首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is hypothesized that thermonuclear burning of the matter from the envelope of a massive compact star accreting onto a hot neutron star produced by spherically symmetric collapse of a stellar iron core can proceed in oscillation mode (much as is the case during thermal explosions of carbon-oxygen cores in lower mass stars). Local density oscillations near the neutron-star surface can generate shock waves; in these shocks, the electron-positron plasma is stratified from the remaining matter, and shells of an expanding relativistic fireball with an oscillation time scale in cosmological gamma-ray bursts (GRBs) of ~10?2 s are formed. It is pointed out that the GRB progenitors can be nonrotating massive Wolf-Rayet (WR) stars whose collapse, according to observational data, can proceed without any substantial envelope ejection.  相似文献   

2.
We present the multicolor BV RI photometry and BTA/SCORPIO spectroscopy for the red nova V4332 Sgr, performed in 2005–2012. We have analyzed the behavior of the nova remnant, considering our observations along with all the published observations and archival photographic photometry. The atomic and molecular emission spectra show an exponential weakening. Since 2003, the line fluxes have on the average decreased 30-fold. The continuum of the M-type giant in the spectrum has weakened abruptly between 2006 and 2008, twice in the red and by 4 times in the blue range. The variations in the spectral energy distribution of the stellar continuum after the outburst correspond to a decrease in the surface temperature of the M-type giant by 1000 K. The presence of a faint star of about 20m is possible. The star can be either a member of the system or a field star. It is found that the phenomenon of the red nova in this system is not related with the M-type star. The progenitor of the explosion could be a blue straggler, which has disappeared from the spectral energy distribution after the explosion of 1994. It is most likely that this object was a contact binary system. To explain the “cold explosion” of V4332 Sgr, we have accepted the hypothesis of merging components of a contact binary star in a hierarchical triple or multiple system. There are evidences of dynamical destruction of the outburst remnant and accretion of its matter to the M-type giant. The cause of the red nova phenomenon is thought to be a sudden explosive energy release in the center of a star having a massive envelope, and a subsequent expansion of the envelope in the conditions close to adiabatic. As a result of the explosion, thermal energy reaches the surface of the envelope a year or a few years after the outburst, whereas the envelope already has a large surface area. The cause of the explosion in the center of the star can be both a merger event of the nuclei of two stars in the contact system with a formed common massive envelope and instability in the core of a single massive star. Thus, the red novae can be heterogeneous objects at different evolutionary stages.  相似文献   

3.
The configuration of the magnetic field associated with a protostar surrounded by a circumstellar disk is assumed to be a kind of magnetic mirror, which reflects the particles at its throat located nearby the disk midplane, and then extracts them out of the star and the disk. Turbulent Alfven waves are excited due to anisotropic temperature distribution caused by the existing magnetic field in the environment. Accelerated by turbulent Alfven waves, the particles coming out of the young stellar object and the circumstellar disk can reach the expected velocities around 300 km s-1 at a typical distance 0.1 pc from the central star. The wave energy is converted from the thermal energy stored in the system consisting of the early stage star associated with the disk and their environment, and a small fraction of which is enough. The coefficient η, indicating the efficiency of converting thermal energy to wave energy, is equal to 10-11. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The initial stages of deceleration in the circumstellar medium of a stellar envelope, thrown off by a shock wave, are investigated. The equations of spherical-symmetric adiabatic hydrodynamics are shown to have a similarity solution in the case of the density of the expanding envelope being approximated by a reasonable power law. The overall flow pattern has such a form that the stellar material is decelerated in the internal shock wave while another shock propagates through the circumstellar matter. Between the shocks there is a contact discontinuity separating the circumstellar and stellar matter. The characteristics of the similarity solution are calculated for various exponents in the density laws of an expanding envelope and circumstellar matter and for two values of the adiabatic index (=5/3, 4/3). Some parts of the flow exhibit Rayleigh-Taylor instability.Special attention is paid to the validity of the hydrodynamics. In full agreement with D'yachenkoet al. (1969), we conclude that the kinetic and collisionless processes are of great importance if the initial stages of stellar envelope deceleration are to be properly monitored.The results obtained can also be employed to describe the interaction between the exploding core of a red giant star and its rarefied envelope. This is of interest for explosive nucleosynthesis.The similarity solution is applied to the envelopes expelled both by type-II supernovae and by rapid novae. In particular, the thermalization time-scale of circumstellar plasma is estimated. For SNii this time-scale proves to be of the order of 60 yr. This confirms with the observational data on the moment of the maximum radio-emission of young SNRs. In the case of rapid novae, this time is less by a factor of 10. Therefore, the peak radio and X-ray (2 keV) lumnosity may occur several years after the rapid nova outburst. The explosion of a degenerate carbon core is found to result in the heating of the hydrogen-helium envelope of a red giant star up to 3×106 K.  相似文献   

5.
A hypothesis is being put forward that the formation of jets in the nuclei of radio galaxies is due to a high-speed energy excretion (explosion) in the accretion disk around a massive black hole. The explosion can be induced, for example, by a fall of the star into the black hole. For the accretion disk featuring an exponential high-density distribution, an asymmetrical explosion can be obtained: the shock front moves in the direction of decreasing the density accelerately and achieves the relativistic velocity swiftly, carrying away the most fraction of the explosion energy. Radio emission of the jet involves synchrotron radiation of relativistic electrons which are accelerated by such shock wave in the magnetic field driven up by the shock front.  相似文献   

6.
We numerically solved the two-dimensional axisymmetric hydrodynamic problem of the explosion of a low-mass neutron star in a circular orbit. In the initial conditions, we assumed a nonuniform density distribution in the space surrounding the collapsed iron core in the form of a stationary toroidal atmosphere that was previously predicted analytically and computed numerically. The configuration of the exploded neutron star itself was modeled by a torus with a circular cross section whose central line almost coincided with its circular orbit. Using an equation of state for the stellar matter and the toroidal atmosphere in which the nuclear statistical equilibrium conditions were satisfied, we performed a series of numerical calculations that showed the propagation of a strong divergent shock wave with a total energy of ~0.2×1051 erg at initial explosion energy release of ~1.0×1051 erg. In our calculations, we rigorously took into account the gravitational interaction, including the attraction from a higher-mass (1.9M) neutron star located at the coordinate origin, in accordance with the rotational explosion mechanism for collapsing supernovae. We compared in detail our results with previous similar results of asymmetric supernova explosion simulations and concluded that we found a lower limit for the total explosion energy.  相似文献   

7.
Abstract— Detailed numerical models have shown that solar nebula shock waves would be able to thermally process chondrules in a way that is consistent with experimental constraints. However, it has recently been argued that the high relative velocities that would be generated between chondrules of different sizes immediately behind the shock front would lead to energetic collisions that would destroy the chondrules as they were processed rather than preserving them for incorporation into meteorite parent bodies. Here the outcome of these collisions is quantitatively explored using a simple analytic expression for the viscous dissipation of collisional energy in a liquid layer. It is shown that molten chondrules can survive collisions at velocities as high as a few hundred meters per second. It is also shown that the thermal evolution of chondrules in a given shock wave varies with chondrule size, which may allow chondrules of different textures to form in a given shock wave. While experiments are needed to further constrain the parameters used in this work, these calculations show that the expected outcomes from collisions behind shock waves are consistent with what is observed in meteorites.  相似文献   

8.
9.
The collapse, bounce, shock wave and expansion of the envelope of a rotating star have been analysed in the adiabatic approximation using the particle-in-cell method. The bounce takes place first in the equatorial plane and a shock wave arises there which shortly afterwards crosses the surface of the star. In the envelope, and to a less extent in the remainder of the star, there is a fast and lasting meridional motion the direction of which changes. As a consequence of the fast meridional motion in the envelope, mass and angular momentum are transported towards the axis of rotation. If the initial star rotates fast enough this will cause a secondary radial expansion in the polar region and a mass ejection. These motions reduce the strong anisotropy caused originally by the equatorial expansion. Strong whirls may arise along the axis of rotation. In the remainder of the star the meridional motion becomes supersonic. The temperature in the envelope depends to a high degree on the choice of the equation of state. Massloss is proportional to the energy initially added. The final loss of angular momentum and of energy is quite large, both losses being about 25%.  相似文献   

10.
We propose that single stars in the mass range 4–6·5M , that explode as Supernovae of Type I, are totally disrupted by the explosion and form shell-type remnants. More massive single stars which explode as Supernovae of Type II also give rise to shell-type remnants, but in this case a neutron star or a black hole is left behind. The first supernova explosion in a close binary also gives rise to a shell-type supernova remnant. The Crab-like filled-centre supernova remnants are formed by the second supernova explosion in a close binary. The hybrid supernova remnants, consisting of a filled centre surrounded by a shell, are formed if there is an active neutron star inside the shell.  相似文献   

11.
大质量双星系统的非守恒演化   总被引:1,自引:0,他引:1  
由于大质量双星系统有强大的星风物质损失,因而在研究其结构和演化时必须考虑星风物质损失,动量损失,物质交换以及由以上原因引起的轨道参量的变化,此外,天文观测又证实,一些大质量双星系统中存在星风冲击波,有X射线辐射以及有致密天体(白矮星,中子星)的存在,因此在研究大质量双星的演化时,又会遇到在星风冲击波理论及其对演化的影响,双星系统何时会演化成为公共外壳的系统,以及双星系统中如果发生超新星爆发,是否会  相似文献   

12.
We use ideal axisymmetric relativistic magnetohydrodynamic simulations to calculate the spin-down of a newly formed millisecond,   B ∼ 1015 G  , magnetar and its interaction with the surrounding stellar envelope during a core-collapse supernova (SN) explosion. The mass, angular momentum and rotational energy lost by the neutron star are determined self-consistently given the thermal properties of the cooling neutron star's atmosphere and the wind's interaction with the surrounding star. The magnetar drives a relativistic magnetized wind into a cavity created by the outgoing SN shock. For high spin-down powers  (∼1051–1052 erg s−1)  , the magnetar wind is superfast at almost all latitudes, while for lower spin-down powers  (∼1050 erg s−1)  , the wind is subfast but still super-Alfvénic. In all cases, the rates at which the neutron star loses mass, angular momentum and energy are very similar to the corresponding free wind values (≲30 per cent differences), in spite of the causal contact between the neutron star and the stellar envelope. In addition, in all cases that we consider, the magnetar drives a collimated  (∼5–10°)  relativistic jet out along the rotation axis of the star. Nearly all of the spin-down power of the neutron star escapes via this polar jet, rather than being transferred to the more spherical SN explosion. The properties of this relativistic jet and its expected late-time evolution in the magnetar model are broadly consistent with observations of long duration gamma-ray bursts (GRBs) and their associated broad-lined Type Ic SN.  相似文献   

13.
We consider a model of a coronal loop in the form of a cord surrounded by a coaxial shell. Two slow magnetosonic waves longitudinally propagate within a thin flux tube on the m=0 cylindrical mode with velocities close to the tube velocities in the cord and the shell. One wave propagates inside the cord, while the other propagates inside the shell. A peculiar feature of the second wave is that the plasma in the cord and the shell oscillates with opposite phases. There are two fast magnetosonic waves on each of the cylindrical modes with m>0. If the plasma density in the shell is lower than that in the surrounding corona, then one of the waves is radiated into the corona, which causes the loop oscillations to be damped, while the other wave is trapped by the cord, but can also be radiated out under certain conditions. If the plasma density in the shell is higher than that in the cord, then one of the waves is trapped by the shell, while the other wave can also be trapped by the shell under certain conditions. In the wave trapped by the shell and the wave radiated by the tube, the plasma in the cord and the shell oscillates with opposite phases.  相似文献   

14.
The neutral hydrogen emission at 21 cm has been investigated with the RATAN-600 radio telescope in the vicinity of the supernova remnant HB9. A clumpyHI shell with radial motions surrounding the remnant has been detected. Its measured parameters contradict the connection with a shock wave from a supernova explosion. The shell formation under the action of a wind from a star that exploded as a supernova at the end of its evolution seems more realistic. The characteristics of the star obtained from the observed shell parameters are the following: a wind power of 0.5 × 1038 erg s?1, a mass-loss rate of 3.7 × 10?5 M yr?1, and an age of 3 × 106 yr. Given the measurement errors, the mass of the star is estimated to be >8M .  相似文献   

15.
The impact of a supernova shell onto 2.82M and 20.0M main-sequence stars is investigated for various initial orbital separations, and various supernova shell masses and velocities. The inelastic collision between the star and the supernova shell, the shock propagation into the companion star, and other forms of momentum transfer such as the rocket effect are considered. The total momentum transfer due to the supernova is insufficient to eject the companion from the binary as long as the companion retains most of its mass, regardless of the initial orbital separation. Ejection of the companion may occur if the companion is nearly destroyed. Even in contact binaries destruction does not necessarily occur, and if the orbital separation exceeds 1012 cm, destruction of the companion becomes quite unlikely.  相似文献   

16.
Results are presented from a two-dimensional numerical simulation of the collapse of a rotating core with formation of a neutron star that has strong differential rotation in its outer regions. A specially developed numerical method is used which is based on a fully conservative implicit operator difference scheme for gravitational gas dynamics problems in lagrangian coordinates on a variable-structure triangular grid. The recoil shock wave generated by the collapse causes ejection of a small amount of material. This cannot explain the explosion of type II supernovae. The strong differential rotation in the presence of even a weak initial magnetic field obtained in these calculations must lead to a rise in the magnetic pressure, formation of an MHD shock wave, and conversion of rotational energy into the energy of radial expansion (magnetorotational supernova explosion).  相似文献   

17.
Conclusions Our analysis has shown that the envelope is not an unchanging, permanent structure; instead it varies noticeably within a time of the order of a day. The surface layers of the B star adjacent to the inner layers of the envelope also do not remain stationary. The observed variation in the radial velocities suggests that they have a pulsating behavior. The quasiqeriodic brightness variation reported by Walker [3] can be explained if the amplitude and duration of the pulsations are not strictly periodic.Special Astrophysical Observatory, Academy of Sciences of the USSR. Translated from Astrofizika, Vol. 12, No. 2, pp. 219–233, April–June, 1976.  相似文献   

18.
Core-Collapse supernovae arise from stars greater than 8 M. These stars lose a considerable amount of mass during their lifetime, which accumulates around the star forming wind-blown bubbles. Upon the death of the star in a spectacular explosion, the resulting SN shock wave will interact with this modified medium. We study the evolution of the shock wave, and investigate the properties of this interaction. We concentrate on the evolution of the SN shock wave in the medium around a 35 solar mass star. We discuss the hydrodynamics of the resulting interaction, the formation and growth of instabilities, and deviations from sphericity.  相似文献   

19.
A model of the R CrB star chromosphere is calculated on the basis of the observed profiles of the Ca II H and K lines and IR triplet and D lines of Na I and H-alpha. The calculated profiles of Ca II H and K lines and IR triplet and H-alpha are in good agreement with the observed ones both for an undisturbed state and for the light minimum. The line profiles for the light minimum are calculated under the assumption that the minimum is attributed to obscuring of the star disc with a dust cloud. In this case, the chromosphere is not hydrostatic since the column density at the chromosphere base is two orders of magnitude higher as compared to that in a hydrostatic model. The model proposed is more extended, less dense at the chromosphere base, and denser in the upper chromosphere. The extension of the calculated chromosphere is about 3 star radii. The density in the chromosphere is 108–1010 atoms per 1 cm3 and the temperature is 5000–7000 K. Agreement of the calculated and observed profiles of Na I D absorption lines is possible if we assume that, around the star, there is a cold envelope containing Na I atoms which expands with a velocity of about 30 km/s. This envelope is beyond the chromosphere, but near enough for the star and the envelope to be observed as a single whole. The optical thickness of the envelope in the Na I D2 line is 1.8. At the brightness minimum, this envelope illuminated with the star light yields additional emission attributed to resonant scattering in the Na I D lines.  相似文献   

20.
The properties of a massive star prior to its final explosion are imprinted in the circumstellar medium (CSM) created by its wind and termination shock. We perform a detailed, comprehensive calculation of the time-variable and angle-dependent transmission spectra of an average-luminosity gamma-ray burst (GRB) which explodes in the CSM structure produced by the collapse of a  20 M  , rapidly rotating,   Z = 0.001  progenitor star. We study both the case in which metals are initially in the gaseous phase and the situation in which they are heavily depleted into dust. We find that high-velocity lines from low-ionization states of silicon, carbon and iron are initially present in the spectrum only if the metals are heavily depleted into dust prior to the GRB explosion. However, such lines disappear on time-scales of a fraction of a second for a burst observed on-axis, and of a few seconds for a burst seen at high latitude, making their observation virtually impossible. Rest-frame lines produced in the termination shock are instead clearly visible in all conditions. We conclude that time-resolved, early-time spectroscopy is not a promising way in which the properties of the GRB progenitor wind can be routinely studied. Previous detections of high-velocity features in GRB ultraviolet spectra must have been either due to a superposition of a physically unrelated absorber or due to a progenitor star with very unusual properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号