首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
Oxygen and carbon stable isotope ratios in carbonates from the HDP-04 drill core from Lake Hovsgol, NW Mongolia, show an overall covariant relationship suggesting that for the most of the past 1 Ma Hovsgol remained a closed-basin lake. Carbonate δ18O ratio is responsive to regional climate change: a ca. +1.5‰ basinwide δ18O shift has occurred with the onset of Bølling–Allerød warming (sensu lato), followed by a ca. 0.8‰ depletion during the Younger Dryas. The post-glacial δ18O shift of the same magnitude is recorded in bulk carbonates, shells of two ostracod species and in wet-sieved fine fraction <63 μm. Associated with the lake-level rise and correlative with the post-glacial warming in the northern hemisphere, the observed δ18O shift is nevertheless positive. This argues against changes in local temperature and hydrology as key driving mechanisms. Most likely, Lake Hovsgol δ18O reflects a climate-driven shift in the composition of regional precipitation. Tied into a distinct lithologic succession, the radiocarbon-dated late glacial δ18O shift apparently represents a ‘template’ of the lake's response to glacial–interglacial transitions: a similar pattern of parallel changes in lithology and carbonate stable isotope composition is observed in at least 10 more intervals in the 1-Ma record, including the MIS 20/MIS19 transition at the Brunhes/Matuyama paleomagnetic reversal boundary. The comparison of carbon stable isotope ratios of untreated and in vacuo roasted bulk sediment with those of detrital carbonates suggests that clastic input of carbonates by lake tributaries does not affect the geochemistry of bulk carbonates in the HDP-04 section. The profiles of bulk carbonate δ18O and δ13C in the Pleistocene section of the HDP-04 drill core suggest at ca. 15.4 ka, at ca. 100 m below today's level, Lake Hovsgol still stood relatively high as compared with prior extended periods of time during late Matuyama and early Brunhes. Isotopically heavy δ18O and δ13C ratios during the mid–late Brunhes, particularly, in carbonate crusts and oolites, are suggestive of past episodes of dramatic evaporative 18O-enrichment of lake waters. Despite the expectation of muted amplitudes of temperature- and precipitation-related isotope signals, the sedimentary record from the sensitive ‘water gauge’ basin of Lake Hovsgol has high potential for providing important constraints on past hydrologic evolution of continental interior Asia during the Pleistocene.  相似文献   

2.
This study was undertaken to determine whether wallrocks around the Twin Creeks Carlin-type gold deposits exhibit oxygen isotope haloes similar to those found around other types of hydrothermal deposits. Mineralization at Twin Creeks is hosted by Ordovician Sequence shales containing some carbonate minerals and by Pennsylvanian–Permian Etchart Formation limestone. Analysis of orthophosphate-soluble carbonate from these rocks shows that oxygen isotope haloes are detectable in Ordovician Sequence shales but not in Etchart Formation limestone. The soluble fraction of Ordovician Sequence shales at Twin Creeks has δ18O values of 12 to 24‰ and δ13C values of 0 to −10‰. Most samples fall along a poorly defined trend that extends from δ18O of about 24‰ and δ13C values of about 0, which are typical of unaltered limestones, toward lower values for both isotope systems, which are typical of rocks that have undergone alteration by hydrothermal fluids. Plots of these values along two sections through the ore body show that δ18O values of wallrocks are lowest in the ore zone and increase outward, forming a halo several hundred meters in size. In the same plots, δ13C values of the wallrocks do not show systematic spatial variations. The soluble fraction of Etchart Formation limestones at Twin Creeks have δ18O values of 25 to 5‰ and δ13C values of 4 to −10‰, but do not show any systematic spatial variation relative to mineralization at the scale of our samples. Failure of the Etchart Formation samples to show detectable haloes is probably related to deposition of post-ore carbonate minerals or lower ore fluid : rock ratios. Material balance calculations used to model the isotopic composition of average Ordovician Sequence shales indicate that changes in temperature and water : rock ratio were probably not sufficient to account for the wide range of isotope compositions observed in these rocks. The most likely additional factor contributing to this range of values was a change in the composition of the altering fluid, probably by mixing of the ore fluid with surrounding meteoric water. These results suggest that Carlin-type gold deposits are surrounded by haloes of low δ18O values, but that detection of these haloes could be complicated by local compositional variations and post-ore modification of the wallrocks.  相似文献   

3.
Empirical datasets provide the constraints on the variability and causes of variability in stable isotope compositions (δD or δ18O) of surface water and precipitation that are essential not only for models of modern and past climate but also for investigations of paleoelevation. This study presents stable isotope data for 76 samples from four elevation transects and three IAEA GNIP stations in the Eastern Cordillera of Colombia and the northern Andean foreland. These data are largely consistent with theories of stable isotope variability developed based on a global dataset. On a monthly basis, the precipitation-amount effect exerts the dominant control on δDp and δ18Op values at the IAEA GNIP stations. At the Bogotá station (2547 m), the δDp and δ18Op values vary seasonally, with isotopic minima correlating with maxima in precipitation-amount. Although surface water samples from Eastern Cordilleran streams and rivers fall on the Global Meteoric Water Line, samples from three of four lakes (2842–3459 m) have evaporatively elevated δDsw and δ18Osw values. The IAEA GNIP station data averaged over multiple years, combined with stream and river water data, define vertical lapse rates of −1.8‰ km−1 for Δδ18O and −14.6‰ km−1 for ΔδD, and are a close fit to a common thermodynamically based Rayleigh distillation model. Elevation uncertainties for these relationships are also evaluated. Comparison of this Colombian dataset with the elevation uncertainties generated by the thermodynamically based model shows that the model underestimates uncertainty at high Δδ18O and ΔδD values while overestimating it for low Δδ18O and ΔδD values. This study presents an independent, empirical assessment of stable isotope-based elevation uncertainties for the northern Andes based on a dataset of sufficient size to ensure statistical integrity. These vertical lapse rates and associated uncertainties form the basis for stable isotope paleoelevation studies in the northern Andes.  相似文献   

4.
It is important to understand the history and dynamics of climate in a transitional region between areas with different atmospheric circulation patterns, where the vegetation and ecosystems are vulnerable to environmental change. We investigated variations in the long-term oxygen isotope composition (δ18O) in tree rings of Qinghai spruce (Picea crassifolia) and their relationships to climatic parameters in the arid Qilian Mountains of northwestern China from 1870 to 2006. We found that the mean temperature from the previous November to the current February was significantly and positively correlated with the tree-ring δ18O values. The temperature effect, (the positive relationship between the temperature and the precipitation δ18O value) can explain the connection between temperature and the tree-ring δ18O values. Due to pooling of the earlywood and latewood into yearly tree-ring samples, it appears that the cellulose δ18O may be influenced by isotopically nonhomogeneous water sources and climatic conditions during the previous and current growing seasons. Subtle shifts and amplitude deviations in cellulose δ18O, which abruptly became more positive around 1977–1978, may be attributed to the shifting climatic regime in China and to temperature variations, respectively. Our results illustrated the potential for investigating climatic or atmospheric circulation patterns based on oxygen isotope records in tree rings in regions near the interface between different large-scale synoptic circulations.  相似文献   

5.
Twenty two samples of calcretes from seven depth-profiles in the Menindee catchment, Broken Hill region, Australia were analysed for their inorganic and organic carbon contents and inorganic carbon and oxygen isotopes. The organic carbon content is very low (from 0.06 to 0.31 wt.%) while inorganic carbon (carbonate) is up to 3.9 wt.%. Both δ13C and δ18O become more positive closer to the surface. Carbon isotopes vary from − 8.5‰ to −5.5‰ PDB. Oxygen isotopes vary from − 6‰ to − 1.8‰ V-PDB. Depth-related δ13C and δ18O variations correlate over at least 15 km and show no significant variation along the flow path. δ13C values increase by 3‰ and δ18O values increase by 4‰ with decreasing depth in a 1.40 m thick soil profile. The variation is interpreted to indicate an increasingly elevated air temperature, greater water stress and subsequently an aridification of the area through time. The Broken Hill calcrete data confirm that climatic evolution can be deduced from isotopic series and be applied successfully to the Broken Hill region.  相似文献   

6.
The stable isotope compositions of organic carbon and nitrogen, the contents of organic carbon and nitrogen and C/N ratios for two cores recovered from the Empakai Crater at water depths of 11 and 20 m are used to document climatic changes in northern Tanzania. Eight 14C AMS dates determined on total organic matter (OM) indicate that the sedimentation rate in this lake is about 30 cm/ka for the late Pleistocene to early Holocene period. There are differences in the δ13C values of organic carbon between the two cores, which may be a result of differences in location from the present shoreline and of different water depths. In the deeper-water core the δ13C values show a general downcore decrease to the base of the core with a sharp change to lower values of about 4‰ at a depth of 100 cm (8.7 ka). The general trend of downcore decrease in 13C values can be attributed either to a systematic decrease in the relative proportion of C4 type of OM, owing to an increase in precipitation and change in vegetation cover from grassland to forest, or to utilization of isotopically enriched carbon during photosynthesis. The δ15N values show a general downcore increase with again a sharp change of about 5‰ to lower values at about 8.7 ka. A sharp change of about 5‰ and 4‰ to more depleted values at a depth of 100 cm of both 15N and 13C, respectively, suggests either hiatus or abrupt change in climatic condition from wetter conditions to drier conditions. There is enhanced preservation of OM in the lake as depicted by high mean values of organic carbon and nitrogen at both sites.  相似文献   

7.
A carbon and oxygen isotope survey based on 42 samples from the Amba Dongar carbonatite complex of Gujarat, India, indicates that the magmatic differentiation series sövite → alvikite → ankeritic carbonatite is beset with a distinct isotope trend characterized by a moderate rise in 13C coupled with a sizeable increase in 18O. From an average of −4.6 ± 0.4 ‰ [PDB] for the least differentiated (coarse) sövite member, δ13C values slowly increase in the alvikite (−3.7 ± 0.6 ‰) and ankeritic fractions (−3.0 ± 1.1 ‰), whereas δ18O rises from 10.3 ± 1.7 ‰ [SMOW] to 17.5 ± 5.8 ‰ over the same sequence, reaching extremes between 20 and 28 ‰ in the latest generation of ankeritic carbonatite. While an apparent correlation between δ13C and δ18O over the δ18O range of 7–13 ‰ conforms with similar findings from other carbonatite complexes and probably reflects a Rayleigh fractionation process, the observed upsurge of 18O notably in the ankeritic member is demonstrably related to a late phase of low-temperature hydrothermal activity involving large-scale participation of 18O-depleted groundwaters. As a whole, the Amba Dongar carbonatite province displays the characteristic 13C/12C label of deep-seated (primordial) carbon, reflecting the carbon isotope composition of the subcontinental upper mantle below the Narmada Rift Zone of the Indian subcontinent.  相似文献   

8.
Stable carbon- and oxygen-isotope compositions of calcite and dolomite cements have been used to understand porewater evolution in the Upper Tertiary Hazeva Formation within the Dead Sea Graben, southern Israel. Sandstone samples were obtained from four boreholes in three tectonic blocks of the graben over depths of 253–6448 m, a variation that largely reflects differential subsidence of individual fault-bounded blocks. Early carbonate cements dominate diagenesis. Calcite occurs at <1600 m, but was replaced by dolomite at greater depths. Dolomite at 1600–2700 m is Fe-poor (<0.8 mol% FeCO3), and at 4700–6200 m, Fe-rich (0.5–7.2 mol% FeCO3). Magnesite, anhydrite and halite are the final diagenetic phases. Calcite has positively correlated δ18O (+21‰ to +25‰) and δ13C (−6‰ to −2‰) values that generally decrease with depth. Dolomite has a wider variation in δ18O (+18‰ to +30‰) and δ13C (−8‰ to −1‰) values, which also generally are lower with increasing depth. However, the δ13C and δ18O values of dolomite from the uppermost 400 m of the Hazeva Formation in the Sedom Deep-1 borehole are anomalous in spanning the entire range of stable carbon and oxygen isotopic compositions over this relatively small interval.The decreasing dolomite δ13C values likely indicate an increased contribution of carbon from organic sources with increasing depth. Except for the uppermost 400 m, Hazeva Formation dolomite in the Sedom Deep-1 borehole has stable carbon-isotope compositions that imply initial dolomitization at much shallower levels, prior to the preferential subsidence of this tectonic block. The oxygen isotopic compositions of the calcite cement are best explained by equilibration at present burial temperatures (≤55 °C) with porewater of meteoric origin. Its δ18O values increased from −5‰ at the shallowest depths to 0‰ at 1600 m. The dolomite oxygen isotopic compositions also reflect equilibration at present burial temperatures with porewaters ranging from 0‰ at 1600 m to +7‰ at 3600 m (100 °C). In the deepest fault block (Sedom Deep-1 borehole), however, increasingly Fe-rich dolomite has (re)equilibrated with porewater whose δ18O values decreased from +9‰ at 4750 m (120 °C) to +1‰ to +2‰ by 6200 m (150 °C).Much of the dolomite likely formed at relatively shallow depths from saline brines derived from precursors to the Dead Sea. These infiltrated the Hazeva Formation, mixing with and largely displacing meteoric water, and dolomitizing calcite. Rock–water ratios tended to be high during these processes. However, the upper 400 m of the Hazeva Formation in the deepest fault block were likely deposited during its rapid tectonic subsidence, and largely escaped the initial style of dolomitization pervasive elsewhere in the study area. These sediments were also capped by evaporites. This relatively thin interval likely became a preferential conduit for brines that escaped underlying and overlying strata, including the Fe-rich, lower 18O fluids (evolved seawater?) present in the deepest part of the graben. These rocks present the most promising target for the passage and accumulation of hydrocarbons in the study area.  相似文献   

9.
Cryogenic cave carbonate (CCC) represents a specific type of speleothem. Its precipitation proceeds at the freezing point and is triggered by freezing-induced concentration of solutes. Compared to classical speleothems (stalagmites, flowstones), CCC occurs as accumulations of loose uncemented aggregates. The grain sizes range from less than 1 μm to over 1 cm in diameter. Karst groundwater chemistry and its freezing rate upon entering the cave are responsible for highly variable grain morphology. Rapid freezing of water results in the formation of CCC powders with grain size typically below 50 μm. Slow freezing of water in caves (usually in systems where the CO2 escape is partly restricted; e.g., ice covered water pools) results in the formation of large mineral grains, with sizes from less than 1 mm to about 20 mm. The range of carbon and oxygen stable isotope compositions of CCC is larger than for a typical carbonate speleothem. Rapid freezing of water accompanied by a quick kinetic CO2 degassing results in large ranges of δ13C of the CCC powders (between –10‰ and +18‰ PDB). Slow freezing of water, with a restricted CO2 escape results in gradual increase of δ13C values (from −9‰ to +6‰ PDB; data ranges in individual caves are usually much more restricted), accompanied by a δ18O decrease of the precipitated carbonate (overall range from −10‰ to −24‰ PDB). These unusual trends of the carbonate δ18O evolution reflect incorporation of the heavier 18O isotope into the formed ice. New isotope data on CCC from three Romanian ice caves allow better understanding of the carbon and oxygen isotope fingerprint in carbonates precipitated from freezing of bulk water. CCCs are proposed as a new genetic group of speleothems.  相似文献   

10.
The oxygen isotopic composition of carbonate in lakes has been used as a useful indicator in Palaeolimnological research, and has made some important contributions to our understanding of lacustrine systems. For modern lakes in arid or cold areas, however, there are few data available to test the effect of lake salinity and temperature on the oxygen isotopic composition of various carbonate sources such as ostracod, bulk carbonate, and fine-grained carbonate (< 60 μm). Here we examined the oxygen isotopic composition of ostracods, bulk carbonate, and fine-grained carbonates, as well as that of coexisting water from Lake Qinghai and the smaller surrounding lakes and ponds on the Qinghai–Tibet Plateau. Our investigation highlights three key effects. First, the oxygen isotopic composition of ostracods, bulk carbonate, and fine-grained carbonate in the lakes and ponds shows a clear response to lake water δ18O values, and these vary with water salinity. The relationship between lake water δ18O and salinity is not only dominated by the evaporation/freshwater input ratios, but is also controlled by the distance to the mouth of the major rivers supplying to the lake. Second, the ostracod, bulk carbonate, and fine-grained carbonate show similar isotopic change trends in the study area, and oxygen isotopic differences between ostracods and authigenic carbonate may be explained by the different water temperatures and very small ‘vital offsets’ of ostracods. Finally, the effect of water depth on temperature leads to increasing δ18O values in carbonates as water depth increases, both in benthic ostracods living on the lake bottom, as well as in bulk carbonate precipitated at the water surface.For arid, high-altitude Lake Qinghai, our results suggest that variations in the δ18O values of carbonate in Lake Qinghai are mainly controlled by the oxygen-isotope ratio of the lake water changing with water salinity. As a secondary effect, increasing water depth leads to cooler bottom and surface water, which may result in more positive δ18O values of ostracod and bulk carbonate.  相似文献   

11.
Oxygen isotope studies were carried out across units of a Neoproterozoic nappe system, south of São Francisco Craton. A temperature decrease toward the base of the system is found, consistent with a previously recognized inverted metamorphic pattern. The tectonic contact of the basal unit and the reworked southern São Francisco craton show a steep temperature gradient, suggesting that low temperature thrusting acted as the dominant tectonic process. The contrasts between the δ18O values of the Três Pontas-Varginha and Carmo da Cachoeira nappes and the differences among the samples and minerals are consistent with the preservation of sedimentary isotopic composition during metamorphism. The small differences in the δ18O values between the undeformed and the deformed calc-silicate samples (1.6‰) suggest that the δ18O value of mylonitization fluids was close to that which equilibrated with the metamorphic assemblage. The distinct δ18O values of metapelitic and calc-silicate samples and the great temperature difference from one type to the other indicate that no large-scale fluid interaction processes occurred during metamorphism. Oxygen isotopic estimations of both Três Pontas-Varginha undeformed rocks and Carmo da Cachoeira unaltered equivalents indicate δ18O values of up to 18‰. Comparison between these values and those from the ‘basement’ orthogneisses (8.3–8.5‰) indicates the latter are not sources for the metapelites.  相似文献   

12.
Large-scale atmospheric circulation patterns determine the quantity and seasonality of precipitation, the major source of water in most terrestrial ecosystems. Oxygen isotope (δ18O) dynamics of the present-day hydrologic system in the Palouse region of the northwestern U.S.A. indicate a seasonal correlation between the δ18O values of precipitation and temperature, but no seasonal trends of δ18O records in soil water and shallow groundwater. Their isotope values are close to those of winter precipitation because the Palouse receives  75% of its precipitation during winter. Palouse Loess deposits contain late Pleistocene pedogenic carbonate having ca. 2 to 3‰ higher δ18O values and up to 5‰ higher carbon isotope (δ13C) values than Holocene and modern carbonates. The late Pleistocene δ18O values are best explained by a decrease in isotopically light winter precipitation relative to the modern winter-dominated infiltration. The δ13C values are attributed to a proportional increase of atmospheric CO2 in soil CO2 due to a decrease in soil respiration rate and 13C discrimination in plants under much drier paleoclimate conditions than today. The regional climate difference was likely related to anticyclonic circulation over the Pleistocene Laurentide and Ice Sheet.  相似文献   

13.
Late Pleistocene terrestrial climate records in India may be preserved in oxygen and carbon stable isotopes in pedogenic calcrete. Petrography shows that calcrete nodules in Quaternary sediments of the Thar Desert in Rajasthan are pedogenic, with little evidence for postpedogenic alteration. The calcrete occurs in four laterally persistent and one nonpersistent eolian units, separated by colluvial gravel. Thermoluminescence and infrared- and green-light-stimulated luminescence of host quartz and feldspar grains gave age brackets for persistent eolian units I–IV of ca. 70,000–60,000, ca. 60,000–55,000, ca. 55,000–43,000, and ca. 43,000–25,000 yr, respectively. The youngest eolian unit (V) is <10,000 yr old and contains no calcrete. Stable oxygen isotope compositions of calcretes in most of eolian unit I, in the upper part of eolian unit IV, and in the nonpersistent eolian unit, range between −4.6 and −2.1‰ PDB. These values, up to 4.4‰ greater than values from eolian units II and III, are interpreted as representing nonmonsoonal18O-enriched “normal continental” waters during climatic phases when the monsoon weakened or failed. Conversely, 25,000–60,000-yr-old calcretes (eolian units II and III) probably formed under monsoonal conditions. The two periods of weakened monsoon are consistent with other paleoclimatic data from India and may represent widespread aridity on the Indian subcontinent during isotope stages 2 and 4. The total variation in δ13C is 1.7‰ (0.0–1.7‰), and δ13C covaries positively and linearly with δ18O. δ13C values are highest when δ18O values indicate the most arid climatic conditions. This is best explained by expansion of C4grasses at the expense of C3plants at low latitudes during glacial periods when atmosphericpCO2was lowered. C4dominance was overridingly influenced by global change in atmosphericpCO2despite the lowered summer rainfall.  相似文献   

14.
The δ18O and δ13C values of the calcites associated with E-W and NE-SW transverse faults in the Negev, Israel, indicate that calcite was deposited from meteoric water. A regional change in the δ18O and δ13C values was observed. The 18O content in the calcite increases, from the southwestern (δ18O = −17.8‰) to the northeastern (δ18O = −2.9‰) part of the region. The δ13C values show the opposite trend of the 13C content decrease: from +2‰ in the south to −10‰ in the northeast. These trends had to reflect changes in regional paleoclimate, suggesting a change in the isotopic composition of the solution from which the calcite was deposited in different periods. The variations in the δ18O values reflect shifts in the δ18O values of precipitation and are associated with a change in the source of moist air masses which came from the equatorial Atlantic in the early Pleistocene and from the Mediterranean during a later period. Variations in δ13C values reflect changes from humid to arid conditions. Two modes of calcite deposition are suggested: (1) precipitation of calcite minerals in the unsaturated zone following the dissolution in the soil or (2) calcite deposition that occurred as CO2 was lost during emergence of paleogroundwater from Lower Cretaceous and Jurassic aquifers.  相似文献   

15.
Miocene igneous rocks (diorites, andesites, dacites, rhyolites and microgranites) of Chetaibi and Cap de Fer massif, NE Algeria, are high-K calc-alkaline to shoshonitic rocks. Fresh diorites have δ34S and δ18O values ranging between −2.5‰ and +5.9‰, +6.5‰ and +6.7‰ respectively, indicating a mantle origin. The relatively low δ34S values (−5.4‰ to −12.2‰) and high δ18O (+8.3‰ to +9.0‰) of altered diorites indicate the input of a crustal component to the initial magma. The microgranites’ I-type signature is indicated by the geochemical data and the δ34S and δ18O values of −1.2‰ and −3.6‰, and +7.8‰ to +10.4‰ respectively. The andesites show a large variation of δ34S, between −33.2‰ and +25.7‰. Massive andesites with δ34S between +6.8‰ and +7.6‰ preserve a 34S-enriched mantle signature. The δ34S of the lava flows between +25.7‰ and +25.8‰ are attributed to open system magma degassing, whereas the low δ34S of two andesitic dyke samples (−13.7‰ and −33.2‰) strongly suggest a crustal sulphur input. High δ18O (+9.2‰ to +15.7‰) of andesites indicate post-magmatic alteration (mainly silicification); the flyschs with δ18O between of +13.3‰ and +21.7‰ are most likely the contaminant. Quartz veins within the andesites gave a δ18O value of +23.0‰ while silica-filling vesicles yielded a value of +13.8‰. Initial Sr-isotope data are rather high for all the rocks (diorites: 0.707–0.708, andesites: 0.707–0.710, and microgranites and rhyolites: 0.717–0.719), and because geochemical and stable isotope data do not indicate a substantial amount of crustal assimilation, an extensive enrichment of the mantle source by subducted sediments is called for. A metasomatized-mantle source, characterized by high radiogenic Sr and relatively high δ18O, has also been indicated for the genesis of similar Tertiary igneous rocks in the Western Mediterranean basin, e.g. the Volcanic Province of southeasten Spain [Benito, R., Lopez-Ruiz, J., Cebria, J.M., Hertogen, J., Doblas M., Oyarzun, R., Demaiffe, D., 1999. Sr and O isotope constraints on source and crustal contamination in the high-K calc-alkaline and shoshonitic neogene volcanic rocks of SE Spain. Lithos 46, 773–802] and some plutons of northeastern Algeria [Ouabadi, A., 1994. Pétrologie, géochimie et origine des granitoïdes peralumineux à cordiérite (Cap Bougaroun, Béni-Touffout et Filfila), Algérie nord-orientale. Thèse de Doctorat, Université de Rennes I, France, 257p; Fourcade, S., Capdevila, R., Ouabadi, A., Martineau, F., 2001. The origin and geodynamic significance of the Alpine cordierite-bearing granitoids of northern Algeria. A combined petrological, mineralogical, geochemical and isotopic (O, H, Sr, Nd) study. Lithos 57, 187–216].  相似文献   

16.
Groundwaters and surface water in the Shihongtan sandstone-hosted U ore district, Xinjiang, NW China, were sampled and analyzed for their major-, and trace element concentrations and oxygen, hydrogen, boron and strontium isotope compositions in order to assess the possible origins of the waters and water–rock interactions that occurred in the deep aquifer system. The waters in the study district have been grouped into three hydrochemical facies: Facies 1, potable spring-water, is a pH neutral (7.0), Na–Ca–HCO3 type water with low total dissolved solids (TDS; 0.2 g/l, fresh) and has δ18O of − 8.3‰, δD of − 48.2‰,δ11B of 1.5‰, and 87Sr/86Sr of 0.70627. Facies 2 groundwaters are mildly acidic to mildly alkaline (pH of 6.5–8.0, mean 7.3), Na–Ca–Mg–Cl–SO4 type waters with moderate TDS (8.2 g/l–17.2 g/l, mean 9.3 g/l, brackish) and haveδ18O values in the − 5.8‰ to − 9.3‰ range (mean − 8.1‰), δD values in the − 20.8‰ to − 85.5‰ range (mean − 47.0‰),δ11B values in the + 9.5‰ to + 39.1‰ range (mean + 17.1‰), and 87Sr/86Sr values in the 0.70595 to 0.70975 range (mean 0.70826). Facies 3, Aiting Lake water, is a mildly alkaline (pH = 7.4), Na–Ca–Mg–Cl–SO4 type water with the highest TDS (249.1 g/l, brine) and has δ18O of − 2.8‰, δD of − 45.8‰,δ11B of 21.2‰, and 87Sr/86Sr of 0.70840. The waters from the study district show a systematic increase in major, trace element and TDS concentrations and δ11B values along the pathway of groundwater migration which can only be interpreted in terms of water–rock interaction at depth and strong surface evaporation. The hydrochemical and isotopic data presented here confirm that the groundwaters in the Shihongtan ore district are the combined result of migration, water–rock interaction and mixing of meteoric water with connate waters contained in sediments.  相似文献   

17.
GISP2 Oxygen Isotope Ratios   总被引:3,自引:0,他引:3  
The GISP2 oxygen isotope record, with its high-resolution detail, yields crucial information on past climate change. The glacial δ18O oscillations of the GISP2 core, with their very fast onsets, are templates of a prototype oscillation of variable duration with an amplitude of 3.9‰. The halfway mark of the cold–warm transition is reached in 2 years; the top is reached in 50 years. The δ18O–time gradient of the leading front is about 7.8‰ per 100 yr. After reaching the top, δ18O slowly declines by −0.14‰ per 100 yr. The duration of δ18O decline varies from a couple of centuries for fast oscillations to about 4000 yr for slower ones. The subsequent δ18O downturn during the warm–cold transition has a δ18O–time gradient of −3.2‰ per 100 yr and lasts about 80 yr.  相似文献   

18.
Lake Xingcuo is a small closed,hard-water lake ,situated on eastern Tibet Plateau.Stable isotope data(δ^18O and δ^13C) from the freshwater snail Gyraulus sibirica(Dunker)in a34 cm long,radioactive isotope-dated sediment core represent the last 200 years of Lake Xingcuo environmental history.Carbon and oxygen isotope ratios in the shells of the freshwater snail bear information on the isotopic composition of the water in which the shells were formed ,which in turn characterizes the climatic conditions prevailing during the snail‘s life span.Whole-shell and incremental growth data were collected from modern and fossil shells from Lake Xingcuo.The δ18^O values of modern shells from Lake Xingcuo are in equilibrium with high δ^13CTDIC.By calibrating δ^18O and δ^13C in the shell Gyraulus sibirica(Dunker)with in-strument-measured data for the period 1954-1992,we found that the δ^18O of the snail shells is an efficient indicator to reveal air temperature in the warmer half year instead of that around the whole year,and that there is a certain positive correlation between index δ^18O and the run-ning average temperature in the warmer half-yiar period.Climatic variability on eastern Tibet Plateau,for the last two centuries,has been successfully inferred from the δ^18O record in freshwater snails in the sediments of Lake Xingcuo.As such,the last 200 years of palaeocli-matic record for this region can be separated into three periods representing oscillations between warming and cooling,which are confirmed by the Guliya ice record on the Tibet Plateau.  相似文献   

19.
A case study of three springs in Switzerland is used to demonstrate the value of geochemical time-series data as a powerful tool to study the dynamics of groundwater systems. Values of repeatedly measured parameters revealed intermixings of two water types: (a) a 29°C water, circulating to a depth of 1100 m and containing approximately 700 mg/l Ca, 2000 mg/l SO4, 700 mg/l HCO3, 20 mg/l of Na and Cl, 6 mg/l Fe, at least 47 mg/l SiO2, and with an isotopic composition of δD = − 73.0‰ and δ18 O = −10.9‰, and (b) a 12°C or colder water, shallow, and of a post-1953 age, containing 420 mg/l TDI or less, very low in Na and Cl (4 mg/l or less), isotopic values of δD = −71.0‰ and δ18 O = −10.5‰ and tritium as in recent (post-bomb) precipitation.  相似文献   

20.
美国西部Owens湖地球化学记录及其古气候意义   总被引:11,自引:2,他引:11       下载免费PDF全文
美国加州中部Owens湖的稳定同位素、稀酸可溶相锂元素浓度及其它地球化学指标揭示本区0.155MaB.P.~62500aB.P.间的气候变化。在0.155~0.140MaB.P.,0.122~0.114MaB.P.,91000~83000aB.P.和72000~62500aB.P.期间,气候冷湿,对应于深海氧同位素(MIS)6,5d,5b和4阶段。这些期间内湖泊开放,δ18 O和δ13 C无协变性,Li和有机碳浓度很低。在0.140~0.122MaB.P.,0.114MaB.P.~91000aB.P.和83000~72000aB.P.期间,气候干热,对应于MIS5e,5c和5a阶段。湖泊在这些期间内封闭,δ18 O和δ13 C有很好的协变性,封闭湖δ18 O的变化代表了湖水体积的变化。来自湖中自生镁硅酸盐的锂元素浓度的变化反映了盐度和温度的变化。Owens湖的记录与DevilsHole洞穴流石记录和格陵兰冰芯记录有很好的对比,进一步证实了终结期Ⅱ在海相记录中的年龄滞后。本文讨论了冰期与间冰期之间,美国西部和中国黄土地区气候模式的差异及其互动机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号