首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic data collected in conjunction with a Sea Beam bathymetric survey of the Mid-Atlantic Ridge south of the Kane Fracture Zone are used to constrain the spreading history of this area over the past 3 Ma. Two-dimensional forward modeling and inversion techniques are carried out, as well as a full three-dimensional inversion of the anomaly field along a 90-km-long section of the rift valley. Our results indicate that this portion of the Mid-Atlantic Ridge, known as the MARK area, consists of two distinct spreading cells separated by a small, zero-offset transform or discordant zone near 23°10′ N, The youngest crust in the median valley is characterized by a series of distinct magnetization highs which coalesce to form two NNE-trending bands of high magnetization, one on the northern ridge segment which coincides with a large constructional volcanic ridge, and one along the southern ridge segment that is associated with a string of small axial volcanos. These two magnetization highs overlap between 23° N and 23°10° N forming a non-transform offset that may be a slow spreading ridge analogue of the small ridge axis discontinuities found on the East Pacific Rise. The crustal magnetizations in this overlap zone are generally low, although an anomalous, ESE-trending magnetization high of unknown origin is also present in this area. The present-day segmentation of spreading in the MARK area was inherited from an earlier ridge-transform-ridge geometry through a series of small (∼ 10 km) eastward ridge jumps. These small ridge jumps were caused by a relocation of the neovolcanic zone within the median valley and have resulted in an overall pattern of asymmetric spreading with faster rates to the west (14 mm yr−1) than to the east (11 mm yr−1). Although the detailed magnetic survey described in this paper extends out to only 3 Ma old crust, a regional compilation of magnetic data from this area by Schoutenet al. (1985) indicates that the relative positions and dimensions of the spreading cells, and the pattern of asymmetric spreading seen in the MARK area during the past 3 Ma, have characterized this part of the Mid-Atlantic Ridge for at least the past 36 Ma.  相似文献   

2.
The Tamayo transform fault is located at the north end of the East Pacific Rise where it enters the Gulf of California. This paper presents bathymetric, seismic reflection, magnetic, and gravity data from a detailed survey of the transform fault. The dominant feature of the offset region is a bathymetric ridge trending 120°, parallel to the predicted transform plate boundary. This transform ridge is associated with a large (600 ) positive magnetic anomaly, and a very small positive free-air gravity anomaly. Magnetic and gravity models indicate either a basalt or serpentinite composition for the ridge, but cannot distinguish between these possibilities. At its eastern end, the modern zone of strike-slip motion is in a narrow valley south of the transform ridge. The transform plate margin appears to pass through a saddle in the transform ridge and meet the western spreading center segment in the trough north of the transform ridge. On the basis of this survey and previous work, the history of the Tamayo from continental breakup to the present has been reconstructed. Initial rifting occurred along a trend of 130° at approximately 3.5 m.y.b.p. Once the transform fault was free of the constraints imposed by continent-continent and continent-oceanic lithospheric interaction, the trend of the transform fault rotated counter-clockwise. This rotation resulted in a leaky transform fault and intrusion of a large continuous transform ridge. Further adjustments in the spreading center/transform fault plate boundary configuration have given rise to an incipient zone of rifting cutting across the transform ridge and emplacement of diapiric structures.Contribution of the Scripps Institution of Oceanography, new series.  相似文献   

3.
 Swath bathymetric, gravity, and magnetic studies were carried out over a 55 km long segment of the Central Indian Ridge. The ridge is characterized by 12 to 15 km wide rift valley bounded by steep walls and prominent volcanic constructional ridges on either side of the central rift valley. A transform fault at 7°45′S displaces the ridge axis. A mantle Bouguer anomaly low of −14 mGals and shallowing of rift valley over the middle of the ridge segment indicate along axis crustal thickness variations. A poorly developed neovolcanic zone on the inner rift valley floor indicate dominance of tectonic extension. The off-axis volcanic ridgs suggest enhanced magmatic activity during the recent past. Received: 24 May 1996 / Rivision received: 13 January 1997  相似文献   

4.
Gravity data collected at two different levels, sea-surface and seafloor, are compared and interpreted to characterize the effect of hydrothermal circulation on the sediment density in Middle Valley, a deeply sedimented spreading center on the Juan de Fuca Ridge. The sea-surface gravity data constrain density variations at depth beneath the seafloor, whereas sea-bottom measurements are more sensitive to shallow sources. At least two different types of hydrothermal signatures in the sediments can be distinguished from the gravity data: short-wavelength anomalies associated with sulfide deposits and broader anomalies associated with areas of lithified sediments. In Middle Valley, three distinct gravity anomalies were identified. (a) An anomaly over a sulfide mound, south of Bent Hill, shows that the sulfide body extends to depths of 120 to 180 m and has been fed by several near-surface conduits. (b) An anomaly at the base of the fault bordering the valley to the east is interpreted as a regional anomaly combined with the local effect of lithified sediments and possibly sulfide deposits. (c) An anomaly paralleling an intra-valley fault, that limits the deepest part of the graben, is interpreted as indicating lithification of the upper sediment layer. A high heat flow anomaly is located 1 to 2 km east of this fault, suggesting that sediment lithification occurred in a wide band above the fault and eastward to the current high heat flow area, due to the progressive migration of the hot fluid circulation.  相似文献   

5.
To decipher the distribution of mass anomalies near the earth's surface and their relation to the major tectonic elements of a spreading plate boundary, we have analyzed shipboard gravity data in the vicinity of the southern Mid-Atlantic Ridge at 31–34.5° S. The area of study covers six ridge segments, two major transforms, the Cox and Meteor, and three small offsets or discordant zones. One of these small offsets is an elongate, deep basin at 33.5° S that strikes at about 45° to the adjoining ridge axes.By subtracting from the free-air anomaly the three-dimensional (3-D) effects of the seafloor topography and Moho relief, assuming constant densities of the crust and mantle and constant crustal thickness, we generate the mantle Bouguer anomaly. The mantle Bouguer anomaly is caused by variations in crustal thickness and the temperature and density structure of the mantle. By subtracting from the mantle Bouguer anomaly the effects of the density variations due to the 3-D thermal structure predicted by a simple model of passive flow in the mantle, we calculate the residual gravity anomalies. We interpret residual gravity anomalies in terms of anomalous crustal thickness variations and/or mantle thermal structures that are not considered in the forward model. As inferred from the residual map, the deep, major fracture zone valleys and the median, rift valleys are not isostatically compensated by thin crust. Thin crust may be associated with the broad, inactive segment of the Meteor fracture zone but is not clearly detected in the narrow, active transform zone. On the other hand, the presence of high residual anomalies along the relict trace of the oblique offset at 33.5° S suggests that thin crust may have been generated at an oblique spreading center which has experienced a restricted magma supply. The two smaller offsets at 31.3° S and 32.5° S also show residual anomalies suggesting thin crust but the anomalies are less pronounced than that at the 33.5° S oblique offset. There is a distinct, circular-shaped mantle Bouguer low centered on the shallowest portion of the ridge segment at about 33° S, which may represent upwelling in the form of a mantle plume beneath this ridge, or the progressive, along-axis crustal thinning caused by a centered, localized magma supply zone. Both mantle Bouguer and residual anomalies show a distinct, local low to the west of the ridge south of the 33.5° S oblique offset and relatively high values at and to the east of this ridge segment. We interpret this pattern as an indication that the upwelling center in the mantle for this ridge is off-axis to the west of the ridge.  相似文献   

6.
The southwestern part of the Scotia Sea, at the corner of the Shackleton Fracture Zone with the South Scotia Ridge has been investigated, combining marine magnetic profiles, multichannel seismic reflection data, and satellite-derived gravity anomaly data. From the integrated analysis of data, we identified the presence of the oldest part of the crust in this sector, which tentative age is older than anomaly C10 (28.7 Ma). The area is surrounded by structural features clearly imaged by seismic data, which correspond to gravity lows in the satellite-derived map, and presents a rhomboid-shaped geometry. Along its southern boundary, structural features related to convergence and possible incipient subduction beneath the continental South Scotia Ridge have been evidenced from the seismic profile. We interpret this area, now located at the edge of the south-western Scotia Sea, as a relict of ocean-like crust formed during an earlier, possibly diffuse and disorganized episode of spreading at the first onset of the Drake Passage opening. The successive episode of organized seafloor spreading responsible for the opening of the Drake Passage that definitively separated southern South America from the Antarctic Peninsula, instigated ridge-push forces that can account for the subduction-related structures found along the western part of the South Scotia Ridge. This seafloor accretion phase occurred from 27 to about 10 Ma, when spreading stopped in the western Scotia Sea Ridge, as resulted from the identification of the marine magnetic anomalies.  相似文献   

7.
A regional survey of the southern Reykjanes Ridge (52°N to 57°N) shows an irregular topography: a rift valley which is only partly recognizable as such, with varying azimuth and some fracturezone-like interruptions. The survey also comprised gravity and magnetic measurements.The course of the axis as well as the perpendicular fractures show up well in the free air anomalies as relative troughs within an area of positive free air gravity (Figure 5). There is no indication of density variations within the topographic masses.The anomaly pattern of total magnetic intensity indicates the exact position of the rift axis and a bifurcation at about 55°N. From the parallel magnetic anomalies south of 55°N (Figure 2) a spreading rate can be deduced of 1.10 cm/yr perpendicular to the rift axis (Figure 3). This spreading rate is at the same time the plate movement involved.A survey of the Iceland-Faeroe Ridge with a 3–5 miles grid shows large gravity and magnetic anomalies over a smooth topography, indicating large pockets of light material, probably of volcanic origin. These areas have normal magnetization. Positive gravity anomalies forming a ring structure along the 200 m isobath are characterized by reversed magnetization.The dissimilarity in morphology, seismicity and inner structure between the two ridges that intersect in Iceland suggest that there is no relation between the two phenomena.Paper presented at the meeting of the International Gravity Commission, Paris, on September 8, 1970.  相似文献   

8.
A detailed aeromagnetic survey carried out across the northeast Newfoundland margin clearly shows the presence of sea floor spreading anomalies 25 to 34. Correlation of these anomalies with synthetic profiles shows an increase in the rate of spreading soon after anomaly 27 time. Three fracture zones can be identified by dislocations in the magnetic anomalies; their positions are confirmed on the depth to basement map of this region. An eastward extension of the southernmost fracture zone at latitude 49 N matches well with the Faraday Fracture Zone across the Mid Atlantic Ridge, and with a basement ridge known as Pastouret Ridge mapped off Goban Spur. By combining the present survey data with the previously collected shipborne measurements, we have also traced the westward continuation of the Charlie-Gibbs Fracture Zone under the Newfoundland shelf.A large amplitude magnetic anomaly lies along the margin and separates two zones with different magnetic characteristics: long wavelength small amplitude anomalies on the landward side, and quasi lineated anomalies on the seaward side. Seismic data compilations show that this large anomaly coincides with the ocean-continent boundary at most places north of Flemish Cap. Modelling of the magnetic anomalies indicate that the large amplitude anomaly is caused by the juxtaposition of highly magnetized oceanic crust against weakly magnetized continental crust; this situation is similar to that observed across the Goban Spur margin, which is a conjugate of the Flemish Cap margin. The presence of highly magnetized oceanic crust landward of anomaly 34 and within the Cretaceous Magnetic Quiet Zone is attested to by the presence of similar large amplitude anomalies south of the Flemish Cap and Goban Spur regions, but these do not mark the ocean-continent transition.  相似文献   

9.
In 1994, a joint Japanese-American dive program utilizing the worlds deepest diving active research submersible (SHINKAI 6500) was carried out at the western ridge-transform intersection (RTI) of the Mid-Atlantic Ridge and Kane transform in the central North Atlantic Ocean. A total of 15 dives were completed along with surface-ship geophysical mapping of bathymetry, magnetic and gravity fields. Dives at the RTI traced the neovolcanic zone up to, and for a short distance (2.5 km) along, the Kane transform. At the RTI, the active trace of the transform is marked by a narrow valley (<50 m wide) that separates the recent lavas of the neovolcanic zone from the south wall of the transform. The south wall of the transform at the western RTI consists of a diabase section near its base between 5000 and 4600 m depth overlain by basaltic lavas, with no evidence of gabbro or deeper crustal rocks. The south wall is undergoing normal faulting with considerable strike-slip component. The lavas of the neovolcanic zone at the RTI are highly magnetized (17 A m–1) compared to the lavas of the south wall (4 A m–1), consistent with their age difference. The trace of the active transform changes eastwards into a prominent median ridge, which is composed of heavily sedimented and highly serpentinized peridotites. Submersible observations made from SHINKAI find that the western RTI of the Kane transform has a very different seafloor morphology and lithology compared to the eastern RTI. Large rounded massifs exposing lower crustal rocks are found on the inside corner of the eastern RTI whereas volcanic ridge and valley terrain with hooked ridges are found on the outside corner of the eastern RTI. The western RTI is much less asymmetric with both inside and outside corner crust showing a preponderance of volcanic terrain. The dominance of low-angle detachment faulting at the eastern RTI has resulted in a seafloor morphology and architecture that is diagnostic of the process whereas crust formed at the WMARK RTI must clearly be operating under a different set of conditions that suppresses the initiation of such faulting.  相似文献   

10.
The Carlsberg Ridge lies between the equator and the Owen fracture zone. It is the most prominent mid-ocean ridge segment of the western Indian Ocean, which contains a number of earthquake epicenters. Satellite altimetry can be used to infer subsurface geological structures analogous to gravity anomaly maps generated through ship-borne survey. In this study, free-air gravity and its 3D image have been generated over the Carlsberg Ridge using a very high resolution data base, as obtained from Geosat GM, ERS-1, Seasat and TOPEX/POSEIDON altimeter data. As observed in this study, the Carlsberg Ridge shows a slow spreading characteristic with a deep and wide graben (average width ∼15 km). The transform fault spacing confirms variable slow to intermediate characteristics with first and second order discontinuities. The isostatically compensated region of the Carlsberg Ridge could be demarcated with near zero contour values in the free-air gravity anomaly images over and along the Carlsberg Ridge axes and over most of the fracture zone patterns. Few profiles have been generated across the Carlsberg Ridge and the characteristics of slow/intermediate spreading ridge of various orders of discontinuity could be identified. It has also been observed in zero contour image as well as in the characteristics of valley patterns along the ridge from NW to SE that different spreading rates, from slow to intermediate, are occurring in different parts of the Carlsberg ridge. It maintains the morphology of a slow spreading ridge in the NW, where the wide and deep axial valley (∼1.5–3 km) also implies the pattern of a slow spreading ridge. However, a change in the morphology/depth of the axial valley from NW to SE indicates the nature of the Carlsberg Ridge as a slow to intermediate spreading ridge. For the prevailing security restrictions, lat./lon. coordinates have been omitted in few images.  相似文献   

11.
High-resolution Sea Beam bathymetry and Sea MARC I side scan sonar data have been obtained in the MARK area, a 100-km-long portion of the Mid-Atlantic Ridge rift valley south of the Kane Fracture Zone. These data reveal a surprisingly complex rift valley structure that is composed of two distinct spreading cells which overlap to create a small, zero-offset transform or discordant zone. The northern spreading cell consists of a magmatically robust, active ridge segment 40–50 km in length that extends from the eastern Kane ridge-transform intersection south to about 23°12′ N. The rift valley in this area is dominated by a large constructional volcanic ridge that creates 200–500 m of relief and is associated with high-temperature hydrothermal activity. The southern spreading cell is characterized by a NNE-trending band of small (50–200 m high), conical volcanos that are built upon relatively old, fissured and sediment-covered lavas, and which in some cases are themselves fissured and faulted. This cell appears to be in a predominantly extensional phase with only small, isolated eruptions. These two spreading cells overlap in an anomalous zone between 23°05′ N and 23°17′ N that lacks a well-developed rift valley or neovolcanic zone, and may represent a slow-spreading ridge analogue to the overlapping spreading centers found at the East Pacific Rise. Despite the complexity of the MARK area, volcanic and tectonic activity appears to be confined to the 10–17 km wide rift valley floor. Block faulting along near-vertical, small-offset normal faults, accompanied by minor amounts of back-tilting (generally less than 5°), begins within a few km of the ridge axis and is largely completed by the time the crust is transported up into the rift valley walls. Features that appear to be constructional volcanic ridges formed in the median valley are preserved largely intact in the rift mountains. Mass-wasting and gullying of scarp faces, and sedimentation which buries low-relief seafloor features, are the major geological processes occurring outside of the rift valley. The morphological and structural heterogeneity within the MARK rift valley and in the flanking rift mountains documented in this study are largely the product of two spreading cells that evolve independently to the interplay between extensional tectonism and episodic variations in magma production rates.  相似文献   

12.
The southern Mid-Atlantic Ridge (MAR) is spreading at rates (34–38 mm yr−1) that fall within a transitional range between those which characterize slow and intermediate spreading center morphology. To further our understanding of crustal accretion at these transitional spreading rates, we have carried out analysis of magnetic anomaly data from two detailed SeaBeam surveys of the MAR between 25°–27°30′S and 31°–34°30′S. Within these areas, the MAR is subdivided into 9 ridge segments bounded by large- and short-offset discontinuities of the ridge axis. From two-dimensional Fourier inversions of the magnetic anomaly data we establish the history of spreading within each ridge segment for the past 5 my and the evolution of the bounding ridge-axis discontinuities. We see evidence for the initiation and diminishment of small-offset discontinuities, and for the transition of rigid large-offset transform faults to less stable short-offset features. Individual ridge segments display independent spreading histories in terms of both the sense and amount of asymmetric spreading within each which have given rise to changes through time in the lengths of bounding ridge-axis discontinuities. Over the past 3–5 my, the short-offset discontinuities within the area have lengthened/shortened by approximately the same amount (∼ 10 km). During this same time period, larger-offset transform faults have remained comparatively constant in length. A shift in plate motion at anomaly 3 time may have given rise to change in the length of short-offset second-order discontinuities. However, the pattern of lengthening/shortening short-offset discontinuities we see is not simply related to the geometry of the plate boundary in these regions which precludes a simply relationship between plate motion changes and response at the plate boundary. We document a case of rapid (minimum 60 mm yr−1) small-scale rift propagation, occurring between 2.5 and 1.8 my, associated with transition of the Moore transform fault to an oblique-trending ridge-axis discontinuity. Propagation across the Moore discontinuity and similar propagation within the 31°–34°30’S area may be associated with the reduced age contrast in lithosphere across second-order discontinuities. Total opening rates within our northern survey area decreased from anomaly 4′ to 2 time and rates within both areas have increased since the Jaramillo. Total opening rates measured for anomaly intervals differ along the plate boundary significantly, more than expected with changing distance to the pole of rotation. These differences imply a degree of short-term non-rigid plate behaviour which may be associated with ridge segments acting as independent spreading cells. Magnetic polarity transition widths from our inversion studies may be used to infer a zone of crustal accretion which is 3–6 km wide, within the inner floor of the rift valley. A systematic increase of transition width with age would be expected if deeper crustal sources dominate the magnetic signal in older crust but this is not observed. We present results from three-dimensional analysis of magnetic anomaly data which show magnetization highs located at the intersection of the MAR with both large- and short-offset discontinuities. Within the central anomaly the highs exceed 15 A m−1 compared with a background of approximately 8–10 A m−1 and they persist for at least 2.5 my. The highs may be caused by eruption of fractionated strongly magnetized basalts at ridge-axis discontinuities with both large and small offsets.  相似文献   

13.
Large-scale detachment faults on mid-ocean ridges (MORs) provide a window into the deeper earth. They have megamullion on their corrugated surfaces, with exposed lower crustal and upper mantle rocks, rela- tively high residual Bouguer gravity anomaly and P-wave velocity, and are commonly associated with ocean- ic core complex. According to 30 detachment faults identified on MORs, we found that their distances to the axis mostly range from 5 to 50 km, half-spreading rates range from 6.8 to 17 mm/a, and activity time ranges from recent to 3 Ma. Most of the detachment faults are developed on the slow spreading Mid-Atlantic Ridge (MAR) and ultra-slow spreading Southwest Indian Ridge (SWIRl, with the dominant half-spreading rates of 7-13 mm/a, especially 10-13 mm/a. Furthermore, they mostly occur at the inside corner of one segment end and result in an asymmetric seafloor spreading. The detachment faults on MORs are mainly controlled by the tectonism and influenced by the magmatism. Long-lived detachment faults tend to be formed where the ridge magma supply is at a moderate level, although the tectonism is a first-order controlling factor. At the slow spreading ridges, detachment faults tend to occur where local magma supply is relatively low, whilst at the ultra-slow spreading ridges, they normally occur where local magma supply is relatively high. These faults are accompanied by hydrothermal activities, with their relationships being useful in the study of hydrothermal polymetallic sulfides and their origin.  相似文献   

14.
王立明  胡毅  张涛  王瑜  许江 《海洋学报》2014,36(10):56-60
北大西洋Mohns洋中脊是很重要的扩张带。中国第五次北极科学考察的重点之一就是获取Mohns洋中脊的磁力数据。通过获得的磁力和以往的重力与地震资料,研究洋中脊的扩张、地壳构造特征及厚度。这些研究有助于更好地理解地球上重要的地质过程、海底扩张和壳幔相互作用。  相似文献   

15.
From July to November 1988, a major electromagnetic (EM) experiment, known as EMRIDGE, took place over the southern end of the Juan de Fuca Ridge in the northeast Pacific. It was designed to complement the previous EMSLAB experiment which covered the entire Juan de Fuca Plate, from the spreading ridge to subduction zone. The principal objective of EMRIDGE was to use natural sources of EM induction to investigate the processes of ridge accretion. Magnetotelluric (MT) sounding and Geomagnetic Depth Sounding (GDS) are well suited to the study of the migration and accumulation of melt, hydrothermal circulation, and the thermal evolution of dry lithosphere. Eleven magnetometers and two electrometers were deployed on the seafloor for a period of three months. Simultaneous land-based data were made available from the Victoria Magnetic Observatory, B.C., Canada and from a magnetometer sited in Oregon, U.S.A.Changes in seafloor bathymetry have a major influence on seafloor EM observations as shown by the orientation of the real GDS induction arrows away from the ridge axis and towards the deep ocean. Three-dimensional (3D) modelling, using a thin-sheet algorithm, shows that the observed EM signature of the Juan de Fuca Ridge and Blanco Fracture Zone is primarily due to nonuniform EM induction within the ocean, associated with changes in ocean depth. Furthermore, if the influence of the bathymetry is removed from the observations, then no significant conductivity anomaly is required at the ridge axis. The lack of a major anomaly is significant in the light of evidence for almost continuous hydrothermal venting along the neo-volcanic zone of the southern Juan de Fuca Ridge: such magmatic activity may be expected to have a distinct electrical conductivity signature, from high temperatures, hydrothermal fluids and possible melt accumulation in the crust.Estimates of seafloor electrical conductivity are made by the MT method, using electric field records at a site 35 km east of the ridge axis, on lithosphere of age 1.2 Ma, and magnetic field records at other seafloor sites. On rotating the MT impedance tensor to the principal axis orientation, significant anisotropy between the major (TE) and minor (TM) apparent resistivities is evident. Phase angles also differ between the principal axis polarisations, and TM phase are greater than 90° at short periods. Thin-sheet modelling suggests that bathymetric changes accounts for some of the observed 3D induction, but two-dimensional (2D) electrical conductivity structure in the crust and upper mantle, aligned with the ridge axis, may also be present. A one-dimensional (1D) inversion of the MT data suggests that the top 50 km of Earth is electrically resistive, and that there is a rise in conductivity at approximately 300 km. A high conductivity layer at 100 km depth is also a feature of the 1D inversion, but its presence is less well constrained.  相似文献   

16.
The central part of the northern Labrador Sea is a magnetic quiet zone, and is flanked by regions exhibiting well developed linear magnetic anomalies older than anomaly 24. The quiet zone dies out progressively to the south, where it becomes possible to correlate anomalies between adjacent profiles. A 45 degree change in spreading direction at anomaly 25 time was accompanied by a major jump in ridge position and orientation. As a consequence of this reorganisation, spreading in the northern Labrador Sea next occurred within a rift that was oriented at 45 degrees to the spreading direction, while to the south spreading occurred within in a rift that was orientated at 90 degrees to the spreading direction. Obliquity of spreading changed, between these limits, progressively along the ridge. The quiet zone may be present to the north because the oblique northern geometry resulted in a fragmented ridge composed of many small-offset transform faults joining many short spreading ridge segments. Each magnetic source block produced by magnetisation of sea floor at these small ridge segments will be surrounded by similar small blocks that have opposite polarity, so that none can be resolved at the sea surface. Supporting evidence comes from multi-channel seismic profiles across the Labrador Sea, which show that the basement is more textured within the quiet zone than outside, suggesting the presence of numerous small fracture zones in the quiet zone.A magnetic quiet zone is present in the northern Greenland Sea between margins that are oblique to the spreading direction. In contrast, there are clear lineated magnetic patterns in adjacent areas to north and south where the margins are orthogonal to the spreading direction. This quiet zone may also be due to the geometry of spreading.  相似文献   

17.
Bathymetric, magnetic, and gravity data obtained over a 2,464 m high seamount located in the Arabian Sea indicate that the seamount (inferred mean density=2.65 gm/cc) extends for 1 km beneath the seafloor and is locally isostatically compensated. With a reversely magnetized upper part and normally magnetized base, the seamount was probably formed by at least two volcanic episodes. The base was formed during the Late Paleocene (ca. 58 Ma) while the Indian Plate was moving over the Reunion hotspot. A renewed period of volcanism, contemporaneous with the major changes in direction of Indian Plate motion during the early Oligocene (ca. 36 Ma) probably formed the cap.  相似文献   

18.
At 11°N latitude, the Mid-Atlantic ridge is offset 300 km by the Vema fracture zone. Between the ridge offset, the fracture consists of an elongate, parallelogram-shaped trough bordered on the north and south by narrow, high walls. The W-E trending valley floor is segmented by basement ridges and troughs which trend W10°N and are deeply buried by sediment. Uniform high heat flow characterizes the valley area. Seismically inactive valleys south of the Vema fracture, also trending W10°N, are interpreted as relict fracture zones. We explain the high heat flow and the shape of the Vema fracture as the results of secondary sea-floor spreading produced by a reorientation of the direction of sea-floor spreading from W10°N to west-east. This reorientation probably began approximately 10 million years ago. Rapid filling of the fracture valley by turbidites from the Demerara Abyssal plain took place during the last million years.The large amount of differential uplift in the Vema fracture is not explained by the reorientation model. Since the spreading rate across the valley is small compared to that across the ridge crest, we suggest that it takes place by intrusion of very thin dikes that cool rapidly and hence have high viscosity. Upwelling in the fracture valley will thus result in cosiderable loss of hydraulic head, according to models by Sleep and Biehler (1970), and recovery of the lost head could produce valley walls higher than the adjacent ridge crest. We further postulate that the spreading takes place along the edges of the fracture zone rather than in the center. This would account for the uniform distribution of heat flow along the fracture valley and for the lack of disturbance of the valley fill. As a consequence, a median ridge should form in the center, where head loss is compensated in the older crust; such a median ridge may be present. The width of the valley should be a function of the angle and time of reorientation, and of the spreading rate; the width so obtained for the Vema fracture is in accordance with the observed width. If this model is correct, the narrowness of the valley walls implies a thin lithosphere of very limited horizontal strength.  相似文献   

19.
On the Mid-Atlantic Ridge (MAR) from 34°–35.5° S, three ridge segments span the 108 km distance between the Meteor Fracture Zone (FZ) and the Montevideo FZ. Each of these segments is perpendicular to the adjoining transforms. Magnetic isochrons in the southern half of the region are oblique to the spreading direction and are offset from the morphological expression of the plate boundary, revealing a transition from oblique to orthogonal spreading within the last 750,000 years. Changes in orientation and cross-sectional form of the rift valley, as modified by tectonic processes, are preserved in the off-axis abyssal-hill fabric. We present a new statistical method for describing size and orientation of abyssal hills based on local slopes. For a given offset, the range of sorted slopes from the first to third quartile provides a robust estimate of topographic variability. The variability can be parametrized by azimuthal direction, plan-view aspect ratio, characteristic height and width. We resolve lineation azimuth within 6°, and characteristic height, width and aspect ratio within 20–30%, using 18 by 21 km sample boxes crossed by multiple Sea Beam swaths covering approximately 30% of the box. In the northern portion of the survey, the azimuth is mainly ridge parallel, while in the southern portion, the azimuth rotates 23° clockwise from ridge strike. Characteristic height and width are greater in the southern half than in the northern half, while aspect ratios are lower. The asymmetry of quartiles about the median slope provides evidence that inward-facing normal faults bounding the rift valley are a significant source of topography. Fabric disrupted by migration of small-offset discontinuities has higher than average characteristic height. Characteristic height and width correlate positively with residual gravity, an indicator of crustal thinning. A residual gravity low, possibly the current focus of upwelling, coincides with a newly formed spreading axis. These correlations suggest that evolution of ridge geometry can be controlled by crust and mantle thermal structure. Either variation in magma supply, resulting in changes in stress normal to the ridge axis, or a major realignment of the Montevideo Transform, temporarily resulting in increased shear stress across newly activated faults, may have been responsible for changes in orientation and morphology of the spreading center.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号