首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Laacher See phonolite tephra sequence (11,000 years B.P.) of the Quaternary East Eifel volcanic field (West Germany) represents an inverted, chemically zoned magma column. Mafic and differentiated phonolites, respectively, represent the lowermost and uppermost erupted portion of the Laacher See magma chamber. Sr and Nd isotopic compositions of whole rocks, matrices and phenocrysts have been analyzed in order to provide constraints for open versus closed system evolution of the Laacher See magma chamber. 87Sr/86Sr isotope ratios of mafic phonolites and their phenocrysts are slightly more radiogenic than parental East Eifel basanite magmas. Bulk rock samples show a drastic increase in 87Sr/86Sr from mafic towards the most differentiated compositions that were erupted from the top of the magma chamber. Glass matrix separates show a parallel, but less pronounced, increase in 87Sr/86Sr. Phenocrysts, in contrast, show a narrow range in 87Sr/86Sr with a slight, but significant, increase towards the top of the magma chamber. Phenocrysts from the uppermost portion of the magma column were not in isotopic (or chemical) equilibrium with their host matrices.143Nd/144Nd isotope ratios for whole rocks, matrices, and phenocrysts fall within a restricted range similar to that of East Eifel mafic magmas. A representative suite of crustal rocks (lower crustal granulites, quartzo-feldspathic gneisses, mica schists, Devonian slates and graywacke) was also analyzed in order to permit an evaluation of possible assimilation models.Our results are consistent with chemical evolution of the zoned Laacher See magma chamber mainly through crystal fractionation accompanied by minor amounts of assimilation. Slight contamination of the magma system may have involved (a) the assimilation of gneisses (?) and mica schists during the initial stage of magma chamber evolution (basanite-mafic phonolite), (b) combined assimilation-fractional crystallization (AFC) concurrent with the second differentiation stage (mafic phonolite-zoned phonolite), and (c) post-crystallization assimilation of the most fractionated volatile-rich melts of the top magma layers during a late, liquid-state (?) differentiation stage. The latter possibly involved fluid transport and/or exchange with the surrounding (partially molten) country rocks. Open system evolution of the Laacher See magma chamber is further indicated by magma mixing, as confirmed by our isotope data, leakage of volatiles from the cupola and metasomatism of wall rocks.  相似文献   

2.
The Rockeskyllerkopf Volcanic Complex (RVC) comprises three overlapping monogenetic volcanic centers: Southeast Lammersdorf (SEL), Mäuseberg (M) and Rockeskyllerkopf (RKK). Each volcanic center comprises proximal wall deposits with a well defined crater wall unconformity and crater fill deposits that partially to completely cover the outer crater wall. The SEL Center is a phreatomagmatic tuff ring composed of lithic rich tephra deposited by pyroclastic falls and surges. The second center, Mäuseberg, with its crater to the northwest of the SEL Center is predominantly magmatic. Topographic and outcrop patterns suggest that this center may have formed a series of overlapping scoria cones along a N–S trending fissure. The youngest center, RKK, which lies on a poorly developed palaeosol within the earlier Mäuseberg deposits, comprises a well developed proximal crater wall sequence. This sequence of magmatic, likely Strombolian, fall and grain avalanche deposits passes upward into a crater fill sequence that comprises variably welded bombs. The final eruptions in the center were massive lava flows that were ponded within the RKK crater. Ar–Ar age dating of reequilibrated fragments of phlogopite megacrysts in the SEL lavas indicates volcanic activity began at 474?±?39 ka. Literature K–Ar dates for the youngest lava flows in the RKK Center give ages of 360?±?60 to 470 ka. Our interpretation of the age data and the presence of the poorly developed palaeosol between the Mäuseberg and RKK centers indicates that volcanism in the RVC began around 470 ka with the eruption of the SEL and Mäuseberg centers followed a few thousand years later by the eruption of the RKK Center.  相似文献   

3.
Field evidence indicates that the Trinity peridotite was partially melted during its rise as a part of the upwelling convecting mantle at a spreading center. A SmNd mineral isochron for a plagioclase lherzolite yields an age,T = 427 ± 32 Ma and initialεNd = + 10.4 ? 0.4 which is distinctly higher than that expected for typical depleted mantle at this time. This age is interpreted as the time of crystallization of trapped melt in the plagioclase lherzoliteP-T field. This time of crystallization probably represents the time when the massif was incorporated as a part of the oceanic lithosphere. The SmNd model age of the plagioclase lherzolite totalrock isTCHURNd = 3.4 AE. This suggests that the Trinity peridotite was derived from a mantle that was depleted rather early in earth history. The peridotite contains many generations of pyroxenite dikes and some microgabbro dikes. We report data for two dikes that clearly crosscut the main metamorphic fabric of the peridotite. A microgabbro dike yields a SmNd mineral isochron age ofT = 435 ± 21 Ma andεNd = + 6.7 ? 0.3. A pyroxenite dike yields an initialεNd = + 7.3 ± 0.4. The initialεNd values for the pyroxenite and gabbro dikes are fairly similar to those for the depleted mantle at this time and are distinct from the lherzolite—demonstrating that they are not genetically related. RbSr data do not give any coherent pattern. However, some bounds can be put on initial Sr values ofεSr ? ?21 for the plagioclase lherzolite andεSr ? ?8.7 for the microgabbro dike. It is plausible that the dikes represent cumulates left behind from island arc magmas that rose through the the oceanic lithosphere within the vicinity of a subduction zone. Major and trace elements and SmNd isotopic data indicate a multiple stage history for the Trinity peridotite; a small melt fraction was extracted from an undepleted source ~ 3.4 AE or more ago to produce the proto-lherzolite; a large fraction of melt (~ 12 to 23%) was extracted from the proto-lherzolite to produce the present rock; the lherzolite was then crosscut by dikes from average depleted mantle ~ 0.44 AE ago. The data are compatible with the depleted mantle source being formed very early in earth history. Although most available data indicate that the depleted upper mantle has been relatively well stirred through time, the Trinity data suggest that very ancient Nd isotopic values are preserved and thus chemical and physical heteorgeneities are sometimes preserved in the depleted source of mid-ocean ridge basalts as well as the oceanic lithosphere which they intrude.  相似文献   

4.
In the Late Cenozoic West Carpatian alkali olivine basalts spinel peridotite xenoliths have been found. Their mineral composition corresponds to those found in this type of xenoliths in alkali basalts throughout the world (Mg-rich olivine, Cr-diopside, clinopyroxene, spinel). For the studied West Carpathian alkali olivine basalts kaersutite amphibole and clinopyroxene magacrysts are characteristic. The presence of the xenoliths under consideration in the boundary zone between Tatra and Pannonian blocks is the consequence of tectonic conditions (thickness of the Crust) in the area mentioned as distinct from the other West Carpathian areas of alkali olivine basalt occurrences.  相似文献   

5.
Os–Hf–Sr–Nd isotopes and PGE were determined in peridotite xenoliths carried to the surface by Quaternary alkali basaltic magmas in the Tokinsky Stanovik Range on the Aldan shield. These data constrain the timing and nature of partial melting and metasomatism in the lithospheric mantle beneath SE Siberian craton. The xenoliths range from the rare fertile spinel lherzolites to the more abundant, strongly metasomatised olivine-rich (70–84%) rocks. Hf–Sr–Nd isotope compositions of the xenoliths are mainly within the fields of oceanic basalts. Most metasomatised xenoliths have lower 143Nd / 144Nd and 176Hf / 177Hf and higher 87Sr / 86Sr than the host basalts indicating that the metasomatism is older and has distinct sources. A few xenoliths have elevated 176Hf / 177Hf (up to 0.2838) and plot above the Hf–Nd mantle array defined by oceanic basalts.187Os / 188Os in the poorly metasomatised, fertile to moderately refractory (Al2O3  1.6%) Tok peridotites range from 0.1156 to 0.1282, with oldest rhenium depletion ages being about 2 Ga. The 187Os / 188Os in these rocks show good correlations with partial melting indices (e.g. Al2O3, modal cpx); the intercept of the Al–187Os / 188Os correlation with lowest Al2O3 estimates for melting residues (∼0.3–0.5%) has a 187Os / 188Os of ∼0.109 suggesting that these peridotites may have experienced melt extraction as early as 2.8 Gy ago. 187Os / 188Os in the strongly metasomatised, olivine-rich xenoliths (0.6–1.3% Al2O3) ranges from 0.1164 to 0.1275 and shows no apparent links to modal or chemical compositions. Convex-upward REE patterns and high abundances of heavy to middle REE in these refractory rocks indicate equilibration with evolved silicate melts at high melt / rock ratios, which may have also variably elevated their 187Os / 188Os. This inference is supported by enrichments in Pd and Pt on chondrite-normalised PGE abundance patterns in some of the rocks. The melt extraction ages for the Tok suite of 2.0 to 2.8 Ga are younger than oldest Os ages reported for central Siberian craton, but they must be considered minimum estimates because of the extensive metasomatism of the most refractory Tok peridotites. This metasomatism could have occurred in the late Mesozoic to early Cenozoic when the Tok region was close to the subduction-related Pacific margin of Siberia and experienced large-scale tectonic and magmatic activity. This study indicates that metasomatic effects on the Re–Os system in the shallow lithospheric mantle can be dramatic.  相似文献   

6.
The lavas produced by the Timanfaya eruption of 1730–1736 (Lanzarote, Canary Islands) contain a great many sedimentary and metamorphic (metasedimentary), and mafic and ultramafic plutonic xenoliths. Among the metamorphosed carbonate rocks (calc-silicate rocks [CSRs]) are monomineral rocks with forsterite or wollastonite, as well as rocks containing olivine ± orthopyroxene ± clinopyroxene ± plagioclase; their mineralogical compositions are identical to those of the mafic (gabbros) and ultramafic (dunite, wherlite and lherzolite) xenoliths. The 87Sr/86Sr (around 0.703) and 143Nd/144Nd (around 0.512) isotope ratios of the ultramafic and metasedimentary xenoliths are similar, while the 147Sm/144Nd ratios show crustal values (0.13–0.16) in the ultramafic xenoliths and mantle values (0.18–0.25) in some CSRs. The apparent isotopic anomaly of the metamorphic xenoliths can be explained in terms of the heat source (basaltic intrusion) inducing strong isotopic exchange (87Sr/86Sr and 143Nd/144Nd) between metasedimentary and basaltic rocks. Petrofabric analysis also showed a possible relationship between the ultramafic and metamorphic xenoliths.  相似文献   

7.
8.
The whole rock K-Ar ages of basalts from the South China Sea basin vary from 3.8 to 7.9 Ma, which suggest that intra-plate volcanism after the cessation of spreading of the South China Sea (SCS) is comparable to that in adjacent regions around the SCS, i.e., Leiqiong Peninsula, northern margin of the SCS, Indochina block, and so on. Based on detailed petrographic studies, we selected many fresh ba-saltic rocks and measured their major element, trace element, and Sr-Nd-Pb isotope compositions. Geochemical characteristics of major element and trace element show that these basaltic rocks belong to alkali basalt magma series, and are similar to OIB-type basalt. The extent of partial melting of mantle rock in source region is very low, and magma may experience crystallization differentiation and cu-mulation during the ascent to or storing in the high-level magma chamber. Sr-Nd-Pb isotopic data of these basaltic rocks imply an inhomogeneous mantle below the South China Sea. The nature of magma origin has a two end-member mixing model, one is EM2 (Enriched Mantle 2) which may be originated from mantle plume, the other is DMM (Depleted MORB Mantle). Pb isotopic characteristics show the Dupal anomaly in the South China Sea, and combined with newly found Dupal anomaly at Gakkel ridge in Arctic Ocean, this implies that Dupal anomaly is not only limited to South Hemisphere. In variation diagrams among Sr, Nd and Pb, the origin nature of mantle below the SCS is similar to those below Leiqiong peninsula, northern margin of the SCS and Indochina peninsula, and is different from those below north and northeast China. This study provides geochemical constraints on Hainan mantle plume.  相似文献   

9.
Basement intersected in DSDP holes 525A, 528 and 527 on the Walvis Ridge consists of submarine basalt flows and pillows with minor intercalated sediments. These holes are situated on the crest and mid and lower northwest flank of a NNW-SSE-trending ridge block which would have closely paralleled the paleo mid-ocean ridge [13, 14]. The basalts were erupted approximately 70 m.y. ago, an age equivalent to that of immediately adjacent oceanic crust in the Angola Basin and consistent with formation at the paleo mid-ocean ridge [14]. The basalt types vary from aphyric quartz tholeiites on the ridge crest to highly plagioclase phyric olivine tholeiites on the ridge flank. These show systematic differences in incompatible trace element and isotopic composition. Many element and isotope ratio pairs form systematic trends with the ridge crest basalts at one end and the highly phyric ridge flank basalts at the other.The low 143Nd/144Nd (0.51238), 206Pb/204Pb (17.54), 208Pb/204Pb (15.47), 208Pb/204Pb (38.14) and high87Sr/86Sr (0.70512) ratios of the ridge crest basalts suggest derivation from an old Nd/Sm-, Rb/Sr- and Pb/U-enriched mantle source. This isotopic signature is similar to that of alkaline basalts on Tristan de Cunha but offset to significantly lower Nd and Pb isotopic ratios. The isotopic ratio trends may be extrapolated beyond the ridge flank basalts with higher143Nd/144Nd (0.51270), 206Pb/204Pb (18.32), 207Pb/204Pb (15.52), 208Pb/204Pb (38.77) and lower 87Sr/86Sr (0.70417) ratios in the direction of increasingly Nd/Sm-, Rb/Sr- and Pb/U-depleted source compositions. These isotopic correlations are equally consistent with mixing od depleted and enriched end member melts or partial melting of an inhomogenous, variably enriched mantle source. However, observe ZrBaNbY interelement relationships are inconsistent with any simple two-component model of magma mixing, as might result from the rise of a lower mantle plume through the upper mantle. Incompatible element and Pb isotopic systematics also preclude extensive involvement of depleted (N-type) MORB material or its mantle sources. In our preferred petrogenetic model the Walvis Ridge basalts were derived by partial melting of mantle similar to an enriched (E-type) MORB source which had become heterogeneous on a small scale due to the introduction of small-volume melts and metasomatic fluids.  相似文献   

10.
There exists extensive basic-acidic volcanic rock series in the middle section of the Okinawa Trough. Different types of these volcanic rocks have their own average strontium ratios of 0.704 749, 0.705 062, 0.708 771, 0.704 840 and 0.720 301 with average143Nd/144Nd ratios of 0.512 820, 0.512 673, 0.512 413, 0.512 729 and 0.512 034. These ratios of Sr and Nd isotopes all fall on a theoretic hyperbolic curve of mixing between two end-members of MORB and rhyolitic magma. So we infer that these different kinds of volcanic rocks in the middle Okinawa Trough are the erupted product in different stages of formation and evolution of the trough crust. MORB magma, which had suffered assimilation, mixed with the early-formed crust-derived rhyolitic partial melt mass at different ratios; then, these mixed magma erupted and formed volcanic rock types of the trough. This study indicates that the Okinawa Trough is coming into a stage of submarine spreading from the stage of continental rift.  相似文献   

11.
Nd and Sr isotopic data on pargasite Iherzolite inclusions, kaersutite megacrysts and their host alkali basalts are presented here to clarify some questions regarding isotopic equilibration during mantle metasomatism and the role of metasomatism in basalt genesis. Five alkali basalts from Nunivak Island within the Aleutian back-arc basin, have87Sr/86Sr ratios of 0.70251–0.70330 and143Nd/144Nd ratios of 0.51289–0.51304. On a Nd versus Sr isotope composition diagram the basalts overlap the fields of MORB and ocean island basalts. Pargasites and mica separated from hydrous nodules found in these basalts have a range in87Sr/86Sr of 0.70256–0.70337 but identical143Nd/144Nd ratios of 0.51302. The metasomatic fluid represented by the pargasite is in isotopic equilibrium, both for Sr and Nd, with the dry mantle as represented by diopside. Eight alkali basalts from the Ataq diatreme, South Yemen, have87Sr/86Sr range of 0.70335–0.70426 and143Nd/144Nd range of 0.51252–0.51305. On a Nd versus Sr isotope composition diagram the basalts from Ataq plot in two distinct fields, (1) within the field of ocean island basalts, and (2) within the range of continental rift basalts but to the left of the Nd-Sr correlation line, somewhat similar to the Skye and Oslo rift basalts. Diopside and pargasite separated from three nodules at Ataq have a more complex history than those at Nunivak. Two nodules contain pargasite and diopside with identical87Sr/86Sr ratios but different143Nd/144Nd ratios. A third nodule contains diopside with a143Nd/144Nd ratio similar to that of other diopsides.The Nunivak basalts are derived from a source with a time-integrated light-REE depletion, in contrast to the light-REE-enriched nature of the basanites. This is best explained by a recent metasomatic event in the source region which increased the LIL element content of the peridotite thus accommodating higher degrees of melting. The Ataq volcanic rocks seem to tap different sources characterized by both light-REE enrichment and depletion, in contrast to the uniform source of the Nunivak basanites. Production of the Ataq basanites is believed to involve anataxis of metasomatically veined continental mantle where local mantle heterogeneities survived the melting event.  相似文献   

12.
Sr and Nd isotope analyses are presented for Tertiary continental alkaline volcanics from Cantal, Massif Central, France. The volcanics belong to two main magma series, silica-saturated and silica-undersaturated (with rare nephelinites). Trace element and isotopic data indicate a common source for the basic parental magmas of both major series; the nephelinites in contrast must have been derived from a mantle source which is isotopically and chemically distinct from that which gave rise to the basalts and basanites.87Sr/86Sr initial ratios range from 0.7034 to 0.7056 in the main magma series (excluding rhyolites) and143Nd/144Nd ratios vary between 0.512927 and 0.512669; both are correlated with increasing SiO2 in the lavas. The data can be explained by a model of crustal contamination linked with fractional crystallisation. This indicates that crustal magma chambers are the sites of differentiation since only rarely do evolved magmas not show a crustal isotopic signature and conversely basic magmas have primitive isotopic ratios unless they contain obvious crustal-derived xenocrysts. Potential contaminants include lower crustal granulites or partial melts of upper crustal units. Equal amounts of contamination are required for both magma series, refuting hypotheses of selective contamination of the silica-saturated series.The isotopic characteristics of the apparently primary nephelinite lavas demonstrates widespread heterogeneity in the mantle beneath Cantal. Some rhyolites, previously thought to be extremely contaminated or to be crustally derived, are shown to have undergone post-emplacement hydrothermal alteration.  相似文献   

13.
REE abundances in gabbros and peridotites from Site 334 of DSDP Leg 37 show that these rocks are cumulates produced by fractional crystallization of a primitive oceanic tholeiite magma. They may be part of a layered oceanic complex. The REE distributions in the residual liquids left after such a fractionation are similar to those of incompatible element-depleted oceanic tholeiites. The REE data indicate that the basalts which overlie the gabbro-peridotite complex, are not genetically related to plutonic rocks.  相似文献   

14.
Os isotope ratios of mantle peridotites have been considered to be largely immune to recent melt-rock interaction. However, Os isotope ratios and PGE (Platinum group elements) concentrations of the Yong’an xenoliths have been significantly modified by melt percolation, and are not suitable for determining the formation age of lithosphere mantle in Yong’an. In this study, the Yong’an spinel peridotite xenoliths are divided into two groups: N-Type and E-Type. The N-Type group including cpx (clinopyroxene)-poor lherzolite and harzburgite, shows a large variation of Cr#(sp) (13.2-48) and sulfur contents (from 171 ppm to below detection limit), whereas the E-Type peridotites are mainly refractory harzburgites and are characterized by high Cr#(sp) (35.3-42.2) and overall low sulfur contents (below 51 ppm). Both types show similar major and REE (rare earth element) patterns. Furthermore, the N-Type peridotites display a restricted range of iridium-group PGE (IPGE), Os/Ir and Ru/Ir ratios (Os/Ir = 0.64-1.12, Ru/Ir = 1.52-1.79) and variable palladium-group PGE (PPGE) contents (3.4-14.9 ppb), whereas the E-Type peridotites show a large variation of Os/Ir and Ru/Ir ratios (Os/Ir = 0.33-0.84, Ru/Ir = 0.94-1.6), and a restricted range of PPGE (4.3-6.9 ppb). 187Os/188Os ratios of E-Type peridotites are higher than those of N-Type peridotites at comparable fertility levels. These results suggest that N-Type peridotites may have been overprinted by metasomatism via small melt fractions, in which the percolation of the volatile-rich, small melt fractions only resulted in LILE (large ion lithophile element) enrichment of clinopyroxene, and their whole rock PGE contents and Re-Os isotope values were little changed. Moreover, E-Type peridotites may have been modified by melt-rock reaction involving relatively large melt fractions, which may result in the formation of secondary cpx and olivine and the removal of IPGE-bearing minerals such as Ru-Os-(Ir) alloys or laurite, followed by precipitation of secondary sulfides from melt with radiogenic isotopic signature.  相似文献   

15.
Major- and rare-earth-element (REE) concentrations and UThPb, SmNd, and RbSr isotope systematics are reported for Cenozoic volcanic rocks from northeastern and eastern China. These volcanic rocks, characteristically lacking the calc-alkaline suite of orogenic belts, were emplaced in a rift system which formed in response to the subduction of the western Pacific plate beneath the eastern Asiatic continental margin. The rocks sampled range from basanite and alkali olivine basalt, through olivine tholeiite and quartz tholeiite, to potassic basalts, alkali trachytes, pantellerite, and limburgite. These rock suites represent the volcanic centers of Datong, Hanobar, Kuandian, Changbaishan and Wudalianchi in northeastern China, and Mingxi in the Fujian Province of eastern China.The major-element and REE geochemistry is characteristic of each volcanic suite broadly evolving through cogenetic magmatic processes. Some of the outstanding features of the isotopic correlation arrays are as follows: (1) NdSr shows an anticorrelation within the field of ocean island basalts, extending from the MORB end-member to an enriched, time-averaged high Rb/Sr and Nd/Sr end-member (EM1), (2) SrPb also shows an anticorrelation, similar to that of Hawaiian and walvis Ridge basalts, (3) NdPb shows a positive correlation, and (4) the 207Pb/204Pb vs 206Pb/204Pb plot shows linear arrays parallel to the general trend (NHRL) for MORB on both sides of the geochron, although in the 208Pb/204Pb vs 206Pb/204Pb plot the linear array is significantly displaced above the NHRL in a pattern similar to that of the oceanic island basalts that show the Dupal signatures. In all isotope correlation patterns, the data arrays define two different mantle components—a MORB-like component and an enriched mantle component. The isotopic data presented here clearly demonstrate the existence of Dupal compositions in the sources of the continental volcanic rocks of eastern China. We suggest that the subcontinental mantle beneath eastern China served as the reservoir for the EMI component, and that the MORB component was either introduced by subduction of the Kula-Pacific Ridge beneath the Asiatic plate in the Late Cretaceous, as proposed by Uyeda and Miyashiro, or by upwellings in the subcontinental asthenosphere due to subduction.  相似文献   

16.
We report new Nd, Hf, Sr, and high-precision Pb isotopic data for 44 lava and tephra samples from Erebus volcano. The samples cover the entire compositional range from basanite to phonolite and trachyte, and represent all three phases of the volcanic evolution from 1.3 Ma to the present. Isotopic analyses of 7 samples from Mt. Morning and the Dry Valley Drilling Project (DVDP) are given for comparison. The Erebus volcano samples have radiogenic 206Pb/204Pb, unradiogenic 87Sr/86Sr, and intermediate 143Nd/144Nd and 176Hf/177Hf, and lie along a mixing trajectory between the two end-member mantle components DMM and HIMU. The Erebus time series data show a marked distinction between the early-phase basanites and phonotephrites, whose Nd, Hf, Sr, and Pb isotope compositions are variable (particularly Pb), and the current ‘phase-three’ evolved phonolitic lavas and bombs, whose Nd, Hf, Sr, and Pb isotope compositions are essentially invariant. Magma mixing is inferred to play a fundamental role in establishing the isotopic and compositional uniformity in the evolved phase-three phonolites. In-situ analyses of Pb isotopes in melt inclusions hosted in an anorthoclase crystal from a 1984 Erebus phonolite bomb and in an olivine from a DVDP basanite are uniform and identical to the host lavas within analytical uncertainties. We suggest that, in both cases, the magma was well mixed at the time melt inclusions were incorporated into the different mineral phases.  相似文献   

17.
Nd and Sr isotope determinations on late Precambrian to early Palaeozoic igneous and sedimentary rocks from the Arabian Shield are used to investigate the proportion of reworked “older” crust, and the rate at which new crust was generated during the Pan African event. Eight Rb/Sr whole rock isochrons on igneous suites yield ages in the range 770?590 Ma and initial 87Sr/86Sr ratios of 0.7038?0.7023. These data confirm that magmatism in this area was largely restricted to the period 850-550 Ma, and the initial ratios are sufficiently low to preclude significant contributions from a long-lived upper crustal source. The initial 143Nd/144Nd ratios of a variety of lithologies, including several samples of possible “basement”, are all higher than the contemporaneous values for CHUR (εNd = +1.6 to +6.9), suggesting that many were derived directly from the upper mantle, and that any inferred crustal source regions for the remainder could not have separated from likely LREE-depleted mantle reservoirs before 1200 Ma. The Arabian Shield therefore provides an example of rapid crustal growth during the Late Proterozoic, and contrasts with the Damara intracratonic belt of Namibia where Nd and Sr isotopes provide strong evidence for extensive reworking of older continental crust during the same period.  相似文献   

18.
Trace element and Th, Sr and Pb isotope data for young lavas from the Tonga-Kermadec arc in the southwest Pacific suggest that geochemical variations in the lavas along the arc are linked to differences in the material being subducted beneath the arc. Lavas from the southern (Kermadec) segment of the arc have relatively radiogenic Pb isotope compositions, which reflects a contribution from subducted sediment. In contrast, much of the Pb in Tonga lavas is derived from the altered oceanic crust in the subducting Pacific Plate, and lavas from the northernmost Tonga islands of Tafahi and Niuatoputapu contain Pb and Sr derived from the subducted part of the Louisville Seamount Chain. The origin of the Pb in the lavas from these two islands can thus be traced to a point on the subducting slab, and this observation is used to estimate the rate at which trace elements are transported beneath the arc. Our calculations suggest that fluid-soluble elements such as U, Sr and Pb are transported from the subducted slab, across the mantle wedge and back to the surface in lavas over a period of approximately 2–3 Ma, and that magmas are erupted at the surface less than 350 ka after the melts are generated in the mantle wedge.  相似文献   

19.
Pb, Nd and Sr isotope compositions of oceanic basalts have been used to identify recycled components of continent derivation in the mantle. The isotopic compositions of Sr, Nd and Pb, together with U, Pb, Sm, Nd, Rb, and Sr abundances have been determined for back-arc basalt glasses from the Scotia Sea and Parece Vela and West Philippine Basins, in addition to basalts from South Sandwich Islands, Ascension, St. Helena and Tristan da Cunha. Comparisons made between the isotopic compositions of South Sandwich Islands basalts and Atlantic MORB glasses permit the identification of recycled components of continent derivation in the source of the island arc basalts. Recycled Sr of continent derivation is also recognisable in back-arc basalt glasses from the Scotia Sea and Parece Vela and West Philippine Basins. However, contemporary reinjection of material with the isotopic structures similar to those identified as a component of island arc and back-arc regions cannot be the sole or dominant influence on the fine structure observed in MORB glasses from the Atlantic Ocean, nor the isotopic compositions of Tristan da Cunha, St. Helena and Ascension basalts. Recycled materials are likely to have been responsible for the generation of these heterogeneities only if they have been stored in the mantle for periods of time exceeding 109 years.  相似文献   

20.
The Cenozoic basaltic province of the Vogelsberg area (central Germany) is mainly composed of intercalated olivine to quartz tholeiites and near-primary nephelinites to basanites. The inferred mantle source for the alkaline and tholeiitic rocks is asthenospheric metasomatized garnet peridotite containing some amphibole as the main hydrous phase. Trace element modelling indicates 2 to 3% partial melting for the alkaline rocks and 5 to 7% partial melting for the olivine tholeiites. Incompatible trace element abundances and ratios as well as Nd and Sr radiogenic isotope compositions lie between plume compositions and enriched mantle compositions and are similar to those measured in Ocean Island Basalts (OIB) and the Central European Volcanic Province elsewhere. The mafic olivine tholeiites have similar Ba/Nb, Ba/La and Nd–Sr isotope ratios to the alkaline rocks indicating derivation of both magma types from chemically comparable mantle sources. However, Zr/Nb ratios are slightly higher in olivine tholeiites than in basanites reflecting some fractionation of Zr relative to Nb during partial melting. Quartz tholeiites have higher Ba/Nb, Zr/Nb, La/Nb, but lower Ce/Pb ratios and lower Nd isotope compositions than the alkaline rocks which can be explained by interaction of the basaltic melt with lower (granulite facies) crustal material or partial melts thereof during stagnation within the lower crust. It appears most likely that upwelling of hot, asthenospheric material results in the generation of primitive alkaline rocks at the base of the lithosphere at depths of 75–90 km. Lithospheric extension together with minor plume activity and probably lower lithosphere erosion induced melting of shallower heterogenous upper mantle generating a spectrum of olivine tholeiitic melts. These olivine tholeiitic rocks evolved via crystal fractionation and probably limited contamination to quartz tholeiites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号