首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
By using the observed monthly mean temperature and humidity datasets of 14 radiosonde stations and monthly mean precipitation data of 83 surface stations from 1979 to 2008 over the Tibetan Plateau(TP),the relationship between the atmospheric water vapor(WV) and precipitation in summer and the precipitation conversion efficiency(PEC) over the TP are analyzed.The results are obtained as follows.(1) The summer WV decreases with increasing altitude,with the largest value area observed in the northeastern part of the TP,and the second largest value area in the southeastern part of the TP,while the northwestern part is the lowest value area.The summer precipitation decreases from southeast to northwest.(2) The summer WV presents two main patterns based on the EOF analysis:the whole region consistent-type and the north-south opposite-type.The north-south opposite-type of the summer WV is similar to the first EOF mode of the summer precipitation and both of their zero lines are located to the north of the Tanggula Mountains.(3) The summer precipitation is more(less) in the southern(northern) TP in the years with the distribution of deficient summer WV in the north while abundant in the south,and vice versa.(4) The PEC over the TP is between 3% and 38% and it has significant spatial difference in summer,which is obviously bigger in the southern TP than that in the northern TP.  相似文献   

2.
Climatic conditions are difficult to obtain in high mountain regions due to few meteorological stations and, if any, their poorly representative location designed for convenient operation. Fortunately, it has been shown that remote sensing data could be used to estimate near-surface air temperature (Ta) and other climatic conditions. This paper makes use of recorded meteorological data and MODIS data on land surface temperature (Ts) to estimate monthly mean air temperatures in the southeastern Tibetan Plateau and its neighboring areas. A total of 72 weather stations and 84 MODIS images for seven years (2001 to 2007) are used for analysis. Regression analysis and spatio-temporal analysis of monthly mean Ts vs. monthly mean Ta are carried out, showing that recorded Ta is closely related to MODIS Ts in the study region. The regression analysis of monthly mean Ts vs. Ta for every month of all stations shows that monthly mean Ts can be rather accurately used to estimate monthly mean Ta (R2 ranging from 0.62 to 0.90 and standard error between 2.25℃ and 3.23℃). Thirdly, the retrieved monthly mean Ta for the whole study area varies between 1.62℃ (in January, the coldest month) and 17.29℃ (in July, the warmest month), and for the warm season (May-September), it is from 13.1℃ to 17.29℃. Finally, the elevation of isotherms is higher in the central mountain ranges than in the outer margins; the 0℃ isotherm occurs at elevation of about 4500±500 m in October, dropping to 3500±500 m in January, and ascending back to 4500±500 m in May next year. This clearly shows that MODIS Ts data combining with observed data could be used to rather accurately estimate air temperature in mountain regions.  相似文献   

3.
Based on the meteorological data of 20 stations in the Hengduan Mountains region during 1961-2009, the annual and seasonal variation of potential evapotranspiration was analyzed in combination with the Penman-Monteith model. With the method of Spline interpolation under ArcGIS, the spatial distribution of potential evapotranspiration was presented to research the regional difference, and the correlation analysis was used to discuss the dominant factor affecting the potential evapotranspiration. The results indicated that the an-nual potential evapotranspiration showed a decreasing tendency since the 1960s, especially from the 1980s to 1990s, while it showed an increasing tendency since 2000. Regional potential evapotranspiration showed a rate of -0.17 mm a?1. Potential evapotranspiration in north, middle and south of the Hengduan Mountains exhibited decreasing trends over the studied period, and its regional trend was on the decline from southwest to northeast.  相似文献   

4.
广东蒸发皿蒸发量的变化特征及成因   总被引:3,自引:0,他引:3  
利用广东86 个气象站1961-2008 年20 cm口径蒸发皿的实测资料,分析了广东小型蒸发皿蒸发量的变化趋势及其原因。结果表明,尽管在这48 年间广东年平均气温以0.21 oC/10a 的趋势递增,但是蒸发皿蒸发量总体上却以-54.67 mm/(10a) 的速度递减。蒸发皿蒸发量上升的地区只集中在粤中部分地区,下降幅度最大的地区则在粤西南、粤东沿海和珠江三角洲。通过对彭曼公式中能量平衡项和空气动力项的分析表明,粤中蒸发皿蒸发量的上升主要是因为供蒸发的动力上升幅度略大于能量下降幅度,而蒸发皿蒸发量的下降主要是供蒸发的能量和动力共同下降(或能量下降幅度远大于动力上升幅度) 所致。对各气象因子的趋势分析和相关分析表明,影响广东蒸发量的主要因子为日照时数和风速。  相似文献   

5.
On the Tibetan Plateau, the alpine meadow is the most widespread vegetation type. The alpine meadow has a low biological productivity and low vegetation coverage in the growing season. The daytime NEE between the atmosphere and the alpine meadow ecosystem was influenced by solar radiation. To analyze the characteristics of change in NEE and to calculate the parameters related to photosynthesis and respiration in different solar radiation environments, the NEE measurements were taken in Damxung from July to August in 2003, 2004, 2005 and 2006 using the eddy covariance technique. Solar radiation was grouped into three levels according to the net radiation, which was more than 155 W m-2 d-1 on clear days, 144±5 W m-2 d-1 on partly cloudy days and less than 134 W m-2 d-1 on cloudy days. The diurnal relationships between NEE and PAR varied with differences in solar radiation, which was a rectangular hyperbola form on clear days, two different concave curves on partly cloudy days and an irregular triangle form on cloudy days. The mean CO2 absorption rate showed a decreasing trend with increasing solar radiation. The daytime absorption maximum occurred around 10:00 on clear days with an average of slightly less –0.2 mg m-2 d-1, around 11:00 on partly cloudy days with an average of about –0.2 mg m-2 d-1, and around 12:00 on cloudy days with an average of about –0.25 mg m-2 d-1. As solar radiation increased, the Amax and the Q10 decreased. However, the R10 increased and the maximum of the α occurred on partly cloudy days. The optimum net solar radiation was about 134–155 W m-2 d-1, which induced a PAR of about 1800-2000 μmol m-2 s-1 and soil temperature at a depth of 5 cm of about 14℃. Therefore, on the Tibetan Plateau, the alpine meadow ecosystem will have a higher carbon absorption potential while solar radiation decreases in the future.  相似文献   

6.
In the last decade, there has been increasing interest in climate change, pasture degradation and its driving forces, and innovations in nomadic pastoralism on the Tibetan Plateau. However, little is known of indigenous strategies of adaptation to pasture degradation, which limits the effectiveness of adaptation strategies planned by local government. This paper analyzes nomads’ strategies of adaptation to pasture degradation on the basis of a field survey of three townships of Dalag County in the source regions of the Yangtze and Yellow rivers. Pastures there have evidently degraded, with pastures in Wasai mainly in a state of slight or medium degradation and those in Manzhang and Jianshe in a state of medium or severe degradation. With the degradation of pasture, the grazing time is reduced, which affects the livelihoods of nomads. Although the Four-Package Project has commenced in this region, there is still severe fodder shortage in winter and spring. The traditional hay storage strategy does not work because of pasture degradation, and few nomads establish fenced and artificial pastures. Therefore, nomads have employed other strategies, such as renting pasture, providing supplementary feed, and diversifying their livelihoods. Local strategies taken by nomads can provide valuable insights into ecological restoration and livelihood improvement in the region and suggest changes to means promoted by local government. It is necessary to seek new means that combine the best aspects of nomadic pastoralism with modern stockbreeding technologies to help nomads adapt to pasture degeneration and improve their livelihoods.  相似文献   

7.
Detecting variation trend in dry-wet conditions can provide information for developing strategic measures to mitigate the impacts of global warming, particularly in dry regions. Taking the hilly region of northern Shaanxi on the Loess Plateau as a case area, this study analyzed the trend of aridity variation during 1981–2012, and explored the effect of vegetation restoration promoted by the Grain-for-Green(GFG) program implemented in 1999. The results indicated that the aridity in the region was non-significantly increased by 0.88% per year during 1981–2012, showing a drying trend. This drying trend and amplitude were changed by the influence of vegetation restoration promoted by the GFG program, based on two findings. The first one was that the aridity variation tended to increase during 1981–1999 while it turned to decrease during 2000–2012, with the regional mean relative change rate changed from 2.45% to –1.06%. This distinction was more remarkable in the loess gully region, where the vegetation was improved more obviously. The second one was that the mean vegetation coverage as indicated by EVI increased by 0.90% to 4.32% per year at county level, while the aridity decreased by 0.14% to 2.32% per year during 2000–2012. The regression analysis using the mean county data indicated that the change rate of aridity was negatively related to that of EVI with the coefficient of determination(R2) of 0.56, illustrating that around half of the aridity decline was explained by the EVI change. The mechanism of this effect was complicated, but it was found that the wind speed decline induced by the vegetation improvement could be an important contributor. It is concluded that the region became drier during 1981–2012, but the eco-restoration reduced the drying speed. However, this conclusion is involved in uncertainties, and further study based on experiments is needed to confirm the effect of the GFG-promoted vegetation restoration.  相似文献   

8.
梯田建设和淤地坝淤积对土壤侵蚀影响的定量分析(英文)   总被引:2,自引:1,他引:2  
To study the influences of terraced field construction and check-dam siltation on soil erosion of a watershed,we built a simplified watershed model for the Loess Plateau hilly-gully region including terraced fields,slope farmlands,steep-slope grasslands,and dam farmlands,and defined three states of watershed(i.e.,pioneer,intermediate,and climax stages,respectively).Then,the watershed soil erosion moduli at various stages were studied by using a revised universal soil loss equation.Our results show that the pioneer and climax stages are the extreme states of watershed soil-and-water conservation and control;in the pioneer stage,the soil erosion modulus was 299.56 t ha-1 a-1 above the edge of gully,136.64 t ha-1 a-1 below the edge of gully,and 229.74 t ha-1 a-1 on average;in the climax stage,the soil erosion modulus was 39.10 t ha-1 a-1 above the edge of gully,1.10 t ha-1 a-1 below the edge of gully,and 22.81 t ha-1 a-1 on average;in the intermediate stage,the soil erosion modulus above the edge of gully exhibited an exponential decline along with the increase in terraced field area percentage,while the soil erosion modulus below the edge of gully exhibited a linear decline along with the increase in siltation height.  相似文献   

9.
Evapotranspiration is one of the key components of hydrological processes. Assessing the impact of climate factors on evapotranspiration is helpful in understanding the impact of climate change on hydrological processes. In this paper, based on the daily meteorological data from 1960 to 2007 within and around the Aksu River Basin, reference evapotranspiration (RET) was estimated with the FAO Penman-Monteith method. The temporal and spatial variations of RET were analyzed by using ARCGIS and Mann-Kendall method. Multiple Regression Analysis was employed to attribute the effects of the variations of air temperature, solar radiation, relative humidity, vapour pressure and wind speed on RET. The results showed that average annual RET in the eastern plain area of the Aksu River Basin was about 1100 mm, which was nearly twice as much as that in the western mountainous area. The trend of annual RET had significant spatial variability. Annual RET was reduced significantly in the southeastern oasis area and southwestern plain area and increased slightly in the mountain areas. The amplitude of the change of RET reached the highest in summer, contributing most of the annual change of RET. Except in some high elevation areas where relative humidity predominated the change of the RET, the variations of wind velocity predominated the changes of RET almost throughout the basin. Taking Kuqa and Ulugqat stations as an example, the variations of wind velocity accounted for more than 50% of the changes of RET.  相似文献   

10.
In this study,we have used four methods to investigate the start of the growing season(SGS) on the Tibetan Plateau(TP) from 1982 to 2012,using Normalized Difference Vegetation Index(NDVI) data obtained from Global Inventory Modeling and Mapping Studies(GIMSS,1982-2006) and SPOT VEGETATION(SPOT-VGT,1999-2012).SGS values estimated using the four methods show similar spatial patterns along latitudinal or altitudinal gradients,but with significant variations in the SGS dates.The largest discrepancies are mainly found in the regions with the highest or the lowest vegetation coverage.Between 1982 and 1998,the SGS values derived from the four methods all display an advancing trend,however,according to the more recent SPOT VGT data(1999-2012),there is no continuously advancing trend of SGS on the TP.Analysis of the correlation between the SGS values derived from GIMMS and SPOT between 1999 and 2006 demonstrates consistency in the tendency with regard both to the data sources and to the four analysis methods used.Compared with other methods,the greatest consistency between the in situ data and the SGS values retrieved is obtained with Method 3(Threshold of NDVI ratio).To avoid error,in a vast region with diverse vegetation types and physical environments,it is critical to know the seasonal change characteristics of the different vegetation types,particularly in areas with sparse grassland or evergreen forest.  相似文献   

11.
Land surface actual evapotranspiration is an important process that influences the Earth's energy and water cycles and determines the water and heat transfer in the soil-vegetation-atmosphere system. Meanwhile, the cryosphere's hydrological process is receiving extensive attention, and its water problem needs to be understood from multiple perspectives. As the main part of the Chinese cryosphere, the Tibetan Plateau faces significant climate and environmental change. There are active interaction and pronounced feedback between the environment and ETa in the cryosphere. This article mainly focuses on the research progress of ETa in the Tibetan Plateau. It first reviews the ETa process, characteristics, and impact factors of typical underlying surfaces in the Tibetan Plateau (alpine meadows, alpine steppes, alpine wetlands, alpine forests, lakes). Then it compares the temporal and spatial variations of ETa at different scales. In addition, considering the current greening of cryosphere vegetation due to climate change, it discusses the relationship between vegetation greening and transpiration to help clarify how vegetation activities are related to the regional water cycle and surface energy budget.  相似文献   

12.
1981-2010年气候变化对青藏高原实际蒸散的影响(英文)   总被引:1,自引:0,他引:1  
From 1981 to 2010,the effects of climate change on evapotranspiration of the alpine ecosystem and the regional difference of effects in the Tibetan Plateau(TP) were studied based on the Lund-Potsdam-Jena dynamic vegetation model and data from 80 meteorological stations.Changes in actual evapotranspiration(AET) and water balance in TP were analyzed.Over the last 30 years,climate change in TP was characterized by significantly increased temperature,slightly increased precipitation,and decreased potential evapotranspiration(PET),which was significant before 2000.AET exhibited increasing trends in most parts of TP.The difference between precipitation and AET decreased in the southeastern plateau and increased in the northwestern plateau.A decrease in atmospheric water demand will lead to a decreased trend in AET.However,AET in most regions increased because of increased precipitation.Increased precipitation was observed in 86% of the areas with increased AET,whereas decreased precipitation was observed in 73% of the areas with decreased AET.  相似文献   

13.
基于析因数值实验方法的蒸发皿蒸发归因研究   总被引:2,自引:0,他引:2  
王婷婷  孙福宝  章杰  刘文彬  王红 《地理学报》2018,73(11):2064-2074
蒸发皿蒸发是唯一可长时间大范围观测的潜在蒸发,其准确估算和长时间序列趋势变化归因分析,对变化环境下干旱研究、水文过程理解分析与预估具有重要意义。本文筛选出416个具有连续观测的气象台站资料,率定了PenPan模型中适合模拟中国20 cm口径(D20)蒸发皿蒸发的风速函数,发展了基于去趋势法的析因数值实验归因法,对比了此方法与常用的偏导归因法在1960-2014年、1960-1993年(“蒸发悖论”时段)及1993-2014年(“蒸发悖论”消失)蒸发皿蒸发趋势变化的归因结果。结果表明,使用新率定的风速函数fq(u2)=3.977×10-8(1+0.505u2)能更准确模拟中国D20蒸发皿蒸发;相较于偏导归因法结果,析因数值实验法也能对蒸发皿蒸发趋势变化进行定量归因分析,且归因结果略优于偏导归因法结果;此外,可利用析因数值实验法的基准态信息来对偏导归因法结果进行校正,从而更准确地对蒸发皿蒸发趋势变化进行归因分析,加深对蒸发皿蒸发趋势变化的理解,为水文水循环研究准确分析提供保障。  相似文献   

14.
Trends of annual and monthly temperature, precipitation, potential evapotranspi-ration and aridity index were analyzed to understand climate change during the period 1971–2000 over the Tibetan Plateau which is one of the most special regions sensitive to global climate change. FAO56–Penmen–Monteith model was modified to calculate potential evapotranspiration which integrated many climatic elements including maximum and mini-mum temperatures, solar radiation, relative humidity and wind speed. Results indicate gen-erally warming trends of the annual averaged and monthly temperatures, increasing trends of precipitation except in April and September, decreasing trends of annual and monthly poten-tial evapotranspiration, and increasing aridity index except in September. It is not the isolated climatic elements that are important to moisture conditions, but their integrated and simulta-neous effect. Moreover, potential evapotranspiration often changes the effect of precipitation on moisture conditions. The climate trends suggest an important warm and humid tendency averaged over the southern plateau in annual period and in August. Moisture conditions would probably get drier at large area in the headwater region of the three rivers in annual average and months from April to November, and the northeast of the plateau from July to September. Complicated climatic trends over the Tibetan Plateau reveal that climatic factors have nonlinear relationships, and resulte in much uncertainty together with the scarcity of observation data. The results would enhance our understanding of the potential impact of climate change on environment in the Tibetan Plateau. Further research of the sensitivity and attribution of climate change to moisture conditions on the plateau is necessary.  相似文献   

15.
1960-2005年新疆地区蒸发皿蒸发与实际蒸发之间的关系   总被引:3,自引:1,他引:3  
Pan evaporation,an indictor of potential evaporation,has decreased during the last several decades in many parts of the world;the trend is contrary to the expectation that the increase of actual evaporation will accompany global warming,known as the pan evaporation paradox.What is the essential relationship between pan evaporation and actual evaporation? This is still an uncertain problem.In this paper,the trends of pan evaporation and actual evaporation are investigated using observational data and observation-constrained simulation results using NCAR Community Land Model(CLM) in Xinjiang from 1960 to 2005.Our analysis suggests that the decreasing trend of annual pan evaporation accompanies the increasing trend of annual actual evaporation,the tendencies of them both have statistical significance(at 99% level and at 95% level,respectively).We also find that there is the same turning point in precipitation,pan evaporation and actual evaporation of 1986,and either before the point or after,pan evaporation has inverse trend comparing with actual evaporation and precipitation.The above analysis indicates that pan evaporation and actual evaporation have complementary relationship.These results support the issue of evaporation paradox described by Brutsaert and Parlange(1998) and suggest that decrease of pan evaporation indicates an increase of actual evaporation in Xinjiang in the past half century.The correlation analysis shows that diurnal temperature range(DTR),wind speed,low cloud cover and precipitation are the most likely driving forces for the reduced pan evaporation and the ascending actual evaporation.  相似文献   

16.
Pan evaporation,an indictor of potential evaporation,has decreased during the last several decades in many parts of the world;the trend is contrary to the expectation that the increase of actual evaporation will accompany global warming,known as the pan evaporation paradox.What is the essential relationship between pan evaporation and actual evaporation? This is still an uncertain problem.In this paper,the trends of pan evaporation and actual evaporation are investigated using observational data and observation-constrained simulation results using NCAR Community Land Model(CLM) in Xinjiang from 1960 to 2005.Our analysis suggests that the decreasing trend of annual pan evaporation accompanies the increasing trend of annual actual evaporation,the tendencies of them both have statistical significance(at 99% level and at 95% level,respectively).We also find that there is the same turning point in precipitation,pan evaporation and actual evaporation of 1986,and either before the point or after,pan evaporation has inverse trend comparing with actual evaporation and precipitation.The above analysis indicates that pan evaporation and actual evaporation have complementary relationship.These results support the issue of evaporation paradox described by Brutsaert and Parlange(1998) and suggest that decrease of pan evaporation indicates an increase of actual evaporation in Xinjiang in the past half century.The correlation analysis shows that diurnal temperature range(DTR),wind speed,low cloud cover and precipitation are the most likely driving forces for the reduced pan evaporation and the ascending actual evaporation.  相似文献   

17.
本文利用西藏高原近40年来的逐月气象数据,通过时间序列分析和非参数Mann-Kendall检验方法,对西藏高原日照时数、平均气温、小型蒸发皿蒸发量和降水量4个基本气象要素变化特征进行了较为全面的分析,揭示了近40年来西藏高原气候变化的主要特征.结果表明:⑴日照时数是西北部长,东南部短,且东南部呈一定的下降趋势,西北部呈一定的上升趋势;⑵年平均气温以0℃和5℃为界划分为3个区,研究区全年总体表现出升温趋势,藏西地区的气温变化趋势大于藏东地区;⑶蒸发量年变化很大,研究区整体呈下降趋势,空间上表现为从西部向东部逐渐减少的趋势,其中仅西部和东南部小部分地区呈现出上升趋势,其余地区都为下降趋势;⑷降水趋势变率空间分布上的基本规律是:其大小由东往西逐渐减小,藏中和藏东为上升趋势,藏西为下降趋势.另外,4个要素各月与各季节的变化趋势与年变化趋势间表现出很好的一致性.  相似文献   

18.
青藏高原近30年气候变化趋势   总被引:192,自引:17,他引:192  
以1971~2000年青藏高原77个气象台站的观测数据 (最低、最高气温,日照时数,相对湿度,风速和降水量) 为基础,应用1998年FAO推荐的Penman-Monteith模型,并根据我国实际状况对其辐射项进行修正,模拟了青藏高原1971~2000年的最大可能蒸散,并由Vyshotskii模型转换为干燥度,力求说明近30年青藏高原的气候变化趋势,以及干湿状况的空间分布。应用线性回归法计算变化趋势,并用Mann-Kendall方法进行趋势检验。结果表明:青藏高原近30年气候变化的总体特征是气温呈上升趋势,降水呈增加趋势,最大可能蒸散呈降低趋势,大多数地区的干湿状况有由干向湿发展的趋势。气候因子与地表干湿状况间并不是线性关系,存在很大的不确定性。  相似文献   

19.
气候植被研究是全球变化研究的重要内容, 而模型研究是气候植被研究的重要手段。青藏 高原以其特殊的自然环境特点, 形成了气候与植被独特的适应机制, 为许多通用气候植被模型所 不能反映, 加之所受到人类活动的干扰相对较少, 决定其为植被气候研究的重要实验场地。本文 回顾了气候植被模型发展的相关历程, 评述了每类模型的特点及其不足。从植被格局研究和植被 生产力研究两个方面, 对青藏高原的气候植被研究进行了总结和分析, 认为模型研究是气候植被 研究的重要手段, 而青藏高原的研究在这方面还比较落后, 同时对青藏高原气候植被模型研究中 存在的一些问题, 如数据精度、模型的适宜性和结果验证等进行了讨论。认为今后青藏高原气候 植被模型研究的重点应是进一步明晰气候植被的关键过程, 立足高原环境特点开发有高原特色 的气候植被模型。  相似文献   

20.
论青藏高原范围与面积   总被引:80,自引:4,他引:80  
长期以来 ,种种因素导致学者们对青藏高原确切范围的认识和理解存在差异。根据青藏高原相关领域研究的新成果和多年野外实践 ,从地理学角度 ,充分讨论了确定青藏高原范围和界线的原则与涉及的问题 ,结合信息技术方法对青藏高原范围与界线位置进行了精确的定位和定量分析。得出 :青藏高原在中国境内部分西起帕米尔高原 ,东至横断山脉 ,横跨 31个经度 ,东西长约 2 94 5km ;南自喜马拉雅山脉南缘 ,北迄昆仑山 -祁连山北侧 ,纵贯约 13个纬度 ,南北宽达 15 32km ;范围为 2 6°0 0′12″N~ 39°4 6′5 0″N ,73°18′5 2″E~ 10 4°4 6′5 9″E ,面积为 2 5 72 4× 10 3km2 ,占我国陆地总面积的 2 6 8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号