共查询到17条相似文献,搜索用时 78 毫秒
1.
青藏高原东缘的地壳结构是两种主流青藏高原隆升模式争辩的焦点之一.中下地壳流曾经被认为是高原东缘隆升的主要构造驱动力,但是中上地壳之间低阻低速层的发现及其与2008 Ms8.0汶川地震良好的对应关系表明,高原东缘具有向东刚性挤出的可能性.然而大部分关于龙门山断裂的数值模拟仍建立在下地壳流的基础上,仅将低阻低速层作为断裂的延续或是弱化地壳物性参数的软弱层,而非能够控制块体滑动的“解耦层”,也没有考虑到刚性块体变形中的断裂相互作用.本文建立了包含相互平行的龙门山断裂与龙日坝断裂的刚性上地壳模型,用极薄的低阻低速层作为块体滑动的解耦带,采用速率相关的非线性摩擦接触有限元方法,基于R最小策略控制时间步长,计算了在仅有侧向挤压力作用下,低阻低速层对青藏高原东缘的刚性块体变形和断裂活动的作用.计算结果显示,低阻低速层控制了刚性块体的垂直变形和水平变形分布特征.在侧向挤压力的持续作用下,在低阻低速层控制下的巴颜喀拉块体能够快速隆升,而缺乏低阻低速层的四川盆地隆升速度和隆升量均极小,隆升差异集中在龙门山断裂附近,使其发生应力积累乃至破裂.龙日坝断裂被两侧的刚性次级块体挟持着一起向南东方向运动,但该断裂的走滑运动分解了绝大部分施加在块体边界上的走滑量,使得相邻的龙门山次级块体的走滑分量遽然减少,也使得龙门山断裂表现出以逆冲为主,兼有少量走滑的运动性质.本文所得的这些计算结果显示了在缺乏中下地壳流,仅在低阻低速层解耦下刚性块体隆升过程及相关断裂活动,提供了青藏高原东缘刚性块体挤出的可行性,为青藏高原东缘隆升机制的研究讨论提供了重要依据. 相似文献
2.
因缺少详细的地质调查,关于龙日坝断裂带南段是否具有强烈的晚第四纪活动及其在青藏高原东缘应变分配中承担的作用目前尚不清楚。卫星影像解译和野外调查结果表明龙日坝断裂带南段仅东南支存在晚第四纪活动,全长约50km,总体以右旋走滑为主,兼有逆断分量,全新世以来右旋平均走滑速率约为0.6mm/a,平均垂直滑动速率约为0.4mm/a。龙日坝断裂带南段活动强度较中段明显偏弱,但具备发生M_W7级左右地震的能力,在距今约800年以来曾发生过地表破裂型事件。结合重定位地震结果来看,龙日坝断裂带西侧和龙门山断裂带地震活跃,之间的丹巴地区可能主要表现为褶皱变形而地震活动微弱。青藏高原东缘之下的滑脱面自川西高原到四川盆地从约15km逐渐变深至20km左右,而又变浅,约为10km,这种滑脱面的深度变化可能是龙门山隆升和孕震的驱动机制。这项研究有助于川西地区的地震危险性评价和深入理解青藏高原东缘的应变分配和隆升机制。 相似文献
3.
青藏高原东缘断裂密布, 强震频发, 是研究高原侧向挤出及深部孕震环境的理想实验室.为了解龙门山次级块体及其西界龙日坝断裂带在青藏高原东缘隆升过程中的作用, 我们基于四川地震台网64个宽频带地震台在2008年1月至2015年12月期间记录的震级≥3.0地震事件波形, 利用双差层析成像方法揭示了四川盆地及青藏高原东缘的地壳速度结构.结果表明: 夹持于龙门山断裂带(LMSF)与龙日坝断裂带(LRBF)之间的龙门山次级块体, 相对东侧龙门山断裂带和四川盆地呈现明显的低速特征.结合该区域的低阻、低密度结构特征, 以及块体内部、特别是龙日坝断裂带现今地震活动缺乏, 我们推测这是因为该块体"相对较软", 不易脆性破裂产生地震, 在青藏高原东缘与扬子块体西缘强烈相互作用过程中, 该块体主要通过地壳缩短增厚和地表隆升吸收板块挤压造成的累积应变能.依据本文获得的速度等值线变化特征及已有地球物理剖面探测结果, 推测龙日坝断裂带为深部向南东倾斜且向下切入基底, 该断裂倾角较陡, 主要以走滑运动调节应变能, 而东侧龙门山断裂带倾角较缓, 表现为逆冲运动导致的地壳缩短是其调节应变能的主要形式.此外, 据本文多条速度剖面及已有电性剖面、重力异常的联合约束, 我们推测鲜水河、安宁河断裂带均以较大倾角向南东倾斜, 至少延伸至中下地壳. 相似文献
4.
地壳缩短导致青藏隆升造山是普遍的认识.然而,在青藏东部,越来越多的观测数据和研究支持了中下地壳流与隆升造山的关系.目前,地壳缩短造山机制和中下地壳流造山机制仍然处于争论之中.本文建立了二维黏弹塑性有限元模型,模拟了龙门山断层带的多个地震循环的应变与变形,探讨了无与有中下地壳流情况下,地壳地表的位移、速度与变形的分布和演化;以及有中下地壳流情况下,不同流动范围、速度与黏度对模型结果的影响;并结合地形变观测数据的约束,推测了青藏东缘中下地壳流的流动状态.模拟结果显示,通过对比有和无中下地壳流的模拟结果,发现青藏东部震间的地表垂向速度在变形样式及数值上存在较大差异,即存在地壳流的地表垂向抬升速率显著大于无地壳流;震间在龙门山断层西侧附近产生的垂向凸状隆起随中下地壳流的速度、黏度及通道长度的变化而变化.此外,本文研究结果对青藏其他地区可能存在的地壳流的研究也具有一定的参考意义. 相似文献
5.
自从2008年MS8.0级汶川大地震发生以来,青藏高原东缘便成为地质与地球物理研究的热点区域.该区域的龙门山断裂带标志着青藏高原东缘与四川盆地的边界.汶川地震即发生于龙门山断裂带内的映秀—北川断裂上.该地区现有的研究工作多集中于青藏高原东缘及四川盆地的西部,对四川盆地东部构造情况的研究目前较少.在SinoProbe项目的资助下,完成了一条跨越青藏高原东缘及整个四川盆地的大地电磁测深剖面.该剖面自西北始于青藏高原内部的松潘—甘孜地块,向东南延伸穿过龙门山断裂带、四川盆地内部及四川盆地东部的华蓥山断裂,最终止于重庆东南的川东滑脱褶皱带附近.维性分析表明剖面数据整体二维性较好,通过二维反演得到了最终的电性结构模型.该模型表明,从电性结构上看,沿剖面可分为三个主要的电性结构单元,分别为:浅部高阻、中下地壳低阻的松潘—甘孜地块,浅部低阻、中下地壳相对高阻的四川盆地,以及华蓥山以东整体为高阻特征的扬子克拉通地块.龙门山断裂带在电性结构上表现为倾角较缓、北西倾向的逆冲低阻体,反映了青藏高原东缘相对四川盆地的推覆作用.其在地下向青藏高原内部延伸,深度约为20 km左右.在标志逆冲推覆滑脱面的低阻层下存在一电性梯度带,表征着低阻的青藏高原中下地壳与高阻的扬子地壳之间的电性转换.位于四川盆地东边界的华蓥山断裂在电性结构上表现为一倾向为南东向的低阻体插入高阻的扬子克拉通结晶基底,切割深度约为30 km左右.这一结构反映出华蓥山向西的推覆作用.在电性结构模型的基础上,进一步讨论了青藏高原东缘的壳内物质流、青藏块体与扬子块体的深部关系以及青藏高原东部的隆升机制等构造问题. 相似文献
6.
青藏高原东缘地区活动断裂极其发育,强震繁发,特别是2008年5月12日的汶川Ms8.0级地震的发生,使得众多地球科学家认识到有必要更为全面地了解和认识该地区的地应力场背景和地球动力学环境.本论文结合活动构造的性质和分布特征,在考虑重力因素的条件下,利用三维粘弹性有限元模拟分析青藏高原东缘现今地应力场的分布特征和控制因素.模拟结果表明,印度板块与欧亚板块的持续碰撞和稳定华南块体的阻挡控制着青藏高原东缘总体的动力学环境,主要活动断裂和次一级活动断裂的展布对地应力场分布特征具有不同程度的影响,在不同的构造位置具有不同的地应力场特征,同时决定了相应活动断裂的性质.巴颜喀拉块体的水平最大主应力方向总体上为东西向;印度板块向北运动过程中对缅甸块体产生的剪切拉伸的作用和南海伸展性的边界使得水平最大主应力方向在川滇地块发生了偏转,同时造成了围绕喜马拉雅东构造结的旋转变形.青藏高原东缘在近地表区域由于受到地形地貌的影响,地应力随深度发生了不同程度的变化,在地形梯度较大和块体边界地壳结构发生较大变化的区域,如龙门山断裂带附近,地壳浅部的地应力随深度发生较为明显的变化,而地势比较平缓和地壳岩石物性比较稳定的地区,由浅到深的地应力变化较小. 相似文献
7.
虎牙断裂带作为青藏高原物质东向扩展的前缘断裂之一,其运动方式和强震活动类型表现出显著的南北差异.研究虎牙断裂带运动方式的差异性机理,对于认识地震发生机制与高原东向扩展模式有着重要意义.本文构建包含虎牙断裂带的三维黏弹性有限元模型,研究介质流变性差异与断层几何形态对区域地壳变形及断层三维滑动速率的影响.数值实验结果表明,在青藏高原物质东向挤出的动力学背景下,在虎牙断裂带南段,中下地壳介质流变性横向差异控制着断层以逆冲性质为主的运动,且随着中下地壳断层两侧流变性差异的增大,断层西侧物质的水平运动更易发生向垂向运动的转换.在断层两侧流变强度差1~2个数量级时,断层倾向滑动速率与走向滑动速率的比值达3.3~4.0,表现出显著的逆冲运动,与松潘—平武强震所反映的断层运动特征基本一致.相反,在断裂带北段,考虑断层两侧中下地壳较小的流变性差异时,断层即表现出明显的逆冲运动,这与九寨沟MS7.0等强震反映的断层以走滑性质为主的运动明显不符,表明虎牙断裂带北段可能不存在中下地壳介质流变性的横向差异,断层以走滑为主的运动方式主要受断裂带几何展布控制.研究结果为认识青藏高原东缘同一构造区内断层运动方式差异与发震机制以及高原东向扩展模式提供了理论依据. 相似文献
8.
本文通过峨眉山基底卷入构造带低温热年代学(磷灰石和锆石裂变径迹、锆石(U-Th)/He)研究,结合典型构造-热结构特征诠释峨眉山晚中-新生代冲断扩展变形与热年代学耦合性.峨眉山磷灰石裂变径迹(AFT)和锆石(U-Th)/He(ZHe)年龄值分别为4~30 Ma和16~118 Ma.ZHe年龄与海拔高程关系揭示出ZHe系统抬升剥蚀残存的部分滞留带(PRZ).低温热年代学年龄与峨眉山构造分带性具有明显相关性特征:万年寺逆断层上盘基底卷入构造带AFT年龄普遍小于10 Ma,万年寺逆断层下盘扩展变形带AFT年龄普遍大于10 Ma;且空间上AFT年龄与断裂带具有明显相关性,它揭示出峨眉山扩展变形带中新世晚期以来断层冲断缩短构造活动.低温热年代学热史模拟揭示峨眉山构造带晚白垩世以来的多阶段性加速抬升剥蚀过程,基底卷入构造带岩石隆升幅度大约达到7~8 km,渐新世以来抬升剥蚀速率达0.2~0.4 mm·a-1,其新生代多阶段性构造隆升动力学与青藏高原多板块间碰撞过程及其始新世大规模物质东向扩展过程密切相关. 相似文献
9.
根据数字高程分析,青藏高原东部在侧向生长的过程中,其东缘的高程在龙门山一带不仅没有衰减,反而在强烈侵蚀的地表环境下,有600m左右的增高,隆起范围可达到150km宽,远远大于龙门山断裂带的宽度(图1)。野外地质调查与区域地质构造分析也揭示,龙门山一带上地壳的汇聚作用表现为松潘-甘孜块体东缘的褶皱拱曲与扬子克拉通西缘的高角度叠瓦状冲断, 相似文献
10.
参考青藏高原东缘松潘-甘孜地块至四川盆地陡变地形起伏和地壳密度结构的横向差异,本文建立了二维牛顿黏性流体有限元模型,计算分析构造加载、陡变地形和重力效应控制下青藏高原东缘岩石圈变形特征,探讨横向不均匀的地壳密度结构、陡变地形和岩石圈流变性质对区域现今垂向运动的影响.计算结果显示:在构造加载作用下,松潘-甘孜地块至四川盆地地表抬升微弱.区域横向不均匀的地壳密度结构驱使松潘-甘孜地块地壳整体抬升,速率高达2 mm·a-1,四川盆地整体下沉,速率约1 mm·a-1,与龙门山两侧现今观测到的地表垂向变形模式相近.龙门山地区陡变地形驱使柔性地壳流动,调整区域地壳局部变形;岩石圈流变结构影响重力驱动作用下的模型变形量值和岩石圈变形耦合程度,松潘-甘孜地块较低的中地壳黏滞系数引起上、下地壳的变形解耦;模型较高的岩石圈地幔黏滞系数使重力驱动作用下区域垂向变形量降低.因此,青藏高原东缘地壳密度结构差异、地形起伏和岩石圈流变性质是现今区域垂向变形的重要动力学控制因素. 相似文献
11.
The eastern margin of Tibetan Plateau is one of the most active zones of tectonic deformation and seismicity in China. To monitor strain buildup and benefit seismic risk assessment, we constructed 14 survey-mode global position system(GPS) stations throughout the northwest of Longmenshan fault. A new GPS field over 1999–2011 is derived from measurements of the newly built and pre-existing stations in this region. Sequentially,two strain rate fields, one preceding and the other following the 2008 MW7.9 Wenchuan earthquake, are obtained using the Gausian weighting approach. Strain field over1999–2007 shows distinct strain partitioning prior to the2008 MW7.9 Wenchuan earthquake, with compression spreading over around Longmenshan area. Strain field derived from the two measurements in 2009 and 2011 shows that the area around Longmenshan continues to be under striking compression, as the pattern preceding the Wenchuan earthquake, implying a causative factor of the sequent of 2013 MW6.7 Lushan earthquake. Our GPSderived dilatation shows that both the Wenchuan and Lushan earthquakes occurred within the domain of pronounced contraction. The GPS velocities demonstrate that the Longriba fault underwent slight motion with the faultnormal and-parallel rates at 1.0 ± 2.5 mm and 0.3 ± 2.2 mm/a; the Longmenshan fault displayed slow activity, with a fault-normal rate at 0.8 ± 2.5 mm/a, and a fault-parallel rate at 1.8 ± 1.7 mm/a. Longriba fault is on a par with Longmenshan fault in strain partitioning to accommodate the southeastward motion of eastern margin of the Tibetan Plateau. Integrated analysis of principal strain tensors, mean principal stress, and fast directions of mantle anisotropy shows that west of Sichuan is characterized as mechanically strong crust-mantle coupling. 相似文献
12.
利用青海和甘肃地震台网2007-2009年记录的远震波形资料,提取多频段P波接收函数,反演得到了青藏高原东北缘及相邻地块下方0~100 km深度的地壳和上地幔S波速度结构.结果表明:(1)青藏高原东北缘的上、下地壳之间普遍存在一个S波速度低速层,其深度由南端的约35 km 向北变浅约为20 km,推测该低速层为一壳内滑脱层,表明东北缘地区的上地壳变形与下地壳解耦,从滑脱层的深度分布可以认为青藏高原东北缘的地壳缩短自南向北进行,现阶段以上地壳增厚为主;(2)昆仑-西秦岭造山带的下地壳厚度较北侧的祁连地块薄,一种推测是西秦岭造山带的下地壳抗变形能力更强,也可能这种差异在块体拼合前已经存在;(3)青藏高原东北缘及鄂尔多斯和阿拉善地块的下地壳S波速度随深度的增加而增加,这种正梯度增加的S波速度结构反映较高黏滞性的下地壳,推测青藏高原东北缘的地壳结构不利于下地壳流的发育. 相似文献
13.
本研究收集了"中国地震科学探测台阵-南北地震带南段"项目325个流动宽频带台站于2011年8月至2012年9月记录的远震垂直向资料,利用双台法测得了3594条独立路径上的瑞雷波相速度频散曲线,反演得到了青藏高原东南部地区周期10~60 s瑞雷波的相速度分布图像.空间分辨尺度图表明,在台站覆盖范围内的绝大部分地区横向分辨率达到50 km.2D相速度分布图显示,青藏高原东南部地区地壳上地幔S波速度结构存在较明显的横向非均匀性.短周期(如10 s)的相速度分布主要受地表沉积层厚度的影响.绝大多数地震发生在周期15 s相速度图上的低速区或高低速的陡变梯度带附近,充分说明该区的强震活动与中上地壳速度结构的变化有直接关系.中等周期(如20~30 s)的相速度分布主要与中下地壳速度结构、地壳厚度密切相关,小江断裂、松潘-甘孜块体呈现最显著的低速,可能暗示这两处的中、下地壳存在低速层.较长周期(如40~60 s)的相速度分布与上地幔顶部热状态和构造活动(如岩浆作用)有关.滇西南地区表现为大范围的显著低速,可能暗示滇西南地区上地幔顶部物质存在部分熔融.不同构造块体下方的频散曲线,具有不同的相速度特征.腾冲火山下方的频散曲线在10~60 s一直为较低的速度,尤其是到40 s以后,相速度随周期的变大增速明显放缓,至60 s比其他任何块体速度都低,暗示腾冲火山区下方的低速至少来自上地幔顶部(约100 km). 相似文献
14.
龙门山断裂带位于青藏高原东缘,在中生代和晚新生代经历强烈的构造变形,急剧抬升,是研究青藏高原隆升和扩展动力学过程的重要窗口.本文利用起伏地形下的高精度成像方法,对"阿坝—龙门山—遂宁"宽角反射/折射地震数据重新处理,通过走时反演重建研究区地壳速度结构.剖面自西向东跨越松潘—甘孜块体、龙门山断裂带和四川盆地,不同块体速度结构表现了显著的差异.松潘甘孜块体地表复理石沉积层内有高速岩体侵入,低速层低界面起伏不平反映了该区的逆冲推覆构造.中下地壳速度横向上连续变化,平均速度较低(约6.26 km·s-1).四川盆地沉积层西厚东薄,并在西侧出现与挤压和剥蚀作用相关的压扭形态.中下地壳西薄东厚,平均速度较高(约6.39 km·s-1).龙门山断裂带是地壳速度和厚度的陡变带,Moho面自西向东抬升约13 km.在整个剖面上Moho面表现为韧性挠曲,中下地壳横向上连续变化,推测古扬子块体已到达松潘甘孜块体下方.松潘甘孜块体下方中下地壳韧性变形,并在底部拖曳着被断裂切割的脆性上地壳,应力在不同断裂上积累和释放,诱发大量地震. 相似文献
15.
本研究使用中国地震局地壳应力研究所2010—2011年期间在云南地区布设流动地震台站以及青藏高原周边地区固定地震台站记录到的波形资料,提取了大量高质量Pn波到时资料.联合中国地震台网观测报告,我们获得了一个新的青藏高原东缘上地幔顶部Pn波速度和各向异性结构模型.结果显示,研究区内上地幔顶部存在明显横向不均匀性.古老盆地和稳定地台区如四川盆地、柴达木盆地、拉萨地块和阿拉善块体呈现为明显高波速异常,而祁连山至西秦岭褶皱带和川滇菱形块体北部等为相对弱高波速异常.在龙日坝断裂带以东的松潘—甘孜地块往南沿安宁河—则木河断裂至川滇菱形块体南部显示为一条近南北向明显低波速异常.三江褶皱系、缅甸弧俯冲带以及四川盆地东南等地区为明显低波速异常.地壳强震多发生在高波速异常边缘或高低波速异常过渡带上,表明地壳强震的孕育可能还与地幔构造作用存在一定相关性.青藏高原东构造结的各向异性快波方向呈顺时针旋转分布,与印度—欧亚碰撞密切相关.龙门山断裂带东西两侧的各向异性快波方向发生明显变化,由其西侧松潘—甘孜地块下方的NE向转变为四川盆地下方的近EW向,说明青藏高原物质流动遇四川盆地后分为NE和SW向两支.在川滇地区26°N以南地区上地幔顶部各向异性呈现近NS向与地表GPS观测相一致,但与SKS分裂结果存在较大差异,可能表明地壳与上地幔顶部形变表现为耦合现象,而上地幔顶部至岩石圈内部则存在解耦现象. 相似文献
16.
在青藏高原东边缘沿冕宁—宜宾进行了大地电磁探测研究,剖面西起康滇地轴,向东穿过大凉山地块,终止于四川盆地.利用带地形的NLCG(非线性共轭梯度)方法对资料进行了反演,得到沿剖面的二维电性结构.康滇地轴和大凉山地块地壳中存在向上拱起的高导层(HCL),顶面埋深为10~15 km,最浅处不足10 km,厚度大约15~25 km,最小电阻率小于10 Ωm.四川盆地中下地壳不存在高导层.和该剖面北侧的石棉—乐山剖面的地壳电性结构对比分析表明,高导层在南北方向上可能连续延伸,长度大于100 km.壳内高导层的高导电性与岩石的部分熔融有关,并可能含有百分之几的含盐流体,易于流动和变形.青藏高原东部地壳内的可流动层在向东或东南方向流动过程中,由于受到四川盆地的阻挡,转向南或南南东方向,大体沿着大凉山地块的走向.在东西方向,壳内高导层自川滇地块向东运动,穿过大凉山地块西边界的安宁河断裂和则木河断裂,在大凉山地块东部,向四川盆地深部倾俯.本文对于壳内可流动层的存在及其与青藏高原东边缘的变形和地震活动性的关系进行了探讨. 相似文献
17.
断裂晚第四纪滑动速率及现今GPS观测揭示了青藏高原向北扩展与高原边缘隆升的运动特征.主要断裂晚第四纪滑动速率及跨断裂GPS应变速率的结果表明,青藏高原北部边缘的断裂以低滑动速率(<10 mm/a)为主,特别是两条边界断裂:阿尔金断裂和海原—祁连山断裂.两条主要边界断裂上的滑动速率分布显示了断裂间滑动速率转换及调整特征.阿尔金断裂自95°E以西的8~12 mm/a稳定滑动速率,向东逐渐降低到最东端的约1~2 mm/a,而海原断裂自哈拉湖一带开始发育后滑动速率为1~2 mm/a,到祁连一带(101°E以东)增大到相对稳定的4~5 mm/a,直到过海原后转向六盘山一带,滑动速率降低到1~3 mm/a,甚至更低.滑动速率的变化及分布特征显示,阿尔金断裂滑动主要是通过祁连山内部隆起及两侧新生代盆地变形引起的缩短来吸收的,海原—祁连山断裂的低滑动速率及沿断裂运动学特征表明断裂尾端的陇西盆地变形及六盘山的隆起是断裂左旋走滑速率的主要吸收方式.这一变形特征表明,青藏高原北部边缘的变形模式是一种分布式的连续变形,变形发生自高原内部,边界断裂的走滑被高原内部变形所吸收. 相似文献
|