首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 252 毫秒
1.
A 30 m-deep drill core from a glacially overdeepened trough in Northern Switzerland recovered a ~180 ka old sedimentary succession that provides new insights into the timing and nature of erosion–sedimentation processes in the Swiss lowlands. The luminescence-dated stratigraphic succession starts at the bottom of the core with laminated carbonate-rich lake sediments reflecting deposition in a proglacial lake between ~180 and 130 ka ago (Marine Isotope Stage MIS 6). Anomalies in geotechnical properties and the occurrence of deformation structures suggest temporary ice contact around 140 ka. Up-core, organic content increases in the lake deposits indicating a warming of climate. These sediments are overlain by a peat deposit characterised by pollen assemblages typical of the late Eemian (MIS 5e). An abrupt transition following this interglacial encompasses a likely hiatus and probably marks a sudden lowering of the water level. The peat unit is overlain by deposits of a cold unproductive lake dated to late MIS 5 and MIS 4, which do not show any direct influence from glaciers. An upper peat unit, the so-called «Mammoth peat», previously encountered in construction pits, interrupts this cold lacustrine phase and marks more temperate climatic conditions between 60 and 45 ka (MIS 3). In the upper part of the core, a succession of fluvial and alluvial deposits documents the Late Glacial and Holocene sedimentation in the basin. The sedimentary succession at Wehntal confirms that the glaciation during MIS 6 did not apparently cause the overdeepening of the valley, as the lacustrine basin fill covering most of MIS 6 is still preserved. Consequently, erosion of the basin is most likely linked to an older glaciation. This study shows that new dating techniques combined with palaeoenvironmental interpretations of sediments from such overdeepened troughs provide valuable insights into the past glacial history.  相似文献   

2.
Our knowledge about the glaciation history in the Russian Arctic has to a large extent been based on geomorphological mapping supplemented by studies of short stratigraphical sequences found in exposed sections. Here we present new geochronological data from the Polar Ural Mountains along with a high‐resolution sediment record from Bolshoye Shchuchye, the largest and deepest lake in the mountain range. Seismic profiles show that the lake contains a 160‐m‐thick sequence of unconsolidated lacustrine sediments. A well‐dated 24‐m‐long core from the southern end of the lake spans the last 24 cal. ka. From downward extrapolation of sedimentation rates we estimate that sedimentation started about 50–60 ka ago, most likely just after a large glacier had eroded older sediments from the basin. Terrestrial cosmogenic nuclide (TCN) exposure dating (10Be) of boulders and Optically Stimulated Luminescence (OSL) dating of sediments indicate that this part of the Ural Mountains was last covered by a coherent ice‐field complex during Marine Isotope Stage (MIS) 4. A regrowth of the glaciers took place during a late stage of MIS 3, but the central valleys remained ice free until the present. The presence of small‐ and medium‐sized glaciers during MIS 2 is reflected by a sequence of glacial varves and a high sedimentation rate in the lake basin and likewise from 10Be dating of glacial boulders. The maximum extent of the mountain glaciers during MIS 2 was attained prior to 24 cal. ka BP. Some small present‐day glaciers, which are now disappearing completely due to climate warming, were only slightly larger during the Last Glacial Maximum (LGM) as compared to AD 1953. A marked decrease in sedimentation rate around 18–17 cal. ka BP indicates that the glaciers then became smaller and probably disappeared altogether around 15–14 cal. ka BP.  相似文献   

3.
In Argentina, loess/palaeosol sequences were studied from the two sections at Monte Ralo and Corralito, located near to the city of Córdoba in the east of the Pampean ranges. Infrared optically stimulated luminescence (IRSL) and thermoluminescence (TL) dating techniques were applied to set up a more reliable chronological framework for the Upper Pleistocene loess record. IRSL ages increase with depth and are stratigraphically consistent. The oldest loess exposed correlates at least to the penultimate glaciation. The luminescence dating study gives evidence for humid climate conditions with soil formation during the last interglacial period and the middle pleniglacial correlating to Marine Isotope Stage (MIS) 5 and 3, respectively. Three extended periods of soil formation are recorded in the loess/palaeosol sequences at the Corralito section. These buried soils most likely correlate with the last interglacial and early last glacial period. During the Middle Pleniglacial, two palaeosols are intercalated in the loess successions. In the Córdoba area, the periods of increased loess accumulation and deposition of loessic sediments correlate with more arid and glacial periods during the Early Pleniglacial, the Middle Pleniglacial and the Late Glacial. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The late Middle Pleistocene fluvial terrace sequence of the lower Trent system, Lincolnshire (eastern England), provides an excellent record of environmental change, including evidence for the last two interglacial episodes. It also provides important stratigraphical evidence for the timing and extent of three separate glaciations. Two of these, the Anglian and Devensian, are well-established correlatives of Marine Isotope Stages (MIS) 12 and 2 respectively; the third is a hitherto un-named post-Anglian-pre-Devensian glaciation in eastern England that has been the subject of much previous speculation, but can now be attributed with some confidence to MIS 8. Crucially, the recognition of MIS 7 interglacial deposits within the Balderton-Southrey terrace of the proto-Trent indicates that the underlying Wragby Till, which is ascribed to this additional glaciation, was emplaced no later than MIS 8. The oldest terrace preserved within the lower Trent staircase, the Eagle Moor-Martin Terrace, is considered to be a complex glacial outwash terrace related to the Wragby Till glaciation. It is suggested that deposits representing MIS 11-9, which are conspicuously absent throughout the Trent system, were removed by this glaciation. This is a departure from previous interpretations, which have suggested MIS 10 or MIS 6 as the most likely stages in which an extensive post-Anglian-pre-Devensian lowland glaciation might have occurred in Britain. However, the widespread preservation of undisrupted post-MIS 8 fluvial sequences throughout the Trent valley and in neighbouring systems, within which MIS 7 interglacial deposits have now been recognized at a number of localities, indicates that ice sheets are unlikely to have advanced further into this catchment during MIS 6 than during the Devensian (MIS 2). Recognition of a British glaciation during MIS 8 corresponds with widespread evidence in Europe, which suggests that glacial deposits classified as ‘Saalian’ represent both MIS 8 and MIS 6; in many areas, distinguishing these remains controversial, as confident correlation with either stage is often only possible where glacial sediments interdigitate with well-constrained fluvial records.  相似文献   

5.
The extent of the Barents-Kara Sea ice sheet (northern Europe and Russia) during the Last Glacial Maximum (LGM), in Marine Isotope Stage (MIS) 2 is controversial, especially along the southern and northeastern (Russian High Arctic) margins. We conducted a multi-disciplinary study of various organic and mineral fractions, obtaining chronologies with 14C and luminescence dating methods on a 10.5 m long core from Changeable Lake (4 km from the Vavilov Ice Cap) on Severnaya Zemlya. The numeric ages indicate that the last glaciation at this site occurred during or prior to MIS 5d-4 (Early Middle Weichselian). Deglaciation was followed by a marine transgression which affected the Changeable Lake basin. After the regression the basin dried up. In late Middle Weichselian time (ca 25–40 ka), reworked marine sediments were deposited in a saline water body. During the Late Weichselian (MIS 2), the basin was not affected by glaciation, and lacustrine sediments were formed which reflect cold and arid climate conditions. During the termination of the Pleistocene and into the Holocene, warmer and wetter climate conditions than before led to a higher sediment input. Thus, our chronology demonstrates that the northeastern margin of the LGM Barents-Kara Sea ice sheet did not reach the Changeable Lake basin. This result supports a modest model of the LGM ice sheet in northern Europe determined from numeric ice sheet modelling and geological investigations.  相似文献   

6.
Based on surface and borehole information, together with pre-existing regional and local interpretations, a 7,150 square kilometre Raster Digital Elevation Model (DEM) of the bedrock surface of northern Switzerland was constructed using a 25 m cell size. This model represents a further important step in the understanding of Quaternary sediment distribution and is open to a broad field of application and analysis, including hydrogeological, geotechnical and geophysical studies as well as research in the field of Pleistocene landscape evolution. An analysis of the overdeepened valleys in the whole model area and, more specifically in the Reuss area, shows that, in most cases, overdeepening is restricted to the areas covered by the Last Glaciation Maximum (LGM). However, at various locations relatively narrow overdeepened valleys outreach the tongue basins and the LGM ice shield limits. Therefore, an earlier and further-reaching glacial event has probably contributed significantly to the overdeepening of these valleys. No significant overdeepening has been identified downstream of Böttstein (Aare) and Kaiserstuhl (Rhine), although the ice extended considerably further downstream, at least during the most extensive glaciation. Except for the bedrock between Brugg and Böttstein, no overdeepened valleys are found significantly north of the outcrop of Mesozoic limestone of the Folded and Tabular Jura. A detailed analysis of the Reuss area shows that the Lake and Suhre valleys are separated from the Emmen—Gisikon Reuss valley basin by a significant bedrock barrier. The individual bedrock valleys are divided into several sub-basins, indicating a multiphase evolution of the valleys. Some of the swells or barriers separating the sub-basins coincide with known late LGM retreat stages. In the Suhre valley, an old fluvial valley floor with restricted overdeepened sections is documented.  相似文献   

7.
The Taymyr Peninsula constitutes the eastern delimitation of a possible Kara Sea basin ice sheet. The existence of such an ice sheet during the last global glacial maximum (LGM), i.e. during the Late Weichselian/Upper Zyryansk, is favoured by some Russian scientists. However, a growing number of studies point towards a more minimalistic view concerning the areal extent of Late Weichselian/Upper Zyryansk Siberian glaciation. Investigations carried out by us along the central Byrranga Mountains and in the Taymyr Lake basin south thereof, reject the possibility of a Late Weichselian/Upper Zyryansk glaciation of this area. Our conclusion is based on the following: Dating of a continuous lacustrine sediment sequence at Cape Sabler on the Taymyr Lake shows that it spans at least the period 39-17 ka BP. Even younger ages have been reported, suggesting that this lacustrine environment prevailed until shortly before the Holocene. The distribution of these sediments indicates the existence of a paleo-Taymyr lake reaching c. 60 m above present sea level. A reconnaissance of the central part of the Byrranga Mountains gave no evidence of any more recent glacial coverage. The only evidence of glaciation - an indirect one - is deltaic sequences around 100-120 m a.s.l., suggesting glacio-isostatic depression and a large input of glacial meltwater from the north. However, 14C and ESR datings of these marine sediments suggest that they are of Early Weichselian/Lower Zyryansk or older age. As they are not covered by till and show no glaciotectonic disturbances, they support our opinion that there was no Late Weichselian/Lower Zyryansk glaciation in this area. We thus suggest that the Taymyr Peninsula was most probably glaciated during the early part of the last glacial cycle (when there was only small- to medium-scale glaciation in Scandinavia), but not glaciated during the later part of that cycle (which had the maximum ice-sheet coverage over north-western Europe). This fits a climatic scenario suggesting that the Taymyr area, like most of Siberia, would come into precipitation shadow during times with large-scale ice-sheet coverage of Scandinavia and the rest of north-western Europe.  相似文献   

8.
The High Plateaus of Utah include seven separate mountain ranges that supported glaciers during the Pleistocene. The Fish Lake Plateau, located on the eastern edge of the High Plateaus, preserves evidence of at least two glacial advances. Four cosmogenic 3He exposure ages of boulders in an older moraine range from 79 to 159 ka with a mean age of 129 ± 39 ka and oldest ages of 152 ± 3 and 159 ± 5 ka. These ages suggest deposition during the type Bull Lake glaciation and Marine Oxygen Isotope Stage (MIS) 6. Twenty boulder exposure ages from four different younger moraines indicate a local last glacial maximum (LGM) of ~ 21.1 ka, coincident with the type Pinedale glaciation and MIS 2. Reconstructed Pinedale-age glaciers from the Fish Lake Plateau have equilibrium-line altitudes ranging from 2950 to 3190 m. LGM summer temperature depressions for the Fish Lake Plateau range from −10.7 to −8.2°C, assuming no change in precipitation. Comparison of the Fish Lake summer temperature depressions to a regional dataset suggests that the Fish Lake Plateau may have had a slight increase (~ 1.5× modern) in precipitation during the LGM. A series of submerged ridges in Fish Lake were identified during a bathymetric survey and are likely Bull Lake age moraines.  相似文献   

9.
The Burhan Budai Shan in NE Tibet represents a key location for examining the variable influence of the mid‐latitude westerly and monsoonal circulations on late Quaternary glaciations in this sector of the Tibetan Plateau. Our study investigates the glacial history of mountains near Lake Donggi Cona (35°17′N, 98°33′E) using field mapping in combination with 10Be surface exposure dating and numerical reconstructions of former glacial equilibrium line altitudes (palaeo‐ELA). A set of 23 new exposure ages, collected from moraines in four glacial valleys, ranges from 45 to 190 ka, indicating ice expansion during the early and middle part of the last glacial cycle, and during the penultimate and possibly an earlier Mid‐Pleistocene glaciation. Ice advances reaching 12–15 km in length occurred at around 190–180 ka (≥MIS 6), between 140–100 ka (late MIS 6/MIS 5), and 90–65 ka (late MIS 5/early MIS 4), with a maximum ELA depression of 400–500 m below the estimated modern snowline. Exposure ages from the valley headwaters further indicate a small glaciation between c. 60–50 ka (late MIS 4/early MIS 3), which was essentially restricted to the cirque areas. Significantly, we find no evidence for any subsequent glaciation in the area during MIS 2 or the Holocene period. These results indicate a diminishing trend of glaciation in the region since at least MIS 4, and corroborate the case of a ‘missing LGM’ in the more interior parts of the northeastern Tibetan Plateau. The emerging pattern suggests that the most favourable conditions for glaciation during the Late Pleistocene correspond to periods of relatively moderate cooling combined with an intermediate or rising East Asian monsoon strength.  相似文献   

10.
冰蚀湖中的沉积物不仅记录了湖泊演化及气候变化的历史,还间接地反映冰川发育过程。年保玉则山(果洛山)下的希门错是在冰川强烈退缩后形成的一个典型冰蚀湖。从地域分布上讲,该区冰川发育遗迹分为4个部分,即上希门错以上、上希门错和希门错之间、希门错出口附近和希门错以北6~10km处。前人依据冰碛物的暴露年龄和上覆黄土的热释光年代将上述4组冰碛物划分为4次冰进,包括形成于MIS3阶段的尼格曲冰期、形成于末次盛冰期的希门错冰期、以上希门错和希门错之间的冰碛物作为标志的末次冰消期和形成于全新世的新冰期。通过对采自希门错长达12.8m的岩芯研究发现,希门错自约38kaB.P.以来有连续的湖泊沉积,这一地质证据说明在湖泊存在的这段时间内,冰川规模都没有超过现在湖泊所在位置。希门错冰期的形成时代应该至少老于湖泊沉积物底界的年龄,即大于38kaB.P.,而并非末次冰盛期的产物;尼格曲冰期的形成时代则应该更老。文章还初步分析了湖泊沉积物与冰碛物测年结果代表的不同意义和差别及其造成不一致的原因,认为冰碛物的暴露年代和热释光年代均可能代表了冰川退缩后的年代,而不能代表冰川的形成和发育年龄,冰川存在的时间要比通过冰碛物所测的年代更老。进一步深入研究青藏高原典型冰蚀湖的形成时代、演化过程不仅有利于对湖泊气候环境记录的全面认识,也将为冰川形成与演化历史、特别是冰川形成年代和其他测年资料的科学解释提供可靠的依据。  相似文献   

11.
Continuous high-resolution mass accumulation rates (MAR) and X-ray fluorescence (XRF) measurements from marine sediment records in the Bay of Biscay (NE Atlantic) have allowed the determination of the timing and the amplitude of the ‘Fleuve Manche’ (Channel River) discharges during glacial stages MIS 10, MIS 8, MIS 6 and MIS 4–2. These results have yielded detailed insight into the Middle and Late Pleistocene glaciations in Europe and the drainage network of the western and central European rivers over the last 350 kyr. This study provides clear evidence that the ‘Fleuve Manche’ connected the southern North Sea basin with the Bay of Biscay during each glacial period and reveals that ‘Fleuve Manche’ activity during the glaciations MIS 10 and MIS 8 was significantly less than during MIS 6 and MIS 2. We correlate the significant ‘Fleuve Manche’ activity, detected during MIS 6 and MIS 2, with the extensive Saalian (Drenthe Substage) and the Weichselian glaciations, respectively, confirming that the major Elsterian glaciation precedes the glacial MIS 10. In detail, massive ‘Fleuve Manche’ discharges occurred at ca 155 ka (mid-MIS 6) and during Termination I, while no significant discharges are found during Termination II. It is assumed that a substantial retreat of the European ice sheet at ca 155 kyr, followed by the formation of ice-free conditions between the British Isles and Scandinavia until Termination II, allowed meltwater to flow northwards through the North Sea basin during the second part of the MIS 6. We assume that this glacial pattern corresponds to the Warthe Substage glacial maximum, therefore indicating that the data presented here equates to the Drenthe and the Warthe glacial advances at ca 175–160 ka and ca 150–140 ka, respectively. Finally, the correlation of our records with ODP site 980 reveals that massive ‘Fleuve Manche’ discharges, related to partial or complete melting of the European ice masses, were synchronous with strong decreases in both the rate of deep-water formation and the strength of the Atlantic thermohaline circulation. ‘Fleuve Manche’ discharges over the last 350 kyr probably participated, with other meltwater sources, in the collapse of the thermohaline circulation by freshening the northern Atlantic surface water.  相似文献   

12.
Passchier, S., Laban, C., Mesdag, C.S. & Rijsdijk, K.F. 2010: Subglacial bed conditions during Late Pleistocene glaciations and their impact on ice dynamics in the southern North Sea. Boreas, Vol. 39, pp. 633–647. 10.1111/j.1502‐3885.2009.00138.x. ISSN 0300‐9483. Changes in subglacial bed conditions through multiple glaciations and their effect on ice dynamics are addressed through an analysis of glacigenic sequences in the Upper Pleistocene stratigraphy of the southern North Sea basin. During Elsterian (MIS 12) ice growth, till deposition was subdued when ice became stagnant over a permeable substrate of fluvial sediments, and meltwater infiltrated into the bed. Headward erosion during glacial retreat produced a dense network of glacial valleys up to several hundreds of metres deep. A Saalian (MIS 6) glacial advance phase resulted in the deposition of a sheet of stiff sandy tills and terminal moraines. Meltwater was at least partially evacuated through the till layer, resulting in the development of a rigid bed. During the later part of the Saalian glaciation, ice‐stream inception can be related to the development of a glacial lake to the north and west of the study area. The presence of meltwater channels incised into the floors of glacial troughs is indicative of high subglacial water pressures, which may have played a role in the onset of ice streaming. We speculate that streaming ice flow in the later part of the Saalian glaciation caused the relatively early deglaciation, as recorded in the Amsterdam Terminal borehole. These results suggest that changing subglacial bed conditions through glacial cycles could have a strong impact on ice dynamics and require consideration in ice‐sheet reconstructions.  相似文献   

13.
This is a synthesis of the glacial history of the northern Urals undertaken using published works and the results of geological surveys as well as recent geochronometric and remote sensing data. The conclusions differ from the classical model that considers the Urals as an important source of glacial ice and partly from the modern reconstructions. The principal supporting evidence for the conventional model – Uralian erratics found on the adjacent plains – is ambiguous because Uralian clasts were also delivered by a thick external ice sheet overriding the mountains during the Middle Pleistocene. Alternative evidence presented in this paper indicates that in the late Quaternary the Ural mountains produced only valley glaciers that partly coalesced in the western piedmont to form large piedmont lobes. The last maximum glaciation occurred in the Early Valdaian time at c. 70–90 ka when glacial ice from the Kara shelf invaded the lowlands and some montane valleys but an icecap over the mountains was not formed. The moraines of the alpine glaciation are preserved only beyond the limits of the Kara ice sheet and therefore cannot be younger than MIS 4. More limited glaciation during MIS 2 generated small alpine moraines around the cirques of the western Urals (Mangerud et al. 2008: Quaternary Science Reviews 27, 1047). The largest moraines of Transuralia were probably produced by the outlet glaciers of a Middle Pleistocene ice sheet that formed on the western plains and discharged across the Polar Urals. The resultant scheme of limited mountain glaciation is possibly also applicable as a model for older glacial cycles.  相似文献   

14.
In recent years it has been demonstrated that the formation of long-timescale river terrace sequences, which are generally found in areas beyond the extent of most if not all of the Middle and Late Pleistocene ice sheets, has invariably been a response to uplift during the Late Cenozoic and especially the Quaternary. Climatic fluctuation at a Milankovitch timescale has driven the alternations of aggradation and incision recorded in such terraces. It has been widely observed, however, that fluvial terraces also occur in areas glaciated during the Last Glacial Maximum (LGM), which coincides with marine oxygen isotope stage (MIS) 2. This paper, in seeking to compare records from inside and outside of the LGM ice limit, concentrates on a single English river system, that of the Humber. The Humber estuary is shared by the largely Pennine-derived drainage of the Yorkshire Ouse, to the north and entirely within the MIS 2 glacial limit, and, to the south, the Trent, which is almost wholly outside the LGM limit. Thus the Trent has a terrace sequence extending back to the Middle Pleistocene, whereas in the component rivers of the Ouse system, records begin with the melting of the last glacial ice. Importantly, there is considerable difference in the disposition of the post-LGM fluvial deposits in these two subsystems. In the Ouse system there are modest terrace staircases, commencing with full glacial deposits that stand up to 30 m above the modern floodplain. In the Trent, in contrast, last glacial gravels form the foundation of the modern floodplain, with Holocene sediments emplaced directly above them. Thus there is little or no post-LGM incision in the Trent, whereas in the Ouse several incision events are recorded, continuing into the later stages of the Holocene. Wider comparison reveals that the Ouse system is an exemplar for other sequences within the MIS 2 limit, whereas systems beyond this glaciation typically have last glacial sediments beneath their modern floodplains and show little evidence of Holocene incision. The various possible explanations of these differences are discussed, with emphasis placed on glacio-isostatic uplift of areas glaciated during MIS 2 as the main reason for the significant post-glacial incision that typifies valleys in such regions. A new approach to modelling glacio-isostatic adjustment is outlined, from which it is concluded that lower-crustal flow plays a significant role in this process in regions of relatively hot and dynamic crust, like northern England, in addition to the mantle flow that is considered in conventional analyses of glacio-isostasy. Lower-crustal flow has a significant effect due to the combination of the small spatial scale of the glaciated region of northern England and the high mobility of the lower-crustal layer beneath it, due to the heating effect of the widespread Palaeozoic granite in the area.  相似文献   

15.
The glacial history of the Tagliamento morainic amphitheater (southeastern Alpine foreland, Italy) during the last glacial maximum (LGM) has been reconstructed by means of a geological survey and drillings, radiocarbon dating and pollen analysis in the amphitheater and in the sandur. Two phases of glacial culmination, separated by a distinct recession, are responsible for glacial landforms and related sediments in the outer part of the amphitheater. The age of the younger advance fits the chronology of the culmination of the last glaciation in the Alps, well established between 24 and 21 cal ka BP (20 to 17.5 14C ka BP), whereas the first pulse between 26.5 and 23 cal ka BP (22 to 21 14C ka BP), previously undated, was usually related to older (pre-LGM) glaciations by previous authors. Here, the first pulse is the most extensive LGM culmination, but is often buried by the subsequent pulse. The onset and final recession of the late Würm Alpine glaciation in the Tagliamento amphitheater are synchronous with the established global glacial maximum between 30 and 19 cal ka BP. The two-fold LGM glacial oscillation is interpreted as a millennial-scale modulation within the late Würm glaciation, caused by oscillations in inputs of southerly atmospheric airflows related to Dansgaard-Oeschger cycles. Phases of enhanced southerly circulation promoted increased rainfall and ice accumulation in the southern Alps.  相似文献   

16.
滇西北山地末次冰期冰川发育及其基本特征   总被引:1,自引:0,他引:1  
张威  刘蓓蓓 《冰川冻土》2014,36(1):30-37
对滇西北海拔4 000~4 500 m 山地的第四纪冰川发育和平衡线高度进行了研究. 结果表明: 古冰川发育主要依托海拔4 000~4 300 m的夷平面,早中期发育小型的冰帽以及流入四周谷地的山谷冰川,晚期主要发育规模较小的冰斗冰川. 冰川主要发育期为末次冰期,古冰川平衡线、山体最高峰以及夷平面的高度显示,冰川发育所依托的夷平面在末次冰期时超过古平衡线,二者差值为50~400 m,为冰川发生提供了良好的地形与地势条件. 冰川规模演化表明,滇西北地区多处山地MIS 3中期的冰川规模大于末次冰盛期(LGM),可能与MIS 3中期较强南亚季风带来较丰富的降水有关. 古气候研究资料以及研究区的冰期系列表明,滇西北海拔4 000~4 500 m山地末次冰期的冰川作用是构造和气候相耦合的结果.  相似文献   

17.
We illustrate the results of geomorphological, stratigraphical and sedimentological analysis of the Tarija-Padcaya basin, a wide depression in the eastern side of the Bolivian Cordillera. The basin is well known for the rich mammal fauna discovered since the beginning of the 19th century. The sedimentary infilling belongs to the Tolomosa Formation, corresponding to a major synthem subdivided into three main sub-synthems, mostly made of fluvial and alluvial fan sediments locally weathered by paleoalfisols (Ancon Grande sub-synthem), glacial and fluvio-glacial sediments (Puente Phayo sub-synthem) and finally alluvial fan and alluvial plain sediments (San Jacinto sub-synthem). Radiocarbon dating provides a chronology for the last sub-synthem and testifies that the sequence encompasses the Last Interglacial-Glacial cycle and constitutes a good proxy record for Late Pleistocene climatic changes. The occurrence of glacial deposits in the deeper part of the sedimentary filling suggests a major ice advance during MIS 4 and, together with glacial geomorphological evidence, points to further glacial erosion during the Last Glacial Maximum (LGM). The importance of glacial deposition and erosion opens the question of correlation with the events reported in the nearby Altiplano, where glacial deposits have been recognized only along the slopes of the higher volcanoes. In the Altiplano the LGM has been claimed to be characterized by an absence of deposition or deep erosion, due to extreme dryness, but the Tarija record suggests an erosional event of a scale that would imply the occurrence of a large ice cap.  相似文献   

18.
Lambeck, K., Purcell, A., Zhao, J. & Svensson, N‐O. 2010 (April): The Scandinavian Ice Sheet: from MIS 4 to the end of the Last Glacial Maximum. Boreas, Vol. 39, pp. 410–435. 10.1111/j.1502‐3885.2010.00140.x. ISSN 0300‐9483. Glacial rebound modelling, to establish constraints on past ice sheets from the observational evidence of palaeo‐shoreline elevations, is well established for the post‐ Last Glacial Maximum (post‐LGM) period, for which the observational evidence is relatively abundant and well distributed spatially and in time. This is particularly the case for Scandinavia. For the earlier part of the glacial cycle this evidence becomes increasingly sparse and uncertain such that, with the exception of the Eemian period, there are very few, if any, direct sea‐level indicators that constrain any part of the Scandinavian Ice Sheet evolution before the LGM. Instead, we assume that ice‐sheet basal conditions during Marine Isotope Stage 3 (MIS 3) are the same as those for the LGM, focus on establishing these conditions from the rebound analysis for the LGM and Lateglacial period, and then extrapolate to the earlier period using observationally constrained locations of the ice margins. The glacial rebound modelling and inversion follow previously established formulations, with the exception that the effects of water loading from proglacial lakes that form within the Baltic Basin and elsewhere have been included. The data set for the inversion of the sea‐ and lake‐level data has been extended to include marine‐limit data in order to extend the observational record further back in time. The result is a sequence of time slices for the Scandinavian Ice Sheet from the time of MIS 4 to the Lateglacial that are characterized by frozen basal conditions until late in the LGM interval when rapid thinning occurred in the eastern and southern sectors of the ice sheet. The primary function of these models is as an interpolator between the fragmentary observational constraints and to produce quantitative models for the glaciation history with predictive capabilities, for example regarding the evolution of the Baltic Basin.  相似文献   

19.
At least five Middle to Late Pleistocene advances of the northern Cordilleran Ice Sheet are preserved at Silver Creek, on the northeastern edge of the St Elias Mountains in southwest Yukon, Canada. Silver Creek is located 100 km up‐ice of the Marine Isotope Stage (MIS) 2 McConnell glacial limit of the St Elias lobe. This site contains ~3 km of nearly continuous lateral exposure of glacial and non‐glacial sediments, including multiple tills separated by thick gravel, loess and tilted lake beds. Infrared‐stimulated luminescence (IRSL) and AMS radiocarbon dating constrain the glacial deposits to MIS 2, 4, either MIS 6 or mid‐MIS 7, and two older Middle Pleistocene advances. This chronology and the tilt of the lake beds suggest Pleistocene uplift rates of up to 1.9 mm a?1 along the Denali Fault since MIS 7. The non‐glacial sediment consists of sand, gravel, loess and organic beds from MIS 7, MIS 3 and the early Holocene. The MIS 3 deposits date to between 30–36 14C ka BP, making Silver Creek one of the few well‐constrained MIS 3‐aged sites in Yukon. This confirms that ice receded close to modern limits in MIS 3. Pollen and macrofossil analyses show that a meadow‐tundra to steppe‐tundra mosaic with abundant herbs and forbs and few shrubs or trees, dominated the environment at this time. The stratigraphy at Silver Creek provides a palaeoclimatic record since at least MIS 8 and comprises the oldest direct record of Pleistocene glaciation in southwest Yukon.  相似文献   

20.
Glacial landforms and sediments provide evidence for the existence of two Late Pleistocene major glacial advances in the Queer Shan, northern Hengduan Mountains in the eastern Tibetan Plateau. In the current study, optically stimulated luminescence and electron spin resonance dating results reveal that the two glacial advances occurred during Marine Isotope Stage (MIS) 3 and the Last Glacial Maximum (LGM) in MIS 2, respectively. Geomorphic evidence shows that the glacial advance during MIS 3 was more extensive than that in MIS 2. This glacial advance is synchronous with other glaciated areas in the Himalaya and Tibet, but contrasts with global ice volumes that reached their maximum extent during the LGM. Glaciers in the Queer Shan are of the summer accumulation type and are mainly fed by precipitation from the south Asian monsoon. Palaeoclimate proxies show that during MIS 3 the south Asian monsoon strengthened and extended further north into the Tibetan Plateau to supply more precipitation as snow at high altitudes. This in turn led to positive glacier mass balances and caused glaciers to advance. However, during the LGM, despite cooler temperature than in MIS 3, the weakened south Asian monsoon and the associated reduced precipitation were not as favourable for glacier expansion as in MIS 3. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号