首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Applying Fe2+–Mg exchange geothermometers to natural samples may lead to incorrect temperature estimates if significant Fe3+ is present. In order to quantify this effect, high-pressure experiments were carried out in a belt apparatus in a natural system close to CFMAS at 5 GPa and 1,100–1,400 °C. The oxygen fugacity in the experiments was at or below the Re–ReO2 buffer. This is at significantly more oxidized conditions than in previous experiments, and, as consequence, higher Fe3+/Fe2+ ratios were generated. The Fe3+ content of garnet in the experiments was quantified by electron microprobe using the flank method. Making the usual assumption that Fetotal = Fe2+, the two-pyroxene thermometer of Brey and Köhler (J Pet 31:1353–1378, 1990) reproduced the experimental temperature to ±35 °C and the garnet–clinopyroxene Fe2+–Mg exchange thermometer of Krogh (Contrib Miner Pet 99:44–48, 1988) overestimated the temperatures on average by only 25 °C. On the other hand, application of the garnet–olivine (O’Neill and Wood in Contrib Miner Pet 70:59–70, 1979) and garnet–orthopyroxene (Harley in Contrib Miner Pet 86:359–373, 1984) exchange geothermometers yielded an underestimation in calculated temperatures of >200 °C. However, making explicit accounting for Fe3+ in garnet (i.e. using only measured Fe2+) leads to a vast improvement in the agreement between calculated and experimental temperatures, generally to within ±70 °C for the garnet–orthopyroxene geothermometer as well as noticeable improvement of calculated temperatures for the garnet–olivine geothermometer. Our results demonstrate that the two-pyroxene and garnet–clinopyroxene thermometers are rather insensitive to the presence of Fe3+ whilst direct accounting of Fe3+ in garnet is essential when applying the garnet–olivine and garnet–orthopyroxene thermometers.  相似文献   

2.
The garnet–orthopyroxene pairs are commonly found in the assemblages of basic granulites/charnockite and hence are suitable for estimating equilibrium temperature of these metamorphic rocks. At present, there are many calibrations of garnet–orthopyroxene thermometer that may confuse geologists in choosing a reliable thermometer. To test the accuracy of the garnet–orthopyroxene thermometers, we have applied 14 models formulated by a number of workers since 1980 to date. We have collated 51 samples from the literature all over the world, which has been processed through the “Gt-Opx.EXE” software. Based on the present study, we have identified a set of the best among all the 14 models which were considered under this comparative study. We have concluded that the five garnet–orthopyroxene (Gt-Opx) thermometers are the most valid and reliable of this kind of thermometer: Aranovich and Berman (Am Mineral 82:345–353, 1997), Raith et al. (Earth Sci 73:211–244, 1983), Harley (Contrib Mineral Petrol 86:359–373, 1984), Nimis and Grütter (Contrib Mineral Petrol 159:411–427, 2010), and Sen and Bhattacharya (Contrib Mineral Petrol 88:64–71, 1984).  相似文献   

3.
Yigang Xu  Chuanyong Lin  Lanbin Shi 《Lithos》1999,47(3-4):181-193
The Qilin geotherm established by Xu et al. [Xu, X.S., O'Reilly, S.Y., Zhou, X.M. and Griffin, W.L., 1996. A xenolith-derived geotherm and the crust-mantle boundary at Qilin, southeastern China. Lithos, 38: 41–62.] using the Ellis and Green [Ellis D.J. and Green D.H., 1979. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib. Mineral. Petrol., 71: 13–22]/Wood [Wood B.J., 1974. Solubility of alumina in orthopyroxene coexisting with garnet. Contrib. Mineral. Petrol. 46: 1-15] combination is in need of revision on the basis of re-evaluation of geothermobarometers, comparison of calculated pressures and temperatures with experimentally determined phase relationships and geological/geophysical data. The invalid assumption that all iron is present as Fe2+ in minerals, and the thermal destruction of equilibrium Fe–Mg exchange between clinopyroxene and garnet that may have resulted from heating of the Qilin xenoliths by the host magma resulted in unrealistically high temperatures estimated by the Ellis and Green's thermometer. An important implication arising from this study is that care must be taken when applying thermobarometers to Fe-rich pyroxenites for the purpose of geotherm construction and a comprehensive analysis is often required.  相似文献   

4.
Melting experiments were conducted on a mica–clinopyroxenite xenolith brought up in a minette dyke in southern Alberta, Canada, near Milk River. Both the minettes and mica–clinopyroxenite xenoliths were studied by Buhlmann et al. (Can J Earth Sci 37:1629–1650, 2000), who hypothesized that the minettes formed by partial melting of a mantle source containing clinopyroxene + phlogopite ± olivine, at pressures ≥1.7 GPa. In liquidus experiments performed on the most primitive minette in our previous study (Funk and Luth in Contrib Mineral Petrol 164:999–1009, 2012), we found a multiple saturation point where olivine and orthopyroxene coexisted with liquid at 1.77 GPa and 1,350 °C. We argued that the minette originally formed by partial melting of clinopyroxene + phlogopite, but had re-equilibrated with a harzburgite during ascent. In the current study, we wanted to test both the source region hypothesis of Buhlmann et al. and our re-equilibration hypothesis by studying the near-solidus phase equilibria of a mica + clinopyroxene assemblage. We found the solidus for our xenolith has a steep slope in P–T space and lies at temperatures above those of a normal cratonic geotherm, implying that this mica–clinopyroxenite is stable in the cratonic mantle. Melting could occur at greater depths, where the solidus is extrapolated to cross the geotherm or must be induced either by raising the temperatures of the surrounding rocks or by introducing hydrous fluids into the source. Our melts are in equilibrium with clinopyroxene and olivine. The compositions of the liquids derived from melting this xenolith are similar to madupitic lamproites from the Leucite Hills, Wyoming, studied by Carmichael (Contrib Mineral Petrol 15:24–66, 1967) and Barton and Hamilton (Contrib Mineral Petrol 66:41–49, 1978; Contrib Mineral Petrol 69:133–142, 1979). Barton and Hamilton (Contrib Mineral Petrol 69:133–142, 1979) proposed that the madupitic lamproites may have come from a source containing mica and pyroxene. This study supports their hypothesis. The composition of the most primitive minette from southern Alberta lies between our experimental melt and a population of representative mantle orthopyroxenes. We conclude from our study that the Milk River minettes were likely derived from a source containing phlogopite, clinopyroxene and trace amounts of apatite, which formed olivine upon melting. During ascent, the melts changed composition by reacting with orthopyroxene.  相似文献   

5.
Samples with eclogitic composition in the system CaO–FeO–Fe2O3–MgO–Al2O3–SiO2 were produced from various kinds of starting materials held in graphite-lined Pt capsules at a pressure of 2.5–3.0 GPa and temperatures of 800–1,300 °C using a piston-cylinder or Belt apparatus. Garnets and clinopyroxenes were characterized by analytical transmission electron microscopy and electron probe micro-analysis (EPMA). Fe3+/ΣFe ratios determined by electron energy-loss spectroscopy (EELS) decrease in clinopyroxene from 22.2 ± 3.4 % at 800 °C to 13.3 ± 5.4 % at 1,300 °C, while in garnet, they vary between 10.8 ± 1.5 and 15.4 ± 4.7 %, respectively. Temperature estimates according to Krogh (Contrib Mineral Petrol 99:44–48, 1988) reproduce the experimental temperature to ±60 °C without systematic deviations if total iron is used in the calculation. If only the Fe2+ content is used, which was obtained by combining EPMA and EELS results, the experimental temperature is underestimated by 33 °C on average at 800–1,200 °C and overestimated by 77 °C on average at 1,300 °C. These systematic deviations can be explained by the temperature-dependent ratio of Fe2+/ΣFe in garnet divided by that in clinopyroxene. Since the difference between the calculated and experimental temperature is relatively small, a Fe2+-based recalibration of the thermometer appears not to be necessary for the investigated system in the range of pressure, temperature and composition covered by the experiments of this study.  相似文献   

6.
Clinopyroxene, orthopyroxene, and garnet megacrysts show consistent increase of Na and Ti, and decrease of Cr, with increasing Fe/Mg. Three groups of clinopyroxenes occur with increasing Fe/Mg: subcalcic diopside, lamellar intergrowth with ilmenite, and augite. Chemical relationships indicate simultaneous crystallization of garnet, orthopyroxene and sub-calcic diopside megacrysts, and pyroxene thermometry-barometry indicates a trend from 29 kb?1,230 ° C to 25 kb?1,080 ° C as crystallization proceeded to higher Fe/Mg. Ilmenite-pyroxene thermometry suggests a mean of 965 ° C for crystallization of the intergrowths, but calibration depends on crystal-chemical assumptions. Lherzolite assemblages fall into three groups: two garnet-bearing types which equilibrated at 31 kb?1,150 ° C and 22 kb?900 ° C, and a type bearing Al-rich spinel which probably crystallized below 20 kb. The minerals from the lherzolites have lower Fe/Mg than the megacrysts. The simplest model involves: (i) metamorphic equilibration of lherzolitic rocks to the local geotherm, (ii) local melting of lherzolite at P > 30 kb, (iii) sequential crystallization of megacrysts as the magma rose intermittently, (iv) generation of alnöitic magma at P > 32 kb, and (v) eruption to surface with transport of megacrysts and lherzolitic xenoliths. Garnet, olivine, orthopyroxene and clinopyroxene in these Malaita xenoliths have lower Na, Ti, and P relative to their equivalents from southern African kimberlites. Only clinopyroxene contains K (up to 270 ppmw), and no Na was found in olivine.  相似文献   

7.
The Gibeon Kimberlite Province of southern Namibia comprises more than 75 group 1 kimberlite pipes and dykes. From the Gibeon Townsland 1 pipe, 38 upper mantle xenoliths (23 garnet lherzolites and 15 garnet harzburgites) were collected and minerals were analysed by electron microprobe for major elements. Pressures and temperatures of crystallisation for xenoliths with either coarse equant, porphyroclastic and mosaic-porphyroclastic textures were estimated by a number of combinations of geothermometers and geobarometers judged to be reliable and accurate for peridotites by Brey and Köhler (1990): The P-T estimates for equilibrated xenoliths agree within the errors of the methods and plot within the stability field of graphite. The P-T values for coarse equant xenoliths fall close to a geothermal gradient of about 44?mW/m2 within a very restricted pressure range. The porphyroclastic xenoliths yield similar and higher temperatures at similar depths. In these xenoliths Ca in orthopyroxene and Ca in olivine increase towards the rims and are high in the neoblasts indicating a stage of transient heating at depth. The mosaic-porphyroclastic xenolith minerals yield the highest temperatures, are unzoned and indicate internal mineral equilibrium. The depth of origin for the xenoliths from Gibeon Townsland 1 ranges from 100 to 140 km. The “cold”, coarse equant peridotites are relatively enriched garnet lherzolites with comparatively (to the “hot” peridotites) low modal orthopyroxene contents, whereas the “hot”, mosaic-porphyroclastic peridotites are depleted garnet harzburgites with high modal amounts of orthopyroxene. This is opposite to the findings for peridotites from the Kaapvaal craton where the cold peridotites are depleted harzburgites with high modal orthopyroxene and many of the hot peridotites are fertile lherzolites with low modal abundance of orthopyroxene. We present a model in which the high temperature, depleted garnet harzburgites are equated to the cold, coarse equant peridotites from the Kaapvaal craton. It is envisaged that this material was detached and transported laterally by an upwelling, deflected plume.  相似文献   

8.
Abstract A garnet–hornblende Fe–Mg exchange geothermometer has been calibrated against the garnet–clinopyroxene geothermometer of Ellis & Green (1979) using data on coexisting garnet + hornblende + clinopyroxene in amphibolite and granulite facies metamorphic assemblages. Data for the Fe–Mg exchange reaction between garnet and hornblende have been fitted to the equation. In KD=Δ (XCa,g) where KD is the Fe–Mg distribution coefficient, using a robust regression approach, giving a thermometer of the form: with very satisfactory agreement between garnet–hornblende and garnet–clinopyroxene temperatures. The thermometer is applicable below about 850°C to rocks with Mn-poor garnet and common hornblende of widely varying chemistry metamorphosed at low aO2. Application of the garnet–hornblende geothermometer to Dalradian garnet amphibolites gives temperatures in good agreement with those predicted by pelite petrogenetic grids, ranging from 520°C for the lower garnet zone to 565–610°C for the staurolite to kyanite zones. These results suggest that systematic errors introduced by closure temperature problems in the application of the garnet–clinopyroxene geothermometer to the ‘calibration’data set are not serious. Application to ‘eclogitic’garnet amphibolites suggests that garnet and hornblende seldom attain Fe–Mg exchange equilibrium in these rocks. Quartzo-feldspathic and mafic schists of the Pelona Schist on Sierra Pelona, Southern California, were metamorphosed under high pressure greenschist, epidote–amphibolite and (oligoclase) amphibolite facies beneath the Vincent Thrust at pressures deduced to be 10±1 kbar using the phengite geobarometer, and 8–9kbar using the jadeite content of clinopyroxene in equilibrium with oligoclase and quartz. Application of the garnet–hornblende thermometer gives temperatures ranging from about 480°C at the garnet isograd through 570°C at the oligoclase isograd to a maximum of 620–650°C near the thrust. Inverted thermal gradients beneath the Vincent Thrust were in the range 170 to 250°C per km close to the thrust.  相似文献   

9.
The pressure–temperature (PT) conditions for producing adakite/tonalite–trondhjemite–granodiorite (TTG) magmas from lower crust compositions are still open to debate. We have carried out partial melting experiments of mafic lower crust in the piston-cylinder apparatus at 10–15 kbar and 800–1,050 °C to investigate the major and trace elements of melts and residual minerals and further constrain the PT range appropriate for adakite/TTG formation. The experimental residues include the following: amphibolite (plagioclase + amphibole ± garnet) at 10–15 kbar and 800 °C, garnet granulite (plagioclase + amphibole + garnet + clinopyroxene + orthopyroxene) at 12.5 kbar and 900 °C, two-pyroxene granulite (plagioclase + clinopyroxene + orthopyroxene ± amphibole) at 10 kbar and 900 °C and 10–12.5 kbar and 1,000 °C, garnet pyroxenite (garnet + clinopyroxene ± amphibole) at 13.5–15 kbar and 900–1,000 °C, and pyroxenite (clinopyroxene + orthopyroxene) at 15 kbar and 1,050 °C. The partial melts change from granodiorite to tonalite with increasing melt proportions. Sr enrichment occurs in partial melts in equilibrium with <20 wt% plagioclase, whereas depletions of Ti, Sr, and heavy rare earth elements (HREE) occur relative to the starting material when the amounts of residual amphibole, plagioclase, and garnet are >20 wt%, respectively. Major elements and trace element patterns of partial melts produced by 10–40 wt% melting of lower crust composition at 10–12.5 kbar and 800–900 °C and 15 kbar and 800 °C closely resemble adakite/TTG rocks. TiO2 contents of the 1,000–1,050 °C melts are higher than that of pristine adakite/TTG. In comparison with natural adakite/TTG, partial melts produced at 10–12.5 kbar and 1,000 °C and 15 kbar and 1,050 °C have elevated HREE, whereas partial melts at 13.5–15 kbar and 900–1,000 °C in equilibrium with >20 wt% garnet have depressed Yb and elevated La/Yb and Gd/Yb. It is suggested that the most appropriate PT conditions for producing adakite/TTG from mafic lower crust are 800–950 °C and 10–12.5 kbar (corresponding to a depth of 30–40 km), whereas a depth of >45–50 km is unfavorable. Consequently, an overthickened crust and eclogite residue are not necessarily required for producing adakite/TTG from lower crust. The lower crust delamination model, which has been embraced for intra-continental adakite/TTG formation, should be reappraised.  相似文献   

10.
A thermometer based on the MgFe?1 exchange equilibrium between garnet and clinopyroxene is formulated by using new experimental data measured at 600° to 950°C, 0.8 to 3.0 GPa, and f(O2) defined by the fayalite-quartz-magnetite buffer in the basalt-H2O system. The new formulation is T = 3820 / 1.828 + lnKD (1 + a(2.2 ? p)), where T is temperature (K), P is pressure (GPa), KD is the Fe-Mg partition coefficient between garnet and clino-pyroxene, defined as KD = (Fe2+/Mg)garnet/(Fe2+/Mg) clinopyroxene, and a = 132/T. Application of the thermometer to rocks in amphibolite, granulite, and eclogite terranes yields temperatures that are in reasonable agreement with other well-calibrated thermometers and the experimental calibrations by Ellis and Green (1979) and Pattison and Newton (1989).  相似文献   

11.
A high-grade metamorphic complex is exposed in Filchnerfjella (6–8°E), central Dronning Maud Land. The metamorphic evolution of the complex has been recovered through a study of textural relationships, conventional geothermobarometry and pseudosection modelling. Relicts of an early, high-P assemblage are preserved within low-strain mafic pods. Subsequent granulite facies metamorphism resulted in formation of orthopyroxene in rocks of mafic, intermediate to felsic compositions, whereas spinel + quartz were part of the peak assemblage in pelitic gneisses. Peak conditions were attained at temperatures between 850–885 °C and 0.55–0.70 GPa. Reaction textures, including the replacement of amphibole and garnet by symplectites of orthopyroxene + plagioclase and partial replacement of garnet + sillimanite + spinel bearing assemblages by cordierite, indicate that the granulite facies metamorphism was accompanied and followed by decompression. The observed assemblages define a clock-wise P-T path including near-isothermal decompression. During decompression, localized melting led to formation of post-kinematic cordierite-melt assemblages, whereas mafic rocks contain melt patches with euhedral orthopyroxene. The granulite facies metamorphism, decompression and partial crustal melting occurred during the Cambrian Pan-African tectonothermal event.  相似文献   

12.
A Report on a Biotite-Calcic Hornblende Geothermometer   总被引:1,自引:0,他引:1  
This paper presents a biotite-calcic hornblende geothermometer which was empirically calibrated based on the gamet-biotite geothermometer and the gamet-plagioclase-hornblende-quartz geobarometer, in the ranges of 560-800℃ (T) and 0.26-1.4 GPa (P) using the data of metadolerite, amphibolite, metagabbro, and metapelite collected from the literature. Biotite was treated as symmetric Fe-Mg-AlVI-Ti quaternary solid solution, and calcic hornblende was simplified as symmetric Fe-Mg binary solid solution. The resulting thermometer may rebuild the input garnet-biotite temperatures well within an uncertainty of ±50℃. Errors of ±0.2 GPa for input pressure, along with analytical errors of ?% for the relevant mineral compositions, may lead to a random error of ±16℃ for this thermometer, so that the thermometer is almost independent of pressure estimates. The thermometer may clearly discriminate different rocks of lower amphibolite, upper amphibolite and granulite facies on a high confidence level. It is assume  相似文献   

13.
The mantle xenoliths in the Quaternary ChangbaishanVolcano in southern Jilin Province contain spinel-facies lherzolites. The equilibration temperatures for these samples range from 902oC to 1064oC based on the two-pyroxene thermometer of Brey and K?hler (1990), and using the oxybarometry of Nell and Wood (1991), the oxidation state was estimated from FMQ-1.32 to -0.38 with an average value of FMQ-0.81 (n?=?8), which is comparable to that of abyssal peridotites and the asthenospheric mantle. The fO2 values of peridotites, together with their bulk rock compositions (e.g., Mg#, Al2O3, CaO, Ni, Co, Cr) and mineral compositions (e.g., Mg# of olivine and pyroxene, Cr# [=Cr/[Cr+Al]] and Mg# [=Mg/[Mg+Fe2+] of spinel), suggest that the present-day subcontinental lithospheric mantle (SCLM) beneath the Changbaishan Volcano most likely formed from an upwelling asthenosphere at some time after the late Mesozoic and has undergone a low degree of partial melting. The studied lherzolite xenoliths show low concentrations of S, Cu, and platinum group elements (PGE), which plot a flat pattern on primitive-mantle normalized diagram. Very low concentrations in our samples suggest that PGEs occur as alloys or hosted by silicate and oxide minerals. The compositions of the studied samples are similar to those of peridotite xenoliths in the Longgang volcanic field (LVF) in their mineralogy and bulk rock compositions including the abundance of chalcophile and siderophile elements. However, they are distinctly different from those of peridotite xenoliths in other areas of the North China Craton (NCC) in terms of Cu, S and PGE. Our data suggest that the SCLM underlying the northeastern part of the NCC may represent a distinct unit of the newly formed lithospheric mantle.  相似文献   

14.
The Sauwald area is located at the southern rim of the Bohemian Massif and contains migmatites and high-grade metapelitic and granitic gneisses. These rocks were metamorphosed during the post-collisional high-T/low-P stage of the Variscan metamorphic event (~330 Ma). Metapelitic samples were taken from two localities near Kössldorf and Pyret in Upper Austria and the investigated samples contain the mineral assemblage garnet + cordierite + spinel + sillimanite + K-feldspar + quartz + biotite + muscovite + magnetite + graphite. An important aspect of this study is the evaluation of previously published P-T estimates for these high-grade metapelites (Knop et al. 1995; Tropper et al. 2006) involving Ti-in-biotite, Na-in-cordierite thermometry and the micro-Raman thermometer based upon the degree of crystallization of carbonaceous material. In the two samples studied three texturally and chemically different biotites are distinguished. Biotite inclusions in garnet have the highest Ti contents of 5–6 wt.% TiO2. Matrix biotites contain 2–4 wt.% TiO2 and biotites from late-stage muscovite-biotite symplectites contain <2 wt.% TiO2. This corresponds to temperatures of 730–760°C (stage 1), 600–700°C (stage 2), and 550–610°C (stage 3). Since the Ti-in-biotite thermometer strongly depends on X Mg of biotite, which is susceptible to changes during retrogression the calculated temperatures for stage 1 are interpreted as minimum temperatures of the peak metamorphic stage. The Na contents of the studied cordierites vary from 0.1 to 0.2 wt.% Na2O. Application of the Na-in-cordierite thermometer yields temperatures in the range of 770–900°C; they are strongly dependent on the bulk Na2O content of the samples. The micro-Raman geothermometer of graphite was applied to carbonaceous material, which occurs as inclusions in garnet and cordierite. It yielded a maximum temperature >650°C, i.e. above the calibration limit of this method. This study shows that the obtained temperature estimates agree well with the P-T estimates based on phase equilibrium thermobarometry (Knop et al. 1995; Tropper et al. 2006), thus illustrating the validity of these thermometers. Nevertheless in order to more precisely constrain the metamorphic evolution of these high-grade rocks, better constrained experimental calibrations of, for instance the Na-in-cordierite thermometer, are clearly needed.  相似文献   

15.
Using the experimental data on Fe–Mg exchange between orthopyroxene and biotite of Fonarev & Konilov (1986), an orthopyroxene–biotite geothermometer is developed. The thermometer is corrected for mixing of Ti and Al in octahedral sites in biotite and also for non-ideal mixing of Fe and Mg in orthopyroxene. The thermometer is applied to several amphibolite–granulite transition facies and granulite facies rocks and also to mantle xenoliths. It yields consistent results in rocks of widely varying bulk composition, and highly magnesian mantle xenoliths. This thermometer removes the difficulty of estimating temperature in garnet-free rocks in high-grade terrains and also provides independent estimates of temperature in garnet-bearing assemblages.  相似文献   

16.
Upper-mantle xenoliths in Cenozoic basalts of northwestern Spitsbergen are rocks of peridotite (spinel lherzolites) and pyroxenite (amphibole-containing garnet and garnet-free clinopyroxenites, garnet clinopyroxenites, and garnet and garnet-free websterites) series. The upper-mantle section in the depth range 50–100 km is composed of spinel peridotites; at depths of 80–100 km pyroxenites (probably, dikes or sills) appear. The equilibrium conditions of parageneses are as follows: in the peridotites—730–1180 °C, 13–27 kbar, and oxygen fugacity of − 1.5 to + 0.3 log. un.; in the pyroxenites—1100–1310 °C, 22–33 kbar. The pyroxenite minerals have been found to contain exsolved structures, such as orthopyroxene lamellae in clinopyroxene and, vice versa, clinopyroxene lamella in orthopyroxene. The formation temperatures of unexsolved phases in orthopyroxene and clinopyroxene are nearly 100–150 °C higher than the temperatures of the lamellae–matrix equilibrium and the equilibrium of minerals in the rock. The normal distribution of cations in the spinel structure and the equilibrium distribution of Fe2 + between the M1 and M2 sublattices in the orthopyroxenes point to the high rate of xenolith ascent from the rock crystallization zone to the surface. All studied Spitsbergen rock-forming minerals from mantle xenoliths contain volatiles in their structure: OH, crystal hydrate water H2Ocryst, and molecules with characteristic CH and CO groups. The first two components are predominant, and the total content of water (OH– + H2Ocryst) increases in the series olivine → garnet → orthopyroxene → clinopyroxene. The presence of these volatiles in the nominally anhydrous minerals (NAM) crystallized at high temperatures and pressures in the peridotites and pyroxenites testifies to the high strength of the volatile–mineral bond. The possibility of preservation of volatiles is confirmed by the results of comprehensive thermal and mass-spectral analyses of olivines and clinopyroxene, whose structures retain these components up to 1300 °C. The composition of hypothetic C–O–H fluid in equilibrium (in the presence of free carbon) with the underlying mantle rocks varies from aqueous (> 80% H2O) to aqueous–carbonic (~ 60% H2O). The fluid becomes essentially aqueous when the oxygen activity in the system decreases. However, there is no strict dependence of the redox conditions on the depth of formation of xenoliths.  相似文献   

17.
Northern Victoria Land is a key area for the Ross Orogen – a Palaeozoic foldbelt formed at the palaeo‐Pacific margin of Gondwana. A narrow and discontinuous high‐ to ultrahigh‐pressure (UHP) belt, consisting of mafic and ultramafic rocks (including garnet‐bearing types) within a metasedimentary sequence of gneisses and quartzites, is exposed at the Lanterman Range (northern Victoria Land). Garnet‐bearing ultramafic rocks evolved through at least six metamorphic stages. Stage 1 is defined by medium‐grained garnet + olivine + low‐Al orthopyroxene + clinopyroxene, whereas finer‐grained garnet + olivine + orthopyroxene + clinopyroxene + amphibole constitutes the stage 2 assemblage. Stage 3 is defined by kelyphites of orthopyroxene + clinopyroxene + spinel ± amphibole around garnet. Porphyroblasts of amphibole replacing garnet and clinopyroxene characterize stage 4. Retrograde stages 5 and 6 consist of tremolite + Mg‐chlorite ± serpentine ± talc. A high‐temperature (~950 °C), spinel‐bearing protolith (stage 0), is identified on the basis of orthopyroxene + clinopyroxene + olivine + spinel + amphibole inclusions within stage 1 garnet. The P–T estimates for stage 1 are indicative of UHP conditions (3.2–3.3 GPa and 764–820 °C), whereas stage 2 is constrained between 726–788 °C and 2.6–2.9 GPa. Stage 3 records a decompression up to 1.1–1.3 GPa at 705–776 °C. Stages 4, 5 and 6 reflect uplift and cooling, the final estimates yielding values below 0.5 GPa at 300–400 °C. The retrograde P–T path is nearly isothermal from UHP conditions up to deep crustal levels, and becomes a cooling–unloading path from intermediate to shallow levels. The garnet‐bearing ultramafic rocks originated in the mantle wedge and were probably incorporated into the subduction zone with felsic and mafic rocks with which they shared the subsequent metamorphic and geodynamic evolution. The density and rheology of the subducted rocks are compatible with detachment of slices along the subduction channel and gravity‐driven exhumation.  相似文献   

18.
Ultrabasic xenoliths (pyroxenites, lherzolites, harzburgites) in recent (Neogene–Quaternary) volcanoes have been studied in three localities within Syria: Jubates (North), Mhailbeh (Center), Tel Thannoun (South). PT conditions of mineral equilibration have been estimated by pyroxene thermometry (temperature) and maximum CO2 density in primary inclusions (minimum pressure). Pyroxenites equilibrate at significantly higher conditions (T about 1200 °C, P>15 kbar) than lherzolites and harzburgites (900<T<1100 °C, P between 10 and 15 kbar). All are within the spinel lherzolite field, whereas Cretaceous xenoliths originate within the garnet lherzolite field. To cite this article: A. Bilal, F. Sheleh, C. R. Geoscience 336 (2004).  相似文献   

19.
The recognition of the coeval growth of zircon, orthopyroxene and garnet domains formed during the same metamorphic cycle has been attempted with detailed microanalyses coupled with textural analyses. A coronitic garnet-bearing granulite from the lower crust of Calabria has been considered. U–Pb zircon data and zircon, garnet and orthopyroxene chemistries, at different textural sites, on a thin section of the considered granulite have been used to test possible equilibrium and better constrain the geological significance of the U–Pb ages related to zircon separates from other rocks of the same structural level. The garnet is very rich in REE and is characterised by a decrease in HREE from core to outer core and an increase in the margin. Zircons show core–overgrowth structures showing different chemistries, likely reflecting episodic metamorphic new growth. Zircon grains in matrix, corona around garnet and within the inner rim of garnet, are decidedly poorer in HREE up to Ho than garnet interior. Orthopyroxene in matrix and corona is homogeneously poor in REE. Thus, the outer core of garnet and the analysed zircon grains grew or equilibrated in a REE depleted system due to the former growth of garnet core. Zircon ages ranging from 357 to 333 Ma have been determined in the matrix, whereas ages 327–320 Ma and around 300 Ma have been determined, respectively, on cores and overgrowths of zircons from matrix, corona and inner rim of garnet. The calculated DREEzrn/grt and DREEopx/grt are largely different from the equilibrium values of literature due to strong depletion up to Ho in zircon and orthopyroxene with respect to garnet. On the other hand, the literature data show large variability. In the case study, (1) the D zrn/grt values define positive and linear trends from Gd to Lu as many examples from literature do and the values from Er to Lu approach the experimental results at about 900 °C in the combination zircon dated from 339 to 305 Ma with garnet outer core, and (2) D opx/grt values define positive trends reaching values considered as suggestive of equilibrium from Er to Lu only with respect to the outer core of garnet. The presence of a zircon core dated 320 Ma in the inner rim of garnet suggests that it, as well as those dated at 325–320 Ma in the other textural sites and, probably, those dated at 339–336 Ma showing depletion of HREE, grew after the garnet core, which sequestered a lot of HREE and earlier than the HREE rich margin of garnet. The quite uniform REE contents in orthopyroxene from matrix and corona and the low and uniform contents of HREE in the zircon overgrowths dated at about 300 Ma allow to think that homogenisation occurred during or after the corona formation around this age. The domains dated around 325–320 Ma would approximate the stages of decompression, whereas the metamorphic peak probably occurred earlier than 339 Ma.  相似文献   

20.
Equilibria in the Sirf (Silica-Ilmenite-Rutile-Ferrosilite) system: $${\text{SiO}}_{\text{2}} + ({\text{Mg,Fe}}){\text{TiO}}_{\text{3}} {\text{ + (Mg,Fe)SiO}}_{\text{3}} $$ have been calibrated in the range 800–1100° C and 12–26 kbar using a piston-cylinder apparatus to assess the potential of the equilibria for geobarometry in granulite facies assemblages that lack garnet. Thermodynamic calculations indicate that the two end-member equilibria involving quartz + geikielite = rutile + enstatite, and quartz + ilmenite = rutile + ferrosilite, are metastable. We therefore reversed equilibria over the compositional range Fs40–70, using Ag80Pd20 capsules with \(f_{{\text{O}}_{\text{2}} } \) buffered at or near iron-wüstite. Ilmenite compositions coexisting with orthopyroxene are \(X_{{\text{MgTiO}}_{\text{3}} }^{{\text{Ilm}}} \) of 0.06 to 0.15 and \(X_{{\text{Fe}}_{\text{2}} {\text{O}}_{\text{3}} }^{{\text{Ilm}}} \) of 0.00 to 0.01, corresponding toK D values of 13.3, 10.2, 9.0 and 8.0 (±0.5) at 800, 900, 1000 and 1100° C, respectively, whereK D =(XMg/XFe)Opx/(XMg/XFe)Ilm. Pressures have been calculated using equilibria in the Sirf system for granulites from the Grenville Province of Ontario and for granulite facies xenoliths from central Mexico. Pressures are consistent with other well-calibrated geobarometers for orthopyroxeneilmenite pairs from two Mexican samples in which oxide textures appear to represent equilibrium. Geologically unreasonable pressures are obtained, however, where oxide textures are complex. Application of data from this study on the equilibrium distribution of iron and magnesium between ilmenite and orthopyroxene suggests that some ilmenite in deep crustal xenoliths is not equilibrated with coexisting pyroxene, while assemblages from exposed granulite terranes have reequilibrated during retrogression. The Sirf equilibria are sensitive to small changes in composition and may be used for determination of activity/composition (a/X) relations of orthopyroxene if an ilmenite model is specified. A symmetric regular solution model has been used for orthopyroxene in conjunction with activity models for ilmenite available from the literature to calculatea/X relations in orthopyroxene of intermediate composition. Data from this study indicate that FeSiO3?MgSiO3 orthopyroxene exhibits small, positive deviations from ideality over the range 800–1100°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号