首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aoba is a basalt volcano situated in the northern part of a chain containing all the active volcanoes in the New Hebrides. The chain extends the length of the New Hebrides. Growing from a depth of 2,400 meters on the sea floor, the volcano probably emerged above sea level in the late Pliocene or early Pleistocene. The age of the oldest exposed rocks is unknown. Relatively fluid lavas with autobrecciated surfaces probably issued from tissures, initiating a shield-building stage as the volcano emerged. Airfall pyroclastics increase towards the top of these lavas and are overlain by agglomerates marking a more explosive episode. Activity continued with the effusion of picrite basalt, accompanied by spasms of ash emission that formed crystal tuff. Subsequently a more explosive episode produced agglomerate and tuff with occasional tongues of lava. The two oval summit calderas are apparently related to deep-seated subsidence. Lack of pumice deposits, and the basic nature of the magma suggest that the foundering of the calderas was a quiet event, possibly due to massive outpourings of lava at a lower level, although a substantial volume also erupted from the summit volcanoes at this time. A broad pyroclastic cone, which was still growing 360 years ago, occupies the centre of the inner caldera. It is surmounted by a wide crater, or possibly small caldera, containing a lake in which palagonite tuff cones have formed. The western end of the inner caldera is occupied by an explosion crater, and the eastern end by a semicircular lake. A thermal area containing a solfatara on the southeast shore of the eastern lake, and staining in the crater lake suggestive of fumarole activity, are the only evidence of vulcanicity at the present time. It is difficult to correlate events at the centre of the volcano with those at the lateral fissures. Later episodes at the centre are probably broadly contemporaneous with activity along the fissures, the inner ends of which are mantled by younger deposits of the central volcano. Accumulation of material about this axial fiissure system, marked by no less than 64 cruptive foci, mainly spatter cones, and phreatic explosion craters where they intersect the coast, has extended the island to the northeast and southwest, producing the present oval shape. Numerous flows spilled from these fissures, the last reaching the sea at N’dui N’dui only 300 years ago according to local legend. Abundant ash was emitted from both the summit calderas and flank fissures at a late stage, forming a tuff mantle with layers of accretionary lapilli. The last volcanic event was the formation of a lahar which destoyed a village on the northeast slope of the volcano about 100 years ago. No consistent variation with time is evident in the composition of the magma, although plagiophyric and aphyric lava erupted during the later stages. All the rocks are basaltic, and differ only in the presence or absence of phenocryst-forming minerals, and the proportions in which they occur. Picrite basalt and ankaramite erupted from the central volcano and flank fissures, respectively.  相似文献   

2.
Roccamonfina, part of the Roman Potassic Volcanic Province, is an example of a composite volcano with a complex history of caldera development. The main caldera truncates a cone constructed predominantly of this caldera may have been associated with one of the ignimbritic eruptions of the Brown Leucitic Tuff (BLT) around 385 000 yr BP. The Campagnola Tuff, the youngest ignimbrite of the BLT, however, drapes the caldera margin and must postdate at least the initial stages of collapse. During the subsequent history of the caldera there were several major explosive eruptions. The largest of these was that of the Galluccio Tuff at about 300 000 yr BP. It is likely that there was further collapse within the main caldera associated with these eruptions. It is of note that despite these subsequent major explosive eruptions later collapse occurred within the confines of the main caldera. Between eruptions caldera lakes developed producing numerous lacustrine beds within the caldera fill. Extensive phases of phreatomagmatic activity generated thick sequences of pyroclastic surge and fall deposits. Activity within the main caldera ended with the growth of a large complex of basaltic trachyandestite lava domes around 150 000 yr BP. Early in the history of Roccamonfina sector collapse on the northern flank of the volcano formed the northern caldera. One of the youngest major events on Roccamonfina occurred at the head of this northern caldera with explosive activity producing the Conca Ignimbrite and associated caldera. There is no evidence that there was any linkage in the plumbing systems that fed eruptions in the main and northern calderas.  相似文献   

3.
Soputan is a high-alumina basalt stratovolcano located in the active North Sulawesi-Sangihe Islands magmatic arc. Although immediately adjacent to the still geothermally active Quaternary Tondono Caldera, Soputan’s magmas are geochemically distinct from those of the caldera and from other magmas in the arc. Unusual for a basalt volcano, Soputan produces summit lava domes and explosive eruptions with high-altitude ash plumes and pyroclastic flows—eight explosive eruptions during the period 2003–2011. Our field observations, remote sensing, gas emission, seismic, and petrologic analyses indicate that Soputan is an open-vent-type volcano that taps basalt magma derived from the arc-mantle wedge, accumulated and fractionated in a deep-crustal reservoir and transported slowly or staged at shallow levels prior to eruption. A combination of high phenocryst content, extensive microlite crystallization and separation of a gas phase at shallow levels results in a highly viscous basalt magma and explosive eruptive style. The open-vent structure and frequent eruptions indicate that Soputan will likely erupt again in the next decade, perhaps repeatedly. Explosive eruptions in the Volcano Explosivity Index (VEI) 2–3 range and lava dome growth are most probable, with a small chance of larger VEI 4 eruptions. A rapid ramp up in seismicity preceding the recent eruptions suggests that future eruptions may have no more than a few days of seismic warning. Risk to population in the region is currently greatest for villages located on the southern and western flanks of the volcano where flow deposits are directed by topography. In addition, Soputan’s explosive eruptions produce high-altitude ash clouds that pose a risk to air traffic in the region.  相似文献   

4.
Abstract Tyatya Volcano, situated in Kunashir Island at the southwestern end of Kuril Islands, is a large composite stratovolcano and one of the most active volcanoes in the Kuril arc. The volcanic edifice can be divided into the old and the young ones, which are composed of rocks of distinct magma types, low‐ and medium‐K series, respectively. The young volcano has a summit caldera with a central cone. Recent eruptions have occurred at the central cone and at the flank vents of the young volcano. We found several distal ash layers at the volcano and identified their ages and sources, that is, tephras of ad 1856, ad 1739, ad 1694 and ca 1 Ka derived from three volcanoes of Hokkaido, Japan, and caad 969 from Baitoushan Volcano of China/North Korea. These could provide good time markers to reveal the eruptive history of the central cone, which had continued intermittently with Strombolian eruptions and lava flow effusions since before 1 Ka. Relatively explosive eruptions have occurred three times at the cone during the past 1000 years. We revealed that, topographically, the youngest lava flows from the cone are covered not by the tephra of ad 1739 but by that of ad 1856. This evidence, together with a report of dense smoke rising from the summit in ad 1812, suggests that the latest major eruption with lava effusion from the central cone occurred in this year. In 1973, after a long period of dormancy, short‐lived phreatomagmatic eruptions began to occur from fissure vents at the northern flank of the young volcano. This was followed by large eruptions of Strombolian to sub‐Plinian types occurring from several craters at the southern flank. The 1973 activity is evaluated as Volcanic Explosivity Index = 4 (approximately 0.2 km3), the largest eruption during the 20th century in the southwestern Kuril arc. The rocks of the central cone are strongly porphyritic basalt and basaltic andesite, whereas the 1973 scoria is aphyric basalt, suggesting that magma feeding systems are definitely different between the summit and flank eruptions.  相似文献   

5.
Mount Nemrut, an active stratovolcano in eastern Turkey, is a great danger for its vicinity. The volcano possesses a summit caldera which cuts the volcano into two stages, i.e. pre- and post-caldera. Wisps of smoke and hot springs are to be found within the caldera. Although the last recorded volcanic activity is known to have been in 1441, we consider here that the last eruption of Nemrut occurred more recently, probably just before 1597. The present active tectonic regime, historical eruptions, occurrence of mantle-derived magmatic gases and the fumarole and hot spring activities on the caldera floor make Nemrut Volcano a real danger for its vicinity. According to the volcanological past of Nemrut, the styles of expected eruptions are well-focused on two types: (1) occurrence of water within the caldera leads to phreatomagmatic (highly energetic) eruptions, subsequently followed by lava extrusions, and (2) effusions–extrusions (non-explosive or weakly energetic eruptions) on the flanks from fissures. To predict the impact area of future eruptions, a series of morphological analyses based on field observations, Digital Elevation Model and satellite images were realized. Twenty-two valleys (main transport pathways) were classified according to their importance, and the physical parameters related to the valleys were determined. The slope values in each point of the flanks and the Heim parameters H/L were calculated. In the light of morphological analysis the possible impact areas around the volcano and danger zones were proposed. The possible transport pathways of the products of expected volcanic events are unified in three main directions: Bitlis, Guroymak, Tatvan and Ahlat cities, the about 135 000 inhabitants of which could be threatened by future eruptions of this poorly known and unsurveyed volcano.  相似文献   

6.
The active Karthala volcano is found on Grande Comore, the most westerly of four volcanic islands comprising the Comores Archipelago, between northern Madagascar and Mozambique. The caldera, roughly elliptical in outline, is 4 km long and 3 km wide, with outer walls around 100 m high. It is dominated by a large central pit crater, Chahale, which is 1300 m long, 800 m wide, and 300 m deep. A smaller cylindrical pit crater 250 m in diameter and 30 m deep, Changomeni, is found one km north of Chahale. The vertical walls of both pit craters show excellent sections of the ponded flows which form the caldera floor, and the minor faults and intrusions which affected these flows. The youngest lava on the island was produced on July 12th, 1965, as single aa basalt flow emitted from a fissure halfway between the two pit craters. Small fumaroles are still active on this flow, as well as in the pit craters and at several small cinder cones in the caldera. Alignment of pyroclastic cones and fissure eruptions forms a radial pattern centering on Chahale pit crater, suggesting that these radial fissures are locally controlled. Location of the caldera at the intersection of two regional fissure systems implies that its location is controlled by regional stresses. The present size and form of the caldera is a result of the coalescence of at least four smaller calderas. Although the visible walls of these smaller calderas do not show any outward dip, the theoretical considerations ofRobson andBarr (1964), if applicable, require that at depth these are outward-dipping ring dyke type of fractures.  相似文献   

7.
Based upon a re-interpretation of previous data and a new field campaign, a structural evolution is proposed for the early history of Piton de la Fournaise volcano from 500,000 to 50,000 years. Conceptually, it is shown that the formation of a caldera in which lava flows are contained inside the caldera depression, gives time for erosion to excavate deep canyons on the external slopes of the volcano, for example, the Rivière des Remparts, the Rivière Langevin and the Rivière de l'Est canyons on Piton de la Fournaise volcano. These canyons are infilled when lavas, filling the caldera and overflowing its rim, are able again to flow on the external slopes of the volcano. In the past, this excavating/infilling process has occurred twice following the formation of the Rivière des Remparts and Morne Langevin calderas. The formation of the third caldera, the Plaine des Sables caldera, was followed by the excavation of the current canyons. In addition to this process, two large landslides have been documented in the field. The first, which happened about 300,000 years ago, is apparently the first episode of the break up of Piton de la Fournaise volcano, predating the formation of the four large calderas. The second landslide, which occurred 150,000 years ago and is considered to be less extensive, has carried away the entire southern flank of the Rivière des Remparts caldera.  相似文献   

8.
New multibeam mapping and whole-rock geochemistry establish the first order definition of the modern submarine Kermadec arc between 30° and 35° S. Twenty-two volcanoes with basal diameters > 5 km are newly discovered or fully-mapped for the first time; Giggenbach, Macauley, Havre, Haungaroa, Kuiwai, Ngatoroirangi, Sonne, Kibblewhite and Yokosuka. For each large volcano, edifice morphology and structure, surficial deposits, lava fields, distribution of sector collapses, and lava compositions are determined. Macauley and Havre are large silicic intra-oceanic caldera complexes. For both, concentric ridges on the outer flanks are interpreted as recording mega-bedforms associated with pyroclastic density flows and edifice foundering. Other stratovolcanoes reveal complex histories, with repeated cycles of tectonically controlled construction and sector collapse, extensive basaltic flow fields, and the development of summit craters and/or small nested calderas.Combined with existing data for the southernmost arc segment, we provide an overview of the spatial distribution and magmatic heterogeneity along ∼780 km of the Kermadec arc at 30°–36°30′ S. Coincident changes in arc elevation and lava composition define three volcano–tectonic segments. A central deeper segment at 32°20′–34°10′ S has basement elevations of > 3200 m water-depth, and relatively simple stratovolcanoes dominated by low-K series, basalt–basaltic andesite. In contrast, the adjoining arc segments have higher basement elevations (typically < 2500 m water-depth), multi-vent volcanic centres including caldera complexes, and erupt sub-equal proportions of dacite and basalt–basaltic andesite. The association of silicic magmas with higher basement elevations (and hence thicker crust), coupled with significant inter- and intra-volcano heterogeneity of the silicic lavas, but not the mafic lavas, is interpreted as evidence for dehydration melting of the sub-arc crust. Conversely, the crust beneath the deeper arc segments is thinner, initially cooler, and has not yet reached the thermal requirements for anatexis. Silicic calderas with diameters > 3 km coincide with the shallower arc segments. The dominant mode of large caldera formation is interpreted as mass-discharge pyroclastic eruption with syn-eruptive collapse. Hence, the shallower arc segments are characterized by both the generation of volatile-enriched magmas from crustal melting and a reduced hydrostatic load, allowing magma vesiculation and fragmentation to initiate and sustain pyroclastic eruptions. Proposed initiation parameters for submarine pyroclastic eruptions are water-depths < 1000 m, magmas with 5–6 wt.% water and > 70 wt.% SiO2, and a high discharge rate.  相似文献   

9.
The ring fractures that form most collapse calderas are steeply inward-dipping shear fractures, i.e., normal faults. At the surface of the volcano within which the caldera fault forms, the tensile and shear stresses that generate the normal-fault caldera must peak at a certain radial distance from the surface point above the center of the source magma chamber of the volcano. Numerical results indicate that normal-fault calderas may initiate as a result of doming of an area containing a shallow sill-like magma chamber, provided that the area of doming is much larger than the cross-sectional area of the chamber and that the internal excess pressure in the chamber is smaller than that responsible for doming. This model is supported by the observation that many caldera collapses are preceded by a long period of doming over an area much larger than that of the subsequently formed caldera. When the caldera fault does not slip, eruptions from calderas are normally small. Nearly all large explosive eruptions, however, are associated with slip on caldera faults. During dip slip on, and doming of, a normal-fault caldera, the vertical stress on part of the underlying chamber suddenly decreases. This may lead to explosive bubble growth in this part of the magma chamber, provided its magma is gas rich. This bubble growth can generate an excess fluid pressure that is sufficiently high to drive a large fraction of the magma out of the chamber during an explosive eruption. Received: 2 January 1997 / Accepted: 22 April 1998  相似文献   

10.
Along the south coast of Arabia, between Aden and the southern entrance to the Red Sea, there are six central vent volcanoes of probable Pliocene age. All are characterised by the interstratification of basic and acidic extrusives, the formation of large central calderas at a late stage in the volcanic cycle and the subsequent infilling of these calderas with horizontal acidic ignimbrites and basic lavas. Lying 60 miles to the west of Aden and of particular interest is Jebel Khariz, the largest and best preserved of the six volcanic centres, covering a roughly circular area of about 100 square miles and rising to a height of 2,766 feet. The volcanic sequence of Jebel Khariz is broadly divisible into two suites: a) alkali-rich rhyolites and trachytes which occur as flows and pyroclastic horizons and form about 80 per cent of the volume of the cone, and b) effusives of basaltic composition that occur in the caldera, locally on the south-east and south-west flanks and in a small parasitic cone on the northern flank. The alkali-rich acidic suite includes lavas, ash-flow and ash-fall rocks as well as vent and flow breccias, Generally, all rocks of this suite have phenocrysts of anorthoclase, and may contain phenocrysts of fayalitic olivine, aegirine-augite, magnetite and/or quartz. The fine grained matrix is composed of the same minerals with skeletal riebeckite and, in some cases, cossyrite. The basaltic suite is characteristically porphyritic, the phenocrysts being of calcic plagioclase, clinopyroxene, olivine and magnetite in a fine-grained mesostasis of plagioclase, olivine, clinopyroxene and ore. The plagioclase, on initial investigation, appears to lie in the labradorite-bytownite range, the olivine is commonly replaced by iddingsite and the clinopyroxene is most commonly a pale mauve titanaugite. Near the centre of the volcanic pile, as exposed in the caldera wall, masses of rhyolitic composition can be seen to form over half of the volcanic sequence. These masses are markedly lenzoid in cross-section normal to the flow direction and display intricate flow folding; they are considered to have been extruded as viscous lava. Further from the volcanic centre, these acidic extrusives become less markedly lenzoid until in the distal areas of individual units, some 5 miles from the caldera, they have spread out to form sheet-like masses covering as much as 10 square miles to a uniform thickness rarely exceeding 25 feet. The presence of agglomeratic bases, hard compact central sections and less compact upper divisions, together with the ubiquitous presence of columnar jointing and occasional shard textures suggest that these distal parts of each extrusive unit have been formed by an ash-flow/ash-fall mechanism. It is postulated that the majority of the Jebel Khariz volcanic pile was formed by emission of acidic material, effusive in the central area, but deposited mainly by an ash-flow mechanism around the flanks of the cone. This could be due to either the synchronous eruption of viscous lava from the central vent with ash flow eruptions on the flanks; or, more probably, to the progression of an individual volcanic episode through an initial ash-flow phase followed by the effusion of viscous lava, all emanating from the central vent.  相似文献   

11.
Air photographs taken in 1946, 1960, and 1982, together with SPOT HVR-1 images obtained in April and October of 1988, are used to characterize recent activity in and around the caldera of Fernandina Volcano, West Galapagos Islands. The eruptive and collapse events during this time span appear to be distributed in a NW-SE band across the summit and caldera. On the flanks of the volcano, subtle topographic ridges indicate that this is a long-term preferred orientation of extra-caldera activity as well (although radial and arcuate fissures are found on all sectors). The caldera is formed from the coalescence of multiple collapse features that are also distributed along a NW-SE direction, and these give the caldera its elongate and scalloped outline. The NW and SE benches consist of lavas that ponded in once-separated depressions that have been incorporated into the caldera by more recent collapse. The volume of individual eruptions within the caldera over the observed 42 years appears to be small (4x106 m3) in comparison to the volumes of individual flows exposed in the caldera walls (120–150x106 m3). Field observations (in 1989) of lavas exposed in the caldera walls and their cross-cutting relationships show that there have been at least three generations of calderas, and that at times each was completely filled. An interplay between a varying supply rate to the volcano and a regional stress regime is suggested to be the cause of long-term spatial and volumetric variations in activity. When supply is high, the caldera is filled in relative to collapse and dikes tend to propagate in all directions through the edifice. At other times (such as the present) supply is relatively low; eruptions are small, the caldera is far from being filled in, and dike propagation is influenced by an extra-volcano stress regime.  相似文献   

12.
Caldera morphology on the six historically active shield volcanoes that comprise Isabela and Fernandina islands, the two westernmost islands in the Galapagos archipelago, is linked to the dynamics of magma supply to, and withdrawal from, the magma chamber beneath each volcano. Caldera size (e.g., volumes 2–9 times that of the caldera of Kilauea, Hawai'i), the absence of well-developed rift zones and the inability to sustain prolonged low-volumetric-flow-rate flank eruptions suggest that magma storage occurs predominantly within centrally located chambers (at the expense of storage within the flanks). The calderas play an important role in the formation of distinctive arcuate fissures in the central part of the volcano: repeated inward collapse of the caldera walls along with floor subsidence provide mechanisms for sustaining radially oriented least-compressive stresses that favor the formation of arcuate fissures within 1–2 km outboard of the caldera rim. Variations in caldera shape, depth-to-diameter ratio, intra-caldera bench location and the extent of talus slope development provide insight into the most recent events of caldera modification, which may be modulated by the episodic supply of magma to each volcano. A lack of correlation between the volume of the single historical collapse event and its associated volume of erupted lava precludes a model of caldera formation linked directly to magma withdrawal. Rather, caldera collapse is probably the result of accumulated loss from the central storage system without sufficient recharge and (as has been suggested for Kilauea) may be aided by the downward drag of dense cumulates and intrusives.  相似文献   

13.
The evolution of the Colima volcanic complex can be divided into successive periods characterized by different dynamic and magmatic processes: emission of andesitic to dacitic lava flows, acid-ash and pumice-flow deposits, fallback nuées ardentes leading to pyroclastic flows with heterogeneous magma, plinian air-fall deposits, scoriae cones of alkaline and calc-alkaline nature. Four caldera-forming events, resulting either from major ignimbrite outbursts or Mount St. Helens-type eruptions, separate the main stages of development of the complex from the building of an ancient shield volcano (25 × 30 km wide) up to two summit cones, Nevado and Fuego.The oldest caldera, C1 (7–8 km wide), related to the pouring out of dacitic ash flows, marks the transition between two periods of activity in the primitive edifice called Nevado I: the first one, which is at least 0.6 m.y. old, was mainly andesitic and effusive, whereas the second one was characterized by extrusion of domes and related pyroclastic products. A small summit caldera, C2 (3–3.5 km wide), ended the evolution of Nevado I.Two modern volcanoes then began to grow. The building of the Nevado II started about 200,000 y. ago. It settled into the C2 caldera and partially overflowed it. The other volcano, here called Paleofuego, was progressively built on the southern side of the former Nevado I. Some of its flows are 50,000 y. old, but the age of its first outbursts is not known. However, it is younger than Nevado II. These two modern volcanoes had similar evolutions. Each of them was affected by a huge Mount St. Helens-type (or Bezymianny-type) event, 10,000 y. ago for the Paleofuego, and hardly older for the Nevado II. The landslides were responsible for two horseshoe-shaped avalanche calderas, C3 (Nevado) and C4 (Paleofuego), each 4–5 km wide, opening towards the east and the south. In both cases, the activity following these events was highly explosive and produced thick air-fall deposits around the summit craters.The Nevado III, formed by thick andesitic flows, is located close to the southwestern rim of the C3 caldera. It was a small and short-lived cone. Volcan de Fuego, located at the center of the C4 caldera, is nearly 1500 m high. Its activity is characterized by an alternation of long stages of growth by flows and short destructive episodes related to violent outbursts producing pyroclastic flows with heterogeneous magma and plinian air falls.The evolution of the primitive volcano followed a similar pattern leading to formation of C1 and then C2. The analogy between the evolutions of the two modern volcanoes (Nevado II–III; Paleofuego-Fuego) is described. Their vicinity and their contemporaneous growth pose the problem of the existence of a single reservoir, or two independent magmatic chambers, after the evolution of a common structure represented by the primitive volcano.  相似文献   

14.
Three stages of collapse and doming of the inner subsided block are recognized in the Miocene Kakeya cauldron. The mechanism of the first collapse is not clear, but the second and third are volcanic in origin. The second collapse was triggered by eruptions of silicic andesite lava flows and pyroclastic ejecta. The boundary fault between the subsided block and its surroundings is nearly vertical. The subsided block formed a distinct basin structure, and its marginal part was intensely deformed by faulting. The third collapse took place cylindrically, accompanied by voluminous eruptions of dacitic pyroclastic materials. The collapsed block formed a basin structure with a gently dipping marginal part. The doming of the inner subsided block was due to increase of pressure in a magma chamber.The structure formed by the second collapse is not consistent with the concept of the subterranean structure of either the so-called «Krakatau»- (funnel-shaped) type or Valles-type calderas. The second collapse is transitional between «Krakatau»- and Valles-type calderas or a new type of volcanic depression. The features of the third collapse and the resurgent doming are similar to those of Valles-type calderas, except for the size of cauldrons and composition of magmas related to collapse. The similarities indicate that the Kakeya cauldron was formed in an extensional tectonic setting similar to that for Valles-type calderas.  相似文献   

15.
Four volcano-structural stages have accompanied the building of Piton des Neiges: 1) Emergent growth stage of the island. The major eruptive system is a rift zone trending N 120°, associated with dextral strike-slip faults trending N 30° and en-echelon extensional fissures trending N 70°. Breccias and lava tubes produced by aerial and phreatomagmatic activity are injected with outward-dipping dike-swarms along ring fractures suggesting a mechanism analogous to cauldron subsidence. 2) Shield building stages of growth are related to fissures along the main rift zone and three minor rifts trending N 160°, N 45° and N 10°. The summit of the basaltic shield volcano is stretched and collapsed in a graben-like caldera depression along normal and antithetic faults. 3) Differentiated lavas are erupted during two stages separated by the opening of a new caldera corresponding to an explosive activity, a silicic cone-sheet system and a collapse structure. 4) Younger volcanic activity restricted to the inside caldera, has presumably emptied the underlying magma reservoir, building a central volcano collapsed along ring internal dip fractures. The relationships between magnetic anomalies and transform faults in the Mascarene basin and observed fissure and faults on Piton des Neiges suggest that volcanism would be structurally controlled. Active volcanism occurring possibly as a result of tension at the intersection of an northeast-southwest fracture zone with the paleorift axis (dated by the magnetic anomaly 27). Models illustrating the gradual evolution of Piton des Neiges would explain successive caldera collapses controlled by the size, the shape and the depth of the magma reservoir.  相似文献   

16.
Nisyros is a totally volcanic island located at the eastern limit of the quaternary calc-alkaline island arc system of the South Aegean Sea. Its age is rather young since K/Ar dating has given an age of 0.2 m.y. B.P. for one of the oldest outcropping products of this volcano. The volcanological evolution of Nisyros has tentatively been reconstructed as follows:
  1. after a period (from 3.0? to 0.2 m.y. B.P.) of submarine activity, evidenced by the presence of pillow-lavas and hyaloclastites, the volcano grew above sea level;
  2. effusive and explosive subaerial activity from different vents built up a complex stratovolcano, probably around 0.2 m.y. B. P.;
  3. at the end of an intense explosive activity (between 0.2 m.y. B.P. and Present) the top of the volcano collapsed forming a caldera which is still perfectly preserved. A post-caldera activity with eruptions of huge and viscous domes and lava flows of uniform composition, both inside and outside the caldera, concluded this stage of the volcano evolution;
  4. in historical times, spectacular phreatic explosion craters formed on the caldera floor;
  5. presently, a large area of the caldera floor is affected by a considerable hydrothermal activity. The hypothesis is formed that Nisyros volcano is not yet extinct.
Four small volcanic islets — Yali, Stronjili, Pakia and Perigusa — located a few miles on the North and West of Nisyros, although volcanologically independent of one another, are composed of products which are attributable, from the petrologic point of view, to the Nisyros magma. The volcanic rocks of Nisyros and of its neighbouring minor islands as well as the volcanics of the coeval volcanoes of the South Aegean Sea arc (Aegina, Milos, Santorini, etc.) belong to a typical orogenic calc-alkaline series (from basic andesites through andesites-dacites-rhyodacites to strongly silicic rhyolites) with normal K2O contents. The potassium contents of these rocks are compatible with the depth of 150 km (as inferred from geophysical data) for the inclined seismic zone underneath the active volcanic arc. The existence of a top-caldera as well as the occurrence of a huge amount of xenoliths (hornblende-rich cumulates and contact-metamorphic calcareous rock derivatives) suggest the presence of a magma chamber at a relatively shallow depth beneath the volcano. The rhyolitic obsidians of Yali can be considered as residual liquids from the Nisyros rhyodacites, thus representing the end-members of a fractionation process. Volcanological and petrological arguments are in favour of fractional crystallization as the most probable genetic process for the calc-alkaline differentiation series of Nisyros and of its neighbouring minor islands. However, the lack of any rock with a high alumina basalt composition makes it difficult to define exactly the nature of the parent magma. According to recent geophysical data, continental collision is already in progress at the Hellenic trench. Therefore, Nisyros and the other active volcanoes of the South Aegean Sea arc are approaching the senile stage. What would follow could be a transition to shoshonitic magmatism as a consequence of the deepening of the lithospheric slab under the Aegean microplate. The limited extension and the relatively short-lived calc-alkaline activity of the South Aegean Sea arc could be related to the particular geodynamic pattern of the Mediterranean area which is characterized by a microplates mosaic between the two converging African and Eurasian major plates.  相似文献   

17.
Collapse mechanism of the Paleogene Sakurae cauldron, SW Japan   总被引:1,自引:0,他引:1  
The Paleogene Sakurae cauldron of SW Japan is characterized by a nested structure with a polygonal outline (21×13 km2) including a circular collapsed part (5 km in diameter). Total thickness of the caldera infill amounts to 2,000 m. The lower member of the infill consists mainly of felsic crystal tuff and lesser intercalated andesitic lava flows, whereas the upper member is composed of high-grade ignimbrite capped with a large rhyolitic lava dome. These members represent the first and second stage eruptions, respectively. Faults bounding the cauldron rim comprise intersecting radial and concentric faults, producing the polygonal outline of this cauldron. The primary collapse of this cauldron thus occurred as a polygonal caldera basin where products of the first stage eruption accumulated. In contrast, the inner collapse part is defined by a ring fracture system. This sector subsided concurrently with accumulation of the high-grade ignimbrite of the second stage eruption. This inner circular collapse thus represents syn-eruptional subsidence concurrent with the climactic eruption. Magma drainage during the first stage probably induced outward-dipping ring fractures in the chamber roof. Opening of the ring fractures following subsidence of the central bell-jar block caused rapid evacuation of magma as voluminous pumice flows, even though magma pressure may have decreased to some degree.  相似文献   

18.
Barren Island (India) is a relatively little studied, little known active volcano in the Andaman Sea, and the northernmost active volcano of the great Indonesian arc. The volcano is built of prehistoric (possibly late Pleistocene) lava flows (dominantly basalt and basaltic andesite, with minor andesite) intercalated with volcaniclastic deposits (tuff breccias, and ash beds deposited by pyroclastic falls and surges), which are exposed along a roughly circular caldera wall. There are indications of a complete phreatomagmatic tephra ring around the exposed base of the volcano. A polygenetic cinder cone has existed at the centre of the caldera and produced basalt-basaltic andesite aa and blocky aa lava flows, as well as tephra, during historic eruptions (1787–1832) and three recent eruptions (1991, 1994–95, 2005–06). The recent aa flows include a toothpaste aa flow, with tilted and overturned crustal slabs carried atop an aa core, as well as locally developed tumuli-like elliptical uplifts having corrugated crusts. Based on various evidence we infer that it belongs to either the 1991 or the 1994–95 eruptions. The volcano has recently (2008) begun yet another eruption, so far only of tephra. We make significantly different interpretations of several features of the volcano than previous workers. This study of the volcanology and eruptive styles of the Barren Island volcano lays the ground for detailed geochemical-isotopic and petrogenetic work, and provides clues to what the volcano can be expected to do in the future.  相似文献   

19.
Analysis of the historical records of Etnas eruptive activity for the past three centuries shows that, after the large 1669 eruption, a period of about 60 years of low-level activity followed. Starting from 1727, explosive activity (strombolian, lava fountaining and subplinian) at the summit crater increased exponentially to the present day. Since 1763, the frequency of flank eruptions also increased and this value remained high until 1960; afterward it further increased sharply. In fact, the number of summit and flank eruptions between 1961 and 2003 was four times greater than that of the pre-1960 period. This long-term trend of escalating activity rules out a pattern of cyclic behaviour of the volcano. We propose instead that the 1670–2003 period most likely characterises a single eruptive cycle which began after the large 1669 eruption and which is still continuing.On the basis of the eruptive style, two distinct types of flank eruptions are recognised: Class A and Class B. Class A eruptions are mostly effusive with associated weak strombolian activity; Class B eruptions are characterised by effusive activity accompanied by intense, long-lasting, strombolian and lava fountaining activity that produces copious tephra fallouts, as during the 2001 and 2002–2003 eruptions. Over the past three centuries, seven Class B eruptions have taken place with vents located mainly on the south-eastern flank, indicating that this sector of the volcano is a preferential zone for the intrusion of volatile-rich magma rising from the deeper region of the Etna plumbing system.Electronic Supplementary Material Supplementary material is available for this article at Editorial responsibility: M. Carroll  相似文献   

20.
 The Woods Mountain volcanic center is a well-exposed, mildly alkaline volcanic center that formed during the Miocene in southeastern California. Detailed geologic mapping and geochemical studies have distinguished three major volcanic phases: precaldera, caldera forming, and postcaldera. Geologic mapping indicates that caldera formation occurred incrementally during eruptions of three large ignimbrites and continued into a period of voluminous intracaldera lava-flow eruptions. Rhyolitic ignimbrites and lava flows within the caldera are associated with large amplitude, circular gravity, and magnetic minima that are among the most prominent gravity and magnetic anomalies in southeastern California. Analysis of a Bouguer gravity anomaly map, reduced-to-the-pole magnetic intensity map, and three-dimensional gravity and magnetic models indicates that there is a single, funnel- to bowl-shaped caldera approximately 4 km thick and approximately 10 km wide at the surface. This model is consistent with other siliceous, pyroclastic-filled calderas on continental crust, except that most siliceous volcanic centers associated with more than one eruption are characterized by more than one caldera. Received: 20 December 1997 / Accepted: 15 October 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号