共查询到20条相似文献,搜索用时 15 毫秒
1.
动态植被模型是研究植被变化对气候反馈和影响的重要模型工具。本文对耦合了动态植被(Dynamic Vegetation, DV)和碳氮(Carbon and Nitrogen, CN)模型的NCAR陆面过程模式CLM4.5(Community Land Model version 4.5)对青藏高原(以下简称高原)植被的模拟性能进行了评估,获得了定量化的偏差信息,并对高原植被和气候变化因子的关系进行了初步探讨。结果表明:模型能大致再现叶面积指数(Leaf area index, LAI)在历史时期的季节循环、长期变化趋势和空间分布,但空间变率较遥感资料大。模拟的乔木覆盖度偏大,草地覆盖度偏小,因此严重高估了植被高原南部和东部的LAI。与遥感观测相比,模拟的LAI呈现了1~2个月的滞后,这与模式本身的植被动力机制不完善和模式的降水驱动偏差有关。高原植被变化趋势的时空分布与表层土壤水和降水等气象因子的趋势变化显示出较好的一致性,表明在该研究时段,地表水循环的变化(主要是降水和土壤水含量)对高原植被生长可能起主导作用。 相似文献
2.
青藏高原植被变化对区域气候影响研究进展 总被引:6,自引:0,他引:6
陆地生态系统与气候变化之间存在这密不可分的相互作用过程。青藏高原地区是全球气候变化的敏感区,全球变暖对高原陆地生态系统演变的影响非常明显,这必将导致高原生态系统变化。生态系统的变化又将会引起局地、区域气候的响应,导致局地、区域、甚至全球的气候变化。因此研究青藏高原地区植被演变及其与气候变化的关系是一个有着重要学术价值和实际意义的课题。本文在对青藏高原植被与气候关系研究回顾的基础上,介绍了近年来关于青藏高原植被变化对区域气候影响取得的新的进展,提出了一些可能的物理过程,同时指出了研究中存在问题及今后的工作重点。 相似文献
3.
利用区域气候模式RegCM3,模拟分析了青藏高原地区植被退化对自身及周边地区气候产生的影响。结果表明:植被退化后,在退化区域冬夏季地表温度明显升高,最大增值2℃,而外围则温度降低,量值为-0.5℃~-1℃。夏季气温的变化趋势与地表温度类似,但量值较小,冬季退化区气温增加范围较大。夏季退化区湿度和降水增大,增加值分别达到0.6g/kg和35mm/month;退化区外围降水减少,外围西部及北部地区湿度减小,中心值为-0.4 g/kg。在冬季,湿度稍有减小,主要分布在西藏地区和青海、四川的交界处。 相似文献
4.
青藏高原及其周围植被对夏季气候影响的套网格数值试验比较 总被引:14,自引:3,他引:14
周锁铨 《南京气象学院学报》1998,21(1):85-94
利用钱永甫有地形5层原始方程模式,与颜宏等复杂地形条件下有限区域细网格模式进行单向嵌套,即初始场采用前者计算5d后,得到各特征等压面上的高度场和湿度场,向后者每24h输送一次边界值。地-气模式采用经Deardorf植被参数化修正的地面热量平衡方程进行耦合。在此基础上进行了夏季(7月)有植被和无植被两种情况的数值试验。有植被情况模拟的高度场、温度场与实测场的相关系数高于无植被的情况。试验发现,有植被比无植被情况的海平面气压场、低层高度场、潜热输送、整层大气湿度和降水量有所增加,而温度场和大陆热低压强度有所降低。 相似文献
5.
植被分布对青藏高原东侧暴雨过程影响的数值模拟 总被引:8,自引:3,他引:8
在颜宏等有限区域细网格的基础上,引入Deardorff植被参数化方案,并以此模式模拟了青藏高原东侧的两次暴雨过程,模拟表明:加入植被参数化的模式仍保持其稳定性,对降水强度的模拟有一定改进。 相似文献
6.
半干旱区植被覆盖度对边界层气候热力影响的数值模拟 总被引:14,自引:0,他引:14
在陆-气相互作用的中小尺度系统研究中,水平非均匀下垫面的强迫作用是主要的物理过程。本文利用能量闭合二维陆面过程与大气边界层耦合模式,研究了我国西北半干旱地区(38°N,105°E)夏季下垫面物理特征的变化对区域边界层气候的影响。结果表明:土壤湿度、植被覆盖度对局地环流和区域边界层气候的形成起着决定性的作用。模拟结果揭示了在半干旱地区大面积植树造林、提高植被覆盖度,可涵养土壤水分,改善局地生态环境,是人工持续改造干旱、半干旱荒漠地区局地气候的重要途径。 相似文献
7.
《巴黎协定》提出全球暖化程度在21世纪末相对工业革命前控制在2℃以内的目标。青藏高原高寒植被对全球变暖非常敏感,在2℃温升这个边界增温条件下研究高原植被对气候变化的响应关系到高原生态安全问题,有重大现实意义。本文基于CMIP5多模式模拟预测结果研究了高原植被对2℃温升的响应,并探讨了高原植被对于气候因子变化的敏感性,得到主要结论如下:在全球2℃温升背景下,高原植被叶面积指数(Leaf Area Index, LAI)较历史参考期显著增加,高原变绿,其中高原中部LAI和植被碳存储增加最为显著,三江源是植被LAI增加较快的区域。增温后裸地面积迅速减少,植被覆盖率总体增加,大部分地区草地呈增加趋势,森林减少趋势变缓,说明在2℃温升期高原植被有所改善。在全球2℃温升背景下,高原植被覆盖率表现出对温度和降水率等气候因子更强的依赖性和敏感性,在增暖环境中,气温仍是影响高原植被生态系统变化的主控因子。 相似文献
8.
利用1982-2002年Pathfinder NDVI遥感数据, 采用REOF和倾向度趋势分析方法, 研究了5~6月青藏高原地表植被变化区域特征及与全球变暖的关系。21年来高原区域春末夏初植被变化存在明显的空间差异, 且存在一个位于高原南北呈带状分布的植被显著变化区域。该区域内植被对全球气温变暖响应显著, 与前期5月北半球平均气温相关系数达到0.7675, 通过0.001显著性水平检验; 植被NDVI随气温升高呈现出显著一致的增加趋势, 增长速率超过10%/10 a, 是全球变暖响应的显著区和敏感区。进一步的分析表明, 对植被全球变暖响应显著的区域基本上处于高山山脉或半荒漠NDVI值低于0.12覆盖度较低的区域。不同植被类型对变暖响应的对比表明, 草地对全球变暖响应明显高于林地, 其植被NDVI 21年约增加10%。 相似文献
9.
利用1982年~2002年Pathfinder NDVI遥感数据,采用REOF和倾向度趋势分析方法,研究了5~6月青藏高原地表植被的区域变化特征及时间变化趋势。21a来高原区域植被总体呈增加趋势,但这种变化趋势有着明显的时间和空间差异。表现为5~6月空间上存在一个位于高原南北的两条呈带状分布的植被显著变化区域。该区域内植被对前期气温变化响应迅速,生物量随气温升高呈现出显著的一致增加趋势,增长速率大都超过10%/10a,与前期4~5月全球平均气温相关系数达到0.71,是全球变暖响应的敏感区。进一步的分析表明这种对全球变暖响应的区域差异主要来自于植被分布的不同,植被变化显著的区域基本上处于高山山脉或半荒漠地区NDVI值低于0.12的本底植被覆盖较低的区域。从植被覆盖类型看,草地植被生物量随全球变暖增幅明显,21a约增加10%,对全球变暖响应明显,而中高覆盖区植被和其他类型植被随气温升高的增幅较小,对全球变暖响应较弱。 相似文献
10.
青藏高原雪盖变化对我国气候的影响 总被引:5,自引:0,他引:5
青藏高原雪盖是影响我国气候的一个重要因子,除了具有明显的季节变化之外,还有明显的年际变化和年代际变化.它通过改变高原的热力作用而影响东亚季风进程、大气环流以及我国的气温和降水.雪盖具有较为明显的持续性,且具有振幅变化大的特点,人们越来越重视雪盖的气候效应和作为季度预报因子的作用. 相似文献
11.
青藏高原冬、春季植被特征及其对西南地区夏季降水的影响 总被引:3,自引:5,他引:3
本文利用西南地区96个气象台站1982-2001年夏季(6-8月)月平均降水资料和归一化植被指数(GIMMS NDVI)资料,分析了青藏高原冬、春季植被特征及其对西南地区夏季降水的影响,得到以下几点认识:青藏高原冬、春季植被呈现东南部覆盖较好,逐渐向西北部减少的特征.近20 a来,高原冬、春季植被总体呈增加趋势,其高原中西部、南部、北部增加明显,而南部侧边界和中东部呈减少趋势.相关分析和奇异值分解表明:高原冬、春季植被对西南地区夏季降水有较明显影响,且这种影响也存在一定的区域差异.高原前期植被变化可以作为西南地区夏季降水长期预报综合考虑的一个参考因子. 相似文献
12.
青藏高原植被下垫面对东亚大气环流影响的数值试验 总被引:22,自引:6,他引:22
采用J.W.Deardorff(1)地表植被参数化方案,利用P-a原始方程5层模式(2),分析了青藏高原有植被和无植被两种不同下垫面情况下的大气响应,结果表明有植被下垫面通过增加向大气输送潜热通量,加强了高原上空的热低压,增强了高原北部的热成风,加强了高原南侧的季风环流,使青藏高原及我国东南地区的降水增多。 相似文献
13.
针对青藏高原中部高寒草甸表层植被根系密集、土壤有机质含量较高的特征,利用陆面模式Noah-M P对1998年5 9月安多站水热过程进行模拟,初步评估了对土壤温度影响较大的物理过程,对比分析了土壤垂直分层、有机质和根系对土壤水热、地表能量模拟的影响。结果表明:Noah-MP模式中地表热交换、辐射传输等6个物理过程对土壤温度的影响较大;考虑垂直分层和有机质影响后,模式对土壤含水量的模拟有所改善,但浅层仍存在较大干偏差;加入根系的影响后,浅层土壤含水量的平均偏差显著减小,由原来的-0.094 m3·m-3减少到-0.016 m3·m-3,浅层土壤温度在模拟后期偏冷,但在深层有一定改善;同时地表感热通量和潜热通量也有明显改善,平均偏差分别由原来的24.3W·m-2、-22.5 W·m-2减小到5.9 W·m-2、1.2 W·m-2。 相似文献
14.
青藏高原OLR场的气候特征 总被引:1,自引:2,他引:1
青藏高原OLR明显偏低。季节变化特点是1月到5月不断增值,3-5月增值迅速。5-8月高原北部继续增值,但南部云量增多,出现了低值区。低值区5月份在喜马拉雅山南侧,然后自东南向西北扩展,越过喜马拉雅山,7月低值轴线到达31°N附件;8月开始自西北向东南撒;9月退到喜马拉雅山南侧;10月开始下降,西北部下降迅速,东南部下降缓慢。年变化曲线特点是:高原北部为单峰型,最高值出现在8月;南部为双峰型,高值分别出现在5月和10月,低值出现在7月。 相似文献
15.
利用青藏高原北麓河观测站(退化高寒草甸)和玛曲观测站(高寒草原)2014年地面观测资料,通过组合分类法,对比分析了两类下垫面生长季土壤含水量、水汽压差和净辐射对地表能量分配的直接影响和间接影响,并且利用路径分析法研究了影响地表能量分配的关键气候因子。结果表明:北麓河站和玛曲站潜热占比(潜热通量与地表可利用能量的比值)对土壤含水量的响应分别处于土壤水分抑制阶段和能量抑制阶段。其中,北麓河站潜热占比在水汽压差较大时随土壤含水量增长较快,受净辐射的影响较小;而玛曲站潜热占比随土壤含水量的变化趋势受水汽压差和净辐射的影响均较小。北麓河站潜热占比随水汽压差的增大先减小后趋于不变,并且潜热占比对水汽压差的敏感性随土壤含水量的增大而减小;而玛曲站潜热占比随水汽压差的增大先增大后趋于不变,几乎不受土壤含水量和净辐射的影响。北麓河站和玛曲站潜热占比均随净辐射的增大趋于稳定,其稳定值分别与土壤含水量和水汽压差有关。路径分析结果显示,降水是影响北麓河站潜热占比的主要气候因子,而气温是影响玛曲站潜热占比的主要气候因子。 相似文献
16.
气候变暖背景下青藏高原山地灾害及其风险分析 总被引:3,自引:0,他引:3
基于青藏高原1930-2010年山地灾害实例,分析了气候变暖对青藏高原山地灾害的影响。结果表明:在气候变暖背景下,冰湖溃决灾害增多,冰川泥石流趋于活跃,特大灾害出现频繁,灾害链生特征明显,表现出时间和空间上的延拓性,巨灾发生概率增大;在藏东南地区表现出雨热同期的气候特征,构成了利于冰川类泥石流形成的条件;波密县城位于两条泥石流危险区的建筑物占地面积由1988年0.014 km2扩展到2012年1.004 km2,人口与经济密集区与灾害高风险区重叠,加之气候变化导致的灾害危险性增加,青藏高原灾害风险显著增大。上述结果提供了气候变化对青藏高原山地灾害影响的证据,初步阐述了其影响特征,有助于山地减灾和进一步认识气候变化对山地灾害的影响机理。 相似文献
17.
青藏高原及其邻近地区近30年气候变暖与海拔高度的关系 总被引:41,自引:10,他引:41
利用青藏高原及其邻近地区165个站1961~1990年月平均地面气温资料,分析了气候变暖与海拔高度的关系。结果表明:近30年青藏高原及其相邻地区的地面气候变暖与海拔高度有关,变暖的幅度一般随海拔高度升高而增大,海拔高度在500m以下,500~1500,1500~2500,2500~3500及3500m以上等不同高度范围内台站下平均的平均温度的增温率分别为0.0,0.11,0.12,0.19和0.2 相似文献
18.
变暖背景下青藏高原夏季风变异及其对中国西南气候的影响 总被引:2,自引:0,他引:2
利用1951—2012年逐月NECP/NCAR-Ⅰ再分析资料和1960—2012年逐月中国西南地区116站常规气象要素资料,基于青藏高原地区夏季600 hPa涡度场特征,定义了新的青藏高原夏季风强度和位置指数,讨论在全球变暖背景下,青藏高原季风变化对中国西南地区气候的影响。青藏高原季风强度整体增强,在20世纪90年代末达到峰值后逐渐减弱,与北半球气温变化具有较好的一致性,位置变化相对独立。夏季青藏高原季风强度和中心经度位置对中国西南地区气候有显著影响。当青藏高原季风偏强时,西南地区水汽异常辐合,以阴天为主,日照偏短,蒸发减弱,气温日较差明显减小,降水偏多;上升运动在川渝地区发展深厚,云贵地区仅限于600 hPa以下,川渝地区气象要素变化更显著。当青藏高原季风位置偏东时,西南全区受异常下沉运动控制,气温偏高,四川中、西部和贵州、广西等地出现较强的水汽异常辐散,气温显著偏高,相对湿度偏低,降水偏少。进入21世纪以来,青藏高原季风强度和中心经度的反位相叠加,加剧了西南地区的干旱化。新的青藏高原季风指数不仅能反映青藏高原地区的季风环流特征,而且对中国西南气候变化具有较好的指示意义,可为中国汛期气候预测提供理论依据和技术支持。 相似文献
19.
植被变化对辽西夏季气候影响的数值试验 总被引:6,自引:0,他引:6
利用2001年6、7、8月份的资料及中尺度模式MM5V3.5对当年夏季辽西生态脆弱区进行了气候模拟性能试验,模拟出植被退化和恢复后辽西地区的温度变化。试验结果表明:在辽西部分地区植被退化后,当地夏季平均温度明显升高;在部分地区植被恢复后,当地夏季平均温度降低;在下垫面状况改变的周边地区,平均温度有一定程度的变化。同时,植被状况的改变对高空气压场和温度场也产生一定影响。 相似文献
20.
东亚夏季风系统与青藏高原冬季植被的关系 总被引:1,自引:3,他引:1
用1982年1月—2001年12月NDVI资料、台站日降水资料和NCEPⅠ/NCAR再分析资料,首先利用SVD方法分析了青藏高原冬季NDVI与我国降水的关系,指出青藏高原冬季NDVI与我国夏季降水相关系数从南到北呈"+-+-"相间分布,高原冬季NDVI增大(减小),随后夏季降水在华南和华北地区增加(减少),而长江流域和东北地区降水减少(增加)。然后通过合成法,分析了高原冬季NDVI大、小值年东亚夏季风系统的变化,得到在青藏高原冬季NDVI大值年时,夏季马斯克林高压偏弱,而澳大利亚高压偏强。赤道辐合带强度偏强,有利于越赤道气流的加强,使南海夏季风爆发偏早。同时南亚高压偏弱位置偏西,副热带高压位置偏东偏北。副热带西风急流的位置也偏西偏北。 相似文献