despite the fact that these processes influence the carbon and oxygen isotopic compositions of carbonates. Here, we provide new insights into these processes using data obtained from a detailed analysis of a mixed dolomitic–clastic and organic-rich sedimentary sequence within the middle Permian Lucaogou Formation in the Junggar Basin of NW China. The techniques used during this study include drillcore observations, thin section petrography, scanning electron microscopy (SEM) and electron probe microanalysis, and carbon and oxygen isotope analyses. Oil grades and total organic carbon (TOC) contents represent the amount of oil charging and the abundance of organic fluids within a reservoir, respectively, and both negatively correlate with the whole-rock δ13C and δ18O of the carbonates in the study area, indicating that organic fluids have affected the reservoir rocks. Secondary carbonates, including sparry calcite and dolomite overgrowths and cements, are common within the Lucaogou Formation. Well-developed sparry calcite is present within dark mudstone whereas the other two forms of secondary carbonates are present within the dolomite-rich reservoir rocks in this formation. Comparing thin section petrology with δ13C compositions suggests that the carbon isotopic composition of matrix carbonates varies little over small distances within a given horizon but varies significantly with stratigraphic height as a result of the development of secondary carbonates. The net change in whole-rock δ13C as a result of these secondary carbonates ranges from 1.8‰ to 4.6‰, with the secondary carbonates having calculated δ13C compositions from −18.6‰ to −8.5‰ that are indicative of an organic origin. The positive correlation between the concentration of Fe within matrix and secondary carbonates within one of the samples suggests that the diagenetic system within the Lucaogou Formation was relatively closed. The correlation between δ13C and δ18O in carbonates is commonly thought to be strengthened by the influence of meteoric water as well as organic fluids. However, good initial correlation between δ13C and δ18O of whole rock carbonates within the Lucaogou Formation (resulted from the evaporitic sedimentary environment) was reduced by organic fluids to some extent. Consequently, the δ13C–δ18O covariations within these sediments are not always reliable indicators of diagenetic alteration by organic fluids or meteoric water.The characteristics and δ13C compositions of the sparry calcite within the formation is indicative of a genetic relationship with organic acids as a result of the addition of organic CO2 to the reservoir. Further analysis suggests that both carbonate and feldspar were dissolved by interaction with organic CO2. However, dissolved carbonate reprecipitated as secondary carbonates, meaning that the interaction between organic fluids and dolomites did not directly improve reservoir quality, although this process did enhance the dissolution of feldspar and increase porosity. This indicates that the δ13C and δ18O of secondary carbonates and their influence on whole-rock carbonate isotopic values can be used to geochemically identify the effect of organic fluids on closed carbonate-rich reservoir systems.  相似文献   

10.
Diagenetic analysis based on field and petrographic observations, isotope and microthermometric data was used to reconstruct the fluid flow history of the Cretaceous shallow water limestones from the Panormide platform exposed in north-central Sicily. Analysis focused on diagenetic products in cavities and dissolution enlarged fractures of the karstified limestones that occur just below a regional unconformity. The fluid flow history could be broken down into five stages that were linked to the kinematic and burial history of the region. (1) Petrography (zoned cathodoluminescence and speleothem textures) and stable isotopes (6.5 < δ18OV-PDB < ?3.5‰ and 0 < δ13CV-PDB < ?14‰) indicate that the earliest calcite phase was associated with karstification during emergence of the platform. Limestone dissolution at this stage is important with regard to possible reservoir creation in the Panormide palaeogeographic domain. (2) Fine-grained micrite sedimentation, dated as latest Cretaceous by nannopalaeontology and its 87Sr/86Sr isotope ratio (0.7078), marks replacement by marine fluids during subsequent submergence of the karstified platform. (3) The following calcite cement was still precipitated by marine-derived fluids (?7.0 < δ18OV-PDB < ?5.0‰ and ?3.0 < δ13CV-PDB < 0.5‰/Tm = ?2 to ?5 °C), but at increasingly higher temperatures (Th = 60–120 °C). This has been interpreted as precipitation during Oligocene foredeep burial. (4) Hot (Th = 130–180 °C), low saline (Tm < ?2.5 °C) fluids with increasingly higher calculated δ18OSMOW signatures (+6 to +14‰) subsequently invaded the karst system. These fluids most likely migrated during fold and thrust belt development. The low salinity and relatively high δ18OSMOW signatures of the fluids are interpreted to be the result of clay dewatering reactions. The presence of bitumen and associated fluorite with hydrocarbon inclusions at this stage in the paragenesis constrains the timing of oil migration in the region. (5) Finally, high saline fluids with elevated 87Sr/86Sr (0.7095–0.7105) signatures invaded the karst system. This last fluid flow event was possibly coeval with localized dolomitization and calcite cementation along high-angle faults of Pliocene age, as suggested by identical radiogenic signatures of these diagenetic products.  相似文献   

11.
New petrographic and fluid inclusion data from core samples of Upper Permian dolomitic limestone (Hauptdolomit, Zechstein group, Stassfurt carbonate sequence) from a gas field located at the northern border of the Lower Saxony Basin (LSB) essentially improve the understanding of the basin development. The gas production at the locality is characterized by very high CO2 concentrations of 75–100% (with CH4 and N2).Samples consist of fine grained, mostly laminated and sometimes brecciated dolomitic limestone (mudstone/wackestone) from the transition zone between the shallow water zone (platform) and the upper slope. The study focuses on migration fluids, entrapped as fluid inclusions in diagenetic anhydrite, calcite, and fluorite, and in syn-diagenetic microfractures, as well as on the geochemistry of fluorite fracture mineralizations, obtained by LA-ICP-MS analysis. Fluid inclusion studies show that the diagenetic fluid was rich in H2ONaClCaCl2. Recrystallized anhydrite contains aqueous inclusions with homogenization temperatures (Th) of ca. 123 °C, but somewhat higher Th of ca. 142 °C was found for calcite cement followed by early Fluorite A with Th of 147 °C. A later Fluorite B preserves gas inclusions and brines with maximum Th of 156 °C. Fluorite B crystallized in fractures during the mobilization of CO2-bearing brines. Crossing isochores for co-genetic aqueous-carbonic and carbonic inclusions indicate fluid trapping conditions of 180–200 °C and 900–1000 bars. δ13C-isotopic ratios of gas trapped in fluid inclusions suggest an organic origin for CH4, while the CO2 is likely of inorganic origin.Basin modelling (1D) shows that the fault block structure of the respective reservoir has experienced an uplift of >1000 m since Late Cretaceous times.The fluid inclusion study allows us to, 1) model the evolution of the LSB and fluid evolution by distinguishing different fluid systems, 2) determine the appearance of CO2 in the geological record and, 3) more accurately estimate burial and uplift events in individual parts of the LSB.  相似文献   

12.
This study aims at unravelling the diagenetic history and its effect on the pore system evolution of the Triassic redbeds exposed in SE Spain (TIBEM1), an outcrop analogue of the TAGI (Trias Argilo-Gréseux Inférieur) reservoir (Berkine-Ghadames Basin, Algeria). Similar climatic, base level and tectonic conditions of aforementioned alluvial formations developed analogue fluvial facies stacking patterns. Furthermore, interplay of similar detrital composition and depositional facies in both formations resulted in analogue early diagenetic features. Petrographic observations indicate lithic subarkosic (floodplain facies) and subarkosic (braidplain facies) compositions which are considered suitable frameworks for potential reservoir rocks. Primary porosity is mainly reduced during early diagenesis through moderate mechanical compaction and formation of K-feldspar overgrowth, gypsum, dolomite and phyllosilicate cements. Early mesodiagenesis is testified by low chemical compaction and quartz cementation. Telodiagenetic calcite filling fractures and K-feldspar dissolution determined the final configuration of analysed sandstones. Mercury injection-capillary pressure technique reveals overbank deposits in the floodplain as the least suitable potential reservoirs because of their lowest open porosity (OP < 16%), permeability (k < 5 mD) and small dimensions. On the other hand, braidplain deposits show the highest values of such properties (OP up to 31.6% and k > 95 mD) and greater thickness and lateral continuity, so being considered the best potential reservoir. The accurate estimation of TIBEM microscale attributes can provide important input for appraisal and enhanced oil recovery performance in TAGI and in others reservoirs consisting on similar fluvial sandy facies.  相似文献   

13.
The Esino Limestone of the western Southern Alps represents a differentiated Ladinian-Lower Carnian (?) carbonate platform comprised of margin, slope and peritidal inner platform facies up to 1000 m thick. A major regional subaerial exposure event lead to coverage by another peritidal Lower Carnian carbonate platform (Breno Formation). Multiphase dolomitization affected the carbonate sediments. Petrographic examinations identified at least three main generations of dolomites (D1, D2, and D3) that occur as both replacement and fracture-filling cements. These phases have crystal-size ranges of 3–35 μm (dolomicrite D1), 40–600 μm (eu-to subhedral crystals D2), and 200 μm to 5 mm (cavity- and fracture-filling anhedral to subhedral saddle dolomite D3), respectively.The fabric retentive near-micritic grain size coupled with low mean Sr concentration (76 ± 37 ppm) and estimated δ18O of the parent dolomitizing fluids of D1 suggest formation in shallow burial setting at temperature ∼ 45–50 °C with possible contributions from volcanic-related fluids (basinal fluids circulated in volcaniclastics or related to volcanic activity), which is consistent with its abnormally high Fe (4438 ± 4393 ppm) and Mn (1219 ± 1418 ppm) contents. The larger crystal sizes, homogenization temperatures (D2, 108 ± 9 °C; D3, 111 ± 14 °C) of primary two-phase fluid inclusions, and calculated salinity estimates (D2, 23 ± 2 eq wt% NaCl; D3, 20 ± 4 eq wt% NaCl) of D2 and D3 suggest that they formed at later stages under mid-to deeper burial settings at higher temperatures from dolomitizing fluids of higher salinity, which is supported by higher estimated δ18O values of their parent dolomitizing fluids. This is also consistent with their high Fe (4462 ± 4888 ppm; and 1091 ± 1183 ppm, respectively) and Mn (556 ± 289 ppm and 1091 ± 1183 ppm) contents, and low Sr concentrations (53 ± 31 ppm and 57 ± 24 ppm, respectively).The similarity in shale-normalized (SN) REE patterns and Ce (Ce/Ce*)SN and La (Pr/Pr*)SN anomalies of the investigated carbonates support the genetic relationship between the dolomite generations and their calcite precursor. Positive Eu anomalies, coupled with fluid-inclusion gas ratios (N2/Ar, CO2/CH4, Ar/He), high F concentration, high F/Cl and high Cl/Br molar ratios suggest an origin from diagenetic fluids circulated through volcanic rocks, which is consistent with the co-occurrence of volcaniclastic lenses in the investigated sequence.  相似文献   

14.
Diagenesis is an essential tool to reconstruct the development of reservoir rocks. Diagenetic processes - precipitation and dissolution - have an influence on pore space. The present paper aims to study the diagenetic history of deep-marine sandstones of the Austrian Alpine Foreland Basin. To reach that goal, sediment petrology and diagenetic features of more than 110 sandstone samples from water- and gas-bearing sections from gas fields within the Oligocene-Miocene Puchkirchen Group and Hall Formation has been investigated. Special emphasis was put on samples in the vicinity of the gas-water contact (GWC). The sediment petrography of sandstones of Puchkirchen Group and Hall Formation is similar; hence their diagenesis proceeded the same way. In fact, primary mineralogy was controlled by paleo-geography with increasing transport distance and diverse detrital input.Sediment petrographically, investigated sandstones from the water-bearing horizon seemed quite comparable to the gas-bearing sediments. In general, they can be classified as feldspatic litharenites to litharenites and display porosities of up to 30% and permeabilities of up to 1300 mD. The carbon and oxygen isotopic composition of bulk carbonate cements from these sandstones range from−3.8 to +2.2 and from −7.5 to +0.2‰ [VPDB]. However, near the Gas-Water Contact (GWC) a horizon with low porosities (<3%) and permeabilities (<0.1 mD) is present. This zone is completely cemented with calcite, which has a blocky/homogenous morphology. A slight, but significant negative shift in δ18O isotopy (−2.5‰) is evident.During early diagenesis the first carbonate generations formed. First a fibrous calcite and afterwards a micritic calcite precipitated. Further siliciclastic minerals, such as quartz and feldspar (K-feldspar and minor plagioclase), exhibit corroded grains. Occasionally, clay minerals (illite; smectite, chlorite) formed as rims around detrital grains. Late diagenesis is indicated by the formation of a low permeable zone at the GWC.  相似文献   

15.
The distribution of diagenetic alterations in Triassic fluvio-deltaic, quartzarenitic to sublitharenitic, lowstand systems tract (LST) sandstones of the Grès á Voltzia Formation, anastomosing fluvial, quartzarenitic transgressive systems tract (TST) sandstones of the Grès á Roseaux Formation, and shallow marine, quartzarenitic to sublitharenitic, TST sandstones of the Grès Coquiller Formation, the Paris Basin (France), can be linked to transgression and regression events, and thus to the sequence stratigraphic context. Near-surface eogenetic alterations, which display a fairly systematic link to the depositional facies and sequence stratigraphic framework, include: (i) cementation by meteoric water calcite (δ18O=−8.9‰ and δ13C=−9.1‰) in the fluvio-deltaic, LST sandstones, (ii) cementation by mixed marine–meteoric calcite (δ18O=−5.3‰ to −2.6‰ and δ13C=−3.9‰ to −1.3‰) and dolomite (δ18O=−4.6‰ to −2.6‰ and δ13C=−2.9‰ to −2.3‰) in the foreshore, TST sandstones and below parasequence boundaries (PB), and transgressive surface (TS), and in the shoreface, TST sandstones below maximum flooding surfaces (MFS), being facilitated by the presence of carbonate bioclasts, (iii) dissolution of detrital silicates and precipitation of K-feldspar overgrowths and kaolinite, particularly in the fluvio-deltaic, LST sandstones owing to effective meteoric water circulation, and (vi) formation of autochthonous glauconite, which is increases in abundance towards the top of the fluvio-deltaic, LST sandstones, and along TS, and in the shoreface, TST sandstones, by alteration of micas owing to the flux of seawaters into the sandstones during transgression, whereas parautochthonous glauconite is restricted to the TS sandstones owing to marine reworking. Mesogenetic alterations, which include cementation by quartz overgrowths and illite, display fairly systematic link to fluvio-deltaic, LST sandstones. This study has revealed that linking of diagenesis to transgression and regression events enables a better understanding of the parameters that control the spatial and temporal distribution of diagenetic alterations in sandstones and of their impact on reservoir quality evolution.  相似文献   

16.
The Lower Devonian Jauf Formation in Saudi Arabia is an important hydrocarbon reservoir. However, in spite of its importance as a reservoir, published studies on the Jauf Formation more specifically on the reservoir quality (including diagenesis), are very few. This study, which is based on core samples from two wells in the Ghawar Field, northeastern Saudi Arabia, reports the lithologic and diagenetic characteristics of this reservoir. The Jauf reservoir is a fine to medium-grained, moderate to well-sorted quartz arenite. The diagenetic processes recognized include compaction, cementation (calcite, clay minerals, quartz overgrowths, and a minor amount of pyrite), and dissolution of the calcite cements and of feldspar grains. The widespread occurrences of early calcite cement suggest that the Jauf reservoir lost a significant amount of primary porosity at a very early stage of its diagenetic history. Early calcite cement, however, prevented the later compaction of the sandstone, thus preserving an unfilled part of the primary porosity. Based on the framework grain–cement relationships, precipitation of the early calcite cement was either accompanied or followed by the development of part of the pore-lining and pore-bridging clay cement. Secondary porosity development occurred due to partial to complete dissolution of early calcite cements and feldspar. Late calcite cement occurs as isolated patches, and has little impact on reservoir quality of the sandstones.In addition to calcite, several different clay minerals including illite and chlorite occur as pore-filling and pore-lining cements. While the pore-filling illite and chlorite resulted in a considerable loss of porosity, the pore-lining chlorite may have helped in retaining the porosity by preventing the precipitation of syntaxial quartz overgrowths. Illite, which largely occurs as hair-like rims around the grains and bridges on the pore throats, caused a substantial deterioration to permeability of the reservoir. Diagenetic history of the Jauf Formation as established here is expected to help better understanding and exploitation of this reservoir.  相似文献   

17.
Rapid supply and deposition of 1000's of meters of Miocene and Pliocene sediment tend to lead to a different set of controls on reservoir quality than older, more slowly buried sandstones. Here we have studied Miocene fluvial-deltaic Bhuban Formation sandstones, from the Surma Group, Bengal Basin, buried to >3,000 m and >110 °C, using a combination of petrographic, geochemical and petrophysical methods in order to understand the controls on Miocene sandstone reservoir quality to facilitate improved prediction of porosity and permeability. The main conclusions of the study are that mechanical compaction processes are the dominant control on porosity-loss although early calcite growth has led to locally-negligible porosity in some sandstones. Mechanical compaction occurred by grain rearrangement, ductile grain compaction and brittle grain fracturing. Calcite cement, occupying up to 41% intergranular volume, was derived from a combination of dissolved and recrystallized bioclasts, an influx of organic-derived carbon dioxide and plagioclase alteration. Clay minerals present include smectite-illite, kaolinite and chlorite. The smectitic clay was probably restricted to low energy depositional environments and it locally diminishes permeability disproportionate to the degree of porosity-loss. Kaolinite is probably the result of feldspar alteration resulting from the influx of organic-derived carbon dioxide. Quartz cement is present in small amounts, despite the relatively high temperature, due to a combination of limited time available in these young sandstones, grain-coating chlorite and low water saturations in these gas-bearing reservoir sandstones. Reservoir quality can now be predicted by considering primary sediment supply and primary depositional environment, the magnitude of the detrital bioclast fraction and the influx of organic-derived carbon dioxide.  相似文献   

18.
Tight-gas reservoirs, characterized by low porosity and low permeability, are widely considered to be the product of post-depositional, diagenetic processes associated with progressive burial. This study utilizes a combination of thin section petrography, scanning electron microscopy, microprobe and back scatter electron analysis, stable isotope geochemistry and fluid inclusion analysis to compare the diagenetic history, including porosity formation, within sandstones of the second member of Carboniferous Taiyuan Formation (C3t2) and the first member of Permian Xiashihezi Formation (P1x1) in the Ordos Basin in central China.In the P1x1 member, relatively high abundances of metamorphic rock fragments coupled with a braided river and lacustrine delta environment of deposition, produced more smectite for transformation to illite (50–120 °C). This reaction was driven by dissolution of unstable minerals (K-feldspar and rock fragments) during the early to middle stages of mesodiagenesis and consumed all K-feldspar. Abundant intragranular porosity (average values of 2.8%) and microporosity in kaolinite (average values of 1.5%) formed at these burial depths with chlorite and calcite developed as by-products.In the C3t2 member, relatively low abundances of metamorphic rock fragments coupled with an incised valley-coastal plain environment of deposition resulted in less smectite for transformation to illite. High K+/H+ ratios in the early pore waters related to a marine sedimentary environment of deposition promoted this reaction. Under these conditions, K-feldspar was partially preserved. During the middle to late stages of mesodiagenesis, K-feldspar breakdown produced secondary intragranular (average values of 1.4%) and intergranular pores (average values of 1.2%). Release of K+ ions promoted illitization of kaolinite with quartz overgrowths and ferrous carbonates developed as by-products.This study has demonstrated that whereas both members are typical tight-gas sandstones, they are characterized by quite different diagenetic histories controlled by the primary detrital composition, especially during mesodiagenesis. Types of secondary porosity vary between the two members and developed at different stages of progressive burial. The content of unstable detrital components, notably feldspar, was the key factor that determined the abundance of secondary porosity.  相似文献   

19.
Compared to conventional reservoirs, pore structure and diagenetic alterations of unconventional tight sand oil reservoirs are highly heterogeneous. The Upper Triassic Yanchang Formation is a major tight-oil-bearing formation in the Ordos Basin, providing an opportunity to study the factors that control reservoir heterogeneity and the heterogeneity of oil accumulation in tight oil sandstones.The Chang 8 tight oil sandstone in the study area is comprised of fine-to medium-grained, moderately to well-sorted lithic arkose and feldspathic litharenite. The reservoir quality is extremely heterogeneous due to large heterogeneities in the depositional facies, pore structures and diagenetic alterations. Small throat size is believed to be responsible for the ultra-low permeability in tight oil reservoirs. Most reservoirs with good reservoir quality, larger pore-throat size, lower pore-throat radius ratio and well pore connectivity were deposited in high-energy environments, such as distributary channels and mouth bars. For a given depositional facies, reservoir quality varies with the bedding structures. Massive- or parallel-bedded sandstones are more favorable for the development of porosity and permeability sweet zones for oil charging and accumulation than cross-bedded sandstones.Authigenic chlorite rim cementation and dissolution of unstable detrital grains are two major diagenetic processes that preserve porosity and permeability sweet zones in oil-bearing intervals. Nevertheless, chlorite rims cannot effectively preserve porosity-permeability when the chlorite content is greater than a threshold value of 7%, and compaction played a minor role in porosity destruction in the situation. Intensive cementation of pore-lining chlorites significantly reduces reservoir permeability by obstructing the pore-throats and reducing their connectivity. Stratigraphically, sandstones within 1 m from adjacent sandstone-mudstone contacts are usually tightly cemented (carbonate cement > 10%) with low porosity and permeability (lower than 10% and 0.1 mD, respectively). The carbonate cement most likely originates from external sources, probably derived from the surrounding mudstone. Most late carbonate cements filled the previously dissolved intra-feldspar pores and the residual intergranular pores, and finally formed the tight reservoirs.The petrophysical properties significantly control the fluid flow capability and the oil charging/accumulation capability of the Chang 8 tight sandstones. Oil layers usually have oil saturation greater than 40%. A pore-throat radius of less than 0.4 μm is not effective for producible oil to flow, and the cut off of porosity and permeability for the net pay are 7% and 0.1 mD, respectively.  相似文献   

20.
Understanding the pore structure characteristics of tight gas sandstones is the primary purpose of reservoir evaluation and efforts to characterize tight gas transport and storage mechanisms and their controls. Due to the various pore types and multi-scale pore sizes in tight reservoirs, it is essential to combine several techniques to characterize pore structure. Scanning electron microscopy (SEM), nitrogen gas adsorption (N2GA), mercury intrusion porosimetry (MIP) and nuclear magnetic resonance (NMR) were conducted on tight sandstones from the Lower Cretaceous Shahezi Formation in the northern Songliao Basin to investigate pore structure characteristics systematically (e.g., type and size distribution of pores) and to establish how significant porosity and permeability are for different pore types. The studied tight sandstones are composed of intergranular pores, dissolution pores and intercrystalline pores. The integration of N2GA and NMR can be used as an efficient method to uncover full pore size distribution (PSD) of tight sandstones, with pore sizes ranging from 2 nm to dozens of microns. The full PSDs indicate that the pore sizes of tight sandstones are primarily distributed within 1.0 μm. With an increase in porosity and permeability, pores with larger sizes contribute more to porosity. Intercrystalline pores and intergranular/dissolution pores can be clearly distinguished on the basis of mercury intrusion and surface fractal. The relative contribution of intercrystalline pores to porosity ranges from 58.43% to 91.74% with an average of 79.74%. The intercrystalline pores are the primary contributor to pore space, whereas intergranular/dissolution pores make a considerably greater contribution to permeability. A specific quantity of intergranular/dissolution pores is the key to producing high porosity and permeability in tight sandstone reservoirs. The new two permeability estimation models show an applicable estimation of permeability with R2 values of 0.955 and 0.962 for models using Dmax (pore diameter corresponding to displacement pressure) and Df (pore diameter at inflection point), respectively. These results indicate that both Dmax and Df are key factors in determining permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号