共查询到20条相似文献,搜索用时 15 毫秒
1.
Terence Edward Smith Matthew Thirlwall Paul Eric Holm Michael John Harris 《Island Arc》2004,13(1):73-94
Abstract On the island of Mustique, fresh and propylitized olivine–plagioclase–clinopyroxene basalt, plagioclase–clinopyroxene–orthopyroxene and plagioclase–clinopyroxene–amphibole andesite lavas and minor intrusions are interbedded with Oligocene pyroclastic and epiclastic rocks. Chemical data show that two isotopically identical, but chemically different, suites of lava are present: (i) the OPXS (87Sr/86Sr 0.70403–0.70454; 143Nd/144Nd 0.512952–0.512986; δ18Ocpx 5.49 and 5.61), comprising basalts and orthopyroxene‐bearing andesites; and (ii) the AMPHS (87Sr/86Sr 0.70401–0.70457; 143Nd/144Nd 0.512981–0.513037; δ18Ocpx 5.54), made up of basalts and amphibole‐bearing andesites. The OPXS has higher contents of TiO2, P2O5, light rare earth elements, Sm, Pb, Th, U, Zr, Y and Nb, and higher La/Yb ratios than the AMPHS. The isotopic data suggest that both suites formed from melts derived from the same subduction‐modified depleted mantle source as the volcanic rocks of nearby St Vincent and Bequia, and the northern islands of the Lesser Antilles Arc. The immobile trace element contents, and La/Yb ratios, of the OPXS are indicative of ~10% partial melting of the source, whereas those of the AMPHS are indicative of ~25% partial melting. The within‐suite chemical variation of the OPXS is consistent with ~45% fractional crystallization of its intratelluric mineral assemblages, and that of the AMPHS is consistent with the removal of ~65% of its intratelluric assemblages. Experimental evidence suggests that both suites of basalt crystallized at pressures <8 kbar from melts containing 1–2 wt% water. After extensive fractional crystallization, the andesites crystallized at pressures between approximately 5 and 2 kbar. The OPXS magmas appear to have lost more of their water content than the AMPHS magmas. Thus, the OPXS andesites formed from melts with an estimated water content of 2–3 wt%, whereas the AMPHS andesites formed from melts containing at least 4.5 wt% water. 相似文献
2.
The purpose of this work was to study jointly the volcanic-hydrothermal system of the high-risk volcano La Soufrière, in
the southern part of Basse-Terre, and the geothermal area of Bouillante, on its western coast, to derive an all-embracing
and coherent conceptual geochemical model that provides the necessary basis for adequate volcanic surveillance and further
geothermal exploration. The active andesitic dome of La Soufrière has erupted eight times since 1660, most recently in 1976–1977.
All these historic eruptions have been phreatic. High-salinity, Na–Cl geothermal liquids circulate in the Bouillante geothermal
reservoir, at temperatures close to 250 °C. These Na–Cl solutions rise toward the surface, undergo boiling and mixing with
groundwater and/or seawater, and feed most Na–Cl thermal springs in the central Bouillante area. The Na–Cl thermal springs
are surrounded by Na–HCO3 thermal springs and by the Na–Cl thermal spring of Anse à la Barque (a groundwater slightly mixed with seawater), which are
all heated through conductive transfer. The two main fumarolic fields of La Soufrière area discharge vapors formed through
boiling of hydrothermal aqueous solutions at temperatures of 190–215 °C below the "Ty" fault area and close to 260 °C below
the dome summit. The boiling liquid producing the vapors of the Ty fault area has δD and δ18O values relatively similar to those of the Na–Cl liquids of the Bouillante geothermal reservoir, whereas the liquid originating
the vapors of the summit fumaroles is strongly enriched in 18O, due to input of magmatic fluids from below. This process is also responsible for the paucity of CH4 in the fumaroles. The thermal features around La Soufrière dome include: (a) Ca–SO4 springs, produced through absorption of hydrothermal vapors in shallow groundwaters; (b) conductively heated, Ca–Na–HCO3 springs; and (c) two Ca–Na–Cl springs produced through mixing of shallow Ca–SO4 waters and deep Na–Cl hydrothermal liquids. The geographical distribution of the different thermal features of La Soufrière
area indicates the presence of: (a) a central zone dominated by the ascent of steam, which either discharges at the surface
in the fumarolic fields or is absorbed in shallow groundwaters; and (b) an outer zone, where the shallow groundwaters are
heated through conduction or addition of Na–Cl liquids coming from hydrothermal aquifer(s).
Received: 9 November 1998 / Accepted: 15 July 1999 相似文献
3.
4.
B.G. Polyak Ph. Bouysse V.I. Kononov G.Yu. Butuzova A. Criaud V.I. Dvorov M.D. Khutorskoy V.G. Matveev V.I. Paduchikh E.P. Radionova A.A. Rot I.N. Tolstikhin A.I. Voznesenskiy V.P. Zverev 《Journal of Volcanology and Geothermal Research》1992,54(1-2)
During the Soviet-French survey carried out on board of the R.V. Akademik N. Strakhov, between Guadeloupe and Montserrat island in the central Lesser Antilles, evidence of submarine hydrothermal activity was discovered on the southeastern tip of the Shoe-Rock escarpment. The latter is part of a large, 130 km long, transverse structure, the Montserrat-Marie Galante fault, which crosses the Guadeloupe archipelago. Another locus of activity, probably of subdued importance nowadays, is represented by the d'Entrecasteaux dome, a small faulted seamount, located about 25 km to the SW of the former area.The evidence for hydrothermal activity is: (a) a wide range of values of conductive heat flow (q=6–11 mW/m2) and regular vertical variation at some sites with extreme values located close to the two above-mentioned features (average regional value, q = 105 mW/m2, s.d. = 32); (b) occurrence of secondary mineralizations (todorokite, nontronite, etc.) replacing locally the primary matrix of basal upper Pliocene deposits; (c) geochemical anomalies in seawater near the sea bottom, showing enrichment in mantle-derived 3He (δ3He up to 10.2%), correlated with a sharp Zn anomaly (content up to 523 ppb).Further investigations along the submerged segments of the Montserrat-Marie Galante fault should probably lead to other discoveries of hydrothermal venting and/or mineralizations. 相似文献
5.
Twenty-seven K-Ar ages have been measured on igneous rocks from islands of the Limestone Caribbees (St. Martin, St. Bartholomew, Antigua, and Grande Terre, Guadeloupe) and Martinique in the Lesser Antilles arc. Earlier paleontological data indicated that rocks on several of these islands are Eocene in age and among the oldest known in the arc.The oldest igneous activity on the islands studied is 35–40 m.y. Bifurcation of the Lesser Antilles arc north of Guadeloupe took place between 7 and 20 m.y. ago. A distinct physical overlap of older and younger volcanic arcs exists on Martinique.Our results do not support previous suggestions that the pre-Tertiary basement of the Greater Antilles extends through the Limestone Caribbees to the anomalously old, Jurassic-Cretaceous, igneous rocks of La Desirade. 相似文献
6.
Scaling geology and seismic deconvolution 总被引:1,自引:0,他引:1
The reflection seismic signal observed at the surface is the convolution of a wavelet with a reflection sequence representing the geology. Deconvolution of the observations without prior knowledge of the wavelet can be done by making assumptions about the statistics of the reflection sequence. In particular, the widely used prediction error filter is obtained by assuming that the power spectra of reflection sequences are white. However, evidence from well logs suggests that the power spectra are in fact proportional to a power of the frequency,f, that is, tof
, with equal approximately to 1.We have found a simple modification to the prediction error filter that markedly improves deconvolution for reflection sequences with such scaling behaviour. We have calculated three reflection sequences from sonic logs of a well off Newfoundland and two wells in Quebec. The three values of were 0.84, 0.95, and 1.20. We made artificial seismograms from the sequences and deconvolved them with the prediction error filter and our new filters. The errors between the known reflection sequences and the recovered ones for the prediction error filter were 20%, 26%, and 31%; for the new filters 0.5%, 2.0% and 0.5%. 相似文献
7.
In this paper, we use carbon isotopes in the dissolved load of rivers from the Lesser Antilles volcanic arc (Guadeloupe, Martinique and Dominica islands) to constrain the source of the carbon dioxide (CO2) involved in the neutralization reactions during water–rock interactions. The δ13C data span a large range of variations, from –19‰ to –5 · 2‰ for DIC (dissolved inorganic carbon) concentrations ranging from 11 μM to 2000 μM. Coupled with major element concentrations, carbon isotopic ratios are interpreted as reflecting a mixture of magmatic CO2 (enriched in heavy carbon (δ13C ≈ –3 · 5‰) and biogenic CO2 produced in soils (enriched in light carbon (δ13C < –17‰)). Carbon isotopes show that, at the regional scale, 23 to 40% of CO2 consumed by weathering reactions is of magmatic origin and is transferred to the river system through aquifers under various thermal regimes. These numbers remain first‐order estimates as the major uncertainty in using carbon isotopes as a source tracer is that carbon isotopes can be fractionated by a number of processes, including soil and river degassing. Chemical weathering is clearly, at least, partly controlled by the input of magmatic CO2, either under hydrothermal (hot) or surficial (cold) weathering regimes. This study shows that the contribution of magmatic CO2 to chemical weathering is an additional parameter that could explain the high weathering rates of volcanic rocks. The study also shows that a significant part of the carbon degassed from the Earth's interior is not released as CO2 to the atmosphere, but as DIC to the ocean because it interacts with the groundwater system. This study calls for a better understanding of the contributions of deep carbon to the hydrosphere and its influence on the development of the Critical Zone. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
8.
Geochronology and petrogenesis of granitic rocks in Gangdese batholith,southern Tibet 总被引:18,自引:0,他引:18
Based on petrological and geochemical characteristics such as rock assemblage, petrogeochemistry, Sr-Nd isotope, zircon U-Pb age, and Hf isotope, we studied geochronological framework, magma types, source characters, and petrogenesis of different stages of magmatism of the granitic rocks from the Gangdese batholith in southern Tibet. The magmatic activities of the Gangdese batholith can be divided into three stages. The Mesozoic magmatism, induced by northern subduction of Neotethyan slab, was continuously ... 相似文献
9.
Cauldron collapse and voluminous pumice eruptions, some 2000 years ago, indicate a mature stage in the summit cone of a volcano rising 8000 feet above the ocean floor. Volcanic rocks ranging from early submarine tholeiitic basalts to young subaerial dacite obsidians have been mapped in chronologic sequence through five formations; plutonic rocks, found as accidental blocks and as disrupted cumulates, are gabbros or diorites. Twenty-three new analyses are listed. 相似文献
10.
G. Wadge 《Bulletin of Volcanology》1986,48(6):349-372
The orientations of dykes from many of the islands of the Lesser Antilles island arc have been mapped. Most of these dykes can be interpreted in terms of local or regional swarms derived from specific volcanoes of known age, with distinct preferred orientations. Dykes are known from all Cenozoic epochs except the Palaeocene, but are most common in Pliocene, Miocene and Oligocene rocks. A majority of the sampled dykes are basaltic, intrude volcaniclastic host rocks and show a preference for widths of 1–1.25 m. Locally, dyke swarms dilate their hosts by up to 9% over hundreds of metres and up to 2% over distances of kilometres. The azimuths of dykes of all ages show a general NE-SW preferred orientation with a second NW-SE mode particularly in the Miocene rocks of Martinique. The regional setting for these minor intrusions is a volcanic front above a subduction zone composed of three segments: Saba-Montserrat, Guadeloupe-Martinique, St. Lucia-Grenada. The spacing of volcanic centres along this front is interpreted in terms of rising plumes of basaltic magma spaced about 30 km apart. This magma is normally intercepted at crustal depths by dioritic plutons and andesitic/dacitic magma generated there. Plumes which intersect transverse fracture systems or which migrate along the front can avoid these crustal traps. Throughout its history the volcanic front as a whole has migrated, episodically, towards the backarc at an average velocity of about 1 km/Ma. The local direction of plate convergence is negatively correlated with the local preferred orientation of dykes. The dominant NE-SW azimuth mode corresponds closely to the direction of faulting in the sedimentary cover of the backarc and the inferred tectonic fabric of the oceanic crust on which the arc is founded. A generalised model of the regional stress field that controls dyke intrusion outside of the immediate vicinity of central volcanic vents is proposed, in which the maximum horizontal stress parallels the volcanic front except in the northern segment where subduction of the Barracuda Rise perturbs the stress field. There is also evidence of specific temporal changes in the stress field that are probably due to large scale plate kinematics. 相似文献
11.
12.
G. M. Di Paola 《Bulletin of Volcanology》1974,38(3):944-987
Nisyros is a totally volcanic island located at the eastern limit of the quaternary calc-alkaline island arc system of the South Aegean Sea. Its age is rather young since K/Ar dating has given an age of 0.2 m.y. B.P. for one of the oldest outcropping products of this volcano. The volcanological evolution of Nisyros has tentatively been reconstructed as follows:
- after a period (from 3.0? to 0.2 m.y. B.P.) of submarine activity, evidenced by the presence of pillow-lavas and hyaloclastites, the volcano grew above sea level;
- effusive and explosive subaerial activity from different vents built up a complex stratovolcano, probably around 0.2 m.y. B. P.;
- at the end of an intense explosive activity (between 0.2 m.y. B.P. and Present) the top of the volcano collapsed forming a caldera which is still perfectly preserved. A post-caldera activity with eruptions of huge and viscous domes and lava flows of uniform composition, both inside and outside the caldera, concluded this stage of the volcano evolution;
- in historical times, spectacular phreatic explosion craters formed on the caldera floor;
- presently, a large area of the caldera floor is affected by a considerable hydrothermal activity. The hypothesis is formed that Nisyros volcano is not yet extinct.
13.
Deep xenoliths in alkalic porphyry, Liuhe, Yunnan, and implications to petrogenesis of alkalic porphyry and associated mineralizations 总被引:9,自引:0,他引:9
Xianfan Liu Xinzhi Zhan Zhenmin Gao Jiajun Liu Chaoyang Li Wenchao Su 《中国科学D辑(英文版)》1999,42(6):627-635
Na-rich microlite-glass is first discovered in deep-source xenoliths in alkali-rich porphyry, Liuhe village, Heqing County,
Yunnan Province. It is shown that the ultramafic xenoliths originated from partial melting of primary mantle and the glass
resulted from metasomatism between the xenoliths and mantle fluid derived from mantle degassing. Mantle metasomatism not only
resulted in the enrichment of alkaline, large-ion elements, ore metals and volatiles but also created a favorable condition
for the generation of alkaline magmas. The mantle xenoliths and their characteristics of mantle metasomatism provide important
evidence for a better understanding of the petrogenesis and mineralization of the Cenozoic alkali-rich porphyry in western
Yunnan. 相似文献
14.
15.
E. Bagnato A. Aiuppa F. Parello W. D'Alessandro P. Allard S. Calabrese 《Journal of Volcanology and Geothermal Research》2009,179(1-2):96-106
Quantifying the contribution of volcanism to global mercury (Hg) emissions is important to understand the pathways and the mechanisms of Hg cycling through the Earth's geochemical reservoirs and to assess its environmental impacts. While previous studies have suggested that degassing volcanoes might contribute importantly to the atmospheric budget of mercury, little is known about the amount and behaviour of Hg in volcanic aquifers. Here we report on detailed investigations of both the content and the speciation of mercury in aquifers of active volcanoes in Italy and Guadeloupe Island (Lesser Antilles). In the studied groundwaters, total Hg (THg) concentrations range from 10 to 500 ng/l and are lower than the 1000 ng/l threshold value for human health protection fixed by the World Health Organization [WHO (1993): WHO Guidelines for Drinking Water Quality- http://www.who.int/water_sanitation_health/GDWQ/index.htlm]. Positive co-variations of (THg) with sulphate indicate that Hg-SO4-rich acid groundwaters receive a direct input of magmatic/hydrothermal gases carrying mercury as Hg0(gas). Increasing THg in a volcanic aquifer could thus be a sensitive tracer of magmatic gas input prior to an eruption. Since the complex behaviour and toxicity of mercury in waters depend on its chemical speciation, we carefully determined the different aqueous forms of this element in our samples. We find that dissolved elemental Hg0(aq) and particulate-bound Hg (HgP) widely prevail in volcanic aquifers, in proportions that highlight the efficiency of Hg adsorption onto colloidal particles. Moreover, we observe that dissolved Hg0aq and Hg(II) forms coexist in comparable amount in most of the waters, in stark contrast to the results of thermodynamic equilibrium modelling. Therefore, chemical equilibrium between dissolved mercury species in volcanic waters is either prevented by natural kinetic effects or not preserved in collected waters due to sampling/storage artefacts. Finally, we provide a first quantitative comparison of the relative intensity of aqueous transport and atmospheric emissions of mercury at Mount Etna, a very active basaltic volcano. 相似文献
16.
Comparing predicted and observed ground motions from subduction earthquakes in the Lesser Antilles 总被引:1,自引:0,他引:1
This brief article presents a quantitative analysis of the ability of eight published empirical ground-motion prediction equations
(GMPEs) for subduction earthquakes (interface and intraslab) to estimate observed earthquake ground motions on the islands
of the Lesser Antilles (specifically Guadeloupe, Martinique, Trinidad, and Dominica). In total, over 300 records from 22 earthquakes
from various seismic networks are used within the analysis. It is found that most of the GMPEs tested perform poorly, which
is mainly due to a larger variability in the observed ground motions than predicted by the GMPEs, although two recent GMPEs
derived using Japanese strong-motion data provide reasonably good predictions. Analyzing separately the interface and intraslab
events does not significant modify the results. Therefore, it is concluded that seismic hazard assessments for this region
should use a variety of GMPEs in order to capture this large epistemic uncertainty in earthquake ground-motion prediction
for the Lesser Antilles. 相似文献
17.
18.
The Ogasawara Islands mainly comprise Eocene volcanic strata formed when the Izu–Ogasawara–Mariana Arc began. We present the first detailed volcanic geology, petrography and geochemistry of the Mukojima Island Group, northernmost of the Ogasawara Islands, and show that the volcanic stratigraphy consists of arc tholeiitic rocks, ultra‐depleted boninite‐series rocks, and less‐depleted boninitic andesites, which are correlatable to the Maruberiwan, Asahiyama and Mikazukiyama Formations on the Chichijima Island Group to the south. On Chichijima, a short hiatus is identified between the Maruberiwan (boninite, bronzite andesite, and dacite) and Asahiyama Formation (quartz dacite and rhyolite). In contrast, these lithologies are interbedded on Nakodojima of the Mukojima Island Group. The stratigraphically lower portion of Mukojima is mainly composed of pillow lava, which is overlain by reworked volcaniclastic rocks in the middle, whereas the upper portion is dominated by pyroclastic rocks. This suggests that volcanic activity now preserved in the Mukojima Island Group records growth of one or more volcanoes, beginning with quiet extrusion of lava under relatively deep water followed by volcaniclastic deposition. These then changed into moderately explosive eruptions that took place in shallow water or above sea level. This is consistent with the uplift of the entire Ogasawara Ridge during the Eocene. Boninites from the Mukojima Island Group are divided into three types on the basis of geochemistry. Type 1 boninites have high SiO2 (>57.0 wt.%) and Zr/Ti (>0.022) and are the most abundant type in both Mukojima and Chichijima Island Groups. Type 2 boninites have low SiO2 (<57.1 wt.%) and Zr/Ti (<0.014). Type 3 boninites have 57.6–60.7 wt.% SiO2 and are characterized by high CaO/Al2O3 (0.9–1.1). Both type 2 and 3 boninites are common on Mukojima but are rare in the Chichijima Island Group. 相似文献
19.
A. Samper X. Quidelleur G. Boudon A. Le Friant J.C. Komorowski 《Journal of Volcanology and Geothermal Research》2008
It is now recognised that flank collapses are a recurrent process in the evolution of the Lesser Antilles Arc volcanoes. Large magnitude debris-avalanche deposits have been identified off the coast of Dominica, Martinique and St. Lucia, with associated volumes up to 20 km3 [Deplus, C., Le Friant, A., Boudon, G., Komorowski, J.-C., Villemant, B., Harford, C., Ségoufin, J., Cheminée, J.-L., 2001. Submarine evidence for large-scale debris avalanches in the Lesser Antilles Arc. Earth Planet. Sci. Lett., 192: 145–157.]. We present new radiometric dating of three major events using the K–Ar Cassignol–Gillot technique. In the Qualibou depression of St. Lucia, a collapse has been constrained by dome emplacement prior to 95 ± 2 ka. In Dominica, where repetitive flank collapse events have occurred [Le Friant, A., Boudon, G., Komorowski, J.-C., Deplus, C., 2002. L'île de la Dominique, à l'origine des avalanches de débris les plus volumineuses de l'arc des Petites Antilles. C.R. Geoscience, 334: 235–243], the Plat Pays event probably occurred after 96 ± 2 ka. Inside the depression caused by this event, Scotts Head, which is interpreted as a proximal megabloc from the subsequent Soufriere avalanche event has been dated at 14 ± 1 ka, providing an older bound for this event. On Martinique three different domes within the Carbets structure dated at 337 ± 5 ka constrain the age of this high magnitude event. Finally, these results obtained from three of the most voluminous flank collapses provide constraints to estimate the recurrence of these events, which represent one of the major hazards associated with volcanoes of the Lesser Antilles Arc. 相似文献
20.
Abstract The initial volcanic phase of Cretaceous island arc strata in central Puerto Rico, at the eastern end of the extinct Greater Antilles Arc, comprises a 6‐km thick pile of lava and volcanic breccia (Río Majada Group). Preserved within the sequence is a conspicuous shift in absolute abundances of the more incompatible elements, including Th, Nb, and the light rare earth elements (LREE: La, Ce, Pr and Nd). The compositional shift is marked by a decrease in La/Sm from averages of 2.11 in the lowest third of the pile (Formation A) to 1.48 at the top (Formation C), and by a distinctive flattening of LREE segments of chondrite‐normalized REE patterns. i87Sr/86Sr and ?Nd average about 0.7035 and 8.2, respectively, in early Formation A basalts. These ranges normally overlap samples from later Formations B and C. Isotope compositions of the latter group are more variable, however, and several samples are considerably more radiogenic than Formation A basalts, such that i87Sr/86Sr averages almost 0.7042 while ?Nd‐values decrease to 7.5 in Formation B and C basalts. Theoretical models of non‐modal melting processes in both amphibole peridotite and spinel lherzolite sources provide insight into the origin of depleted Th, Nb, and LREE abundances in Puerto Rican basalts. Low Nb concentrations less than normal mid‐oceanic ridge basalts in Formation A basalts indicate the wedge was slightly depleted by low‐volume decompression fusion due to induced convection in the back‐arc region prior to entry of the source into the arc melting zone. However, depleted patterns in Formation C basalts cannot be generated by relatively greater degrees of decompression fusion in the back‐arc, because addition of the La‐enriched slab‐derived component to more depleted source material invariably produces elevated rather than decreased La/Sm. Refluxing of Formation A harzburgitic residua is similarly precluded. In contrast, the observed patterns are readily reproduced by multistage melting models involving hybridized sources containing normal Formation A lherzolite source material blended with recycled, unrefluxed harzburgite residua. Successful models require hybrid sources containing large volumes of recycled harzburgite (up to 50%) during generation of Formation C basalts. Slightly elevated radiometric Sr and Nd isotopes in a few flows from Formation C are attributed to partial refluxing of the hybrid sources within the wedge. 相似文献